СПОСОБ ОБРАБОТКИ СТЕРЖНЯ-ПОГЛОТИТЕЛЯ, СОДЕРЖАЩЕГО ЗАГРЯЗНЕННЫЙ КАРБИД БОРА И НАТРИЙ Российский патент 2018 года по МПК G21F9/28 

Описание патента на изобретение RU2656224C2

Область изобретения

Настоящее изобретение относится к области обработки ядерных отходов.

Настоящее изобретение относится, в частности, к обработке отходов, содержащих натрий и по меньшей мере одно радиоактивное вещество. Одним видом таких отходов является, например, стержень для контроля реактивности реактора на быстрых нейтронах с натриевым охлаждением ("FNR-Na").

Предпосылки для создания изобретения

Для контроля реактивности ядерного реактора в FNR-Na применяют поглощающие нейтроны материалы, содержащие в себе карбид бора с упрощенной формулой B4C.

Этот материал обычно имеет форму спеченных гранул цилиндрической формы в оболочке для формирования такого поглощающего элемента, как стержень-поглотитель.

Под объединенным действием радиационного излучения и температуры изначально массивные гранулы карбида бора могут разрушаться до появления в гранулах трещин.

Во время работы "FNR-Na" реактора натрий в первом контуре пребывает в жидкой форме и содержит по меньшей мере одно радиоактивное вещество. Он циркулирует в пространстве между гранулами карбида бора и оболочкой. При разрушении гранул жидкий натрий, загрязненный радиоактивным веществом, может проникать в трещины гранул карбида бора или даже по разломам гранул карбида бора, если трещины привели к фрагментации гранул. В настоящем описании разломы классифицируют как трещины.

После остановки реактора стержни-поглотители извлекают из реактора и помещают на хранение до обработки. Таким образом, извлеченный стержень-поглотитель содержит треснувшие гранулы карбида бора, в трещинах которых содержится натрий в твердой форме, который загрязнен по меньшей мере одним радиоактивным веществом.

Загрязненный стержень-поглотитель является ядерными отходами, которые представляют двойную опасность с точки зрения безопасности и защиты:

- химическую опасность из-за остаточного натрия, который должен храниться в атмосфере инертного газа (такого как аргон или азот) для предотвращения риска химической реакции, например, с водой или кислородом из воздуха. В зависимости от условий хранения до обработки часть натрия на поверхности тем не менее может неконтролируемо преобразовываться, например, в гидроксид натрия и водород при контакте с водой;

- радиологическую опасность из-за загрязнения натрия радиоактивным веществом, а именно радиоактивными изотопами первичного контура реактора.

Для того чтобы иметь возможность обработки таких ядерных отходов стандартным путем удаления загрязненных отходов, необходимо, в первую очередь, устранить химическую опасность, то есть химически преобразовать или извлечь загрязненный металлический натрий, присутствующий в стержне-поглотителе, в частности, в трещинах гранул карбида бора.

Способ химического преобразования натрия путем непосредственной реакции между водой и натрием является трудноосуществимым, поскольку предполагает приведение в контакт этих двух химических соединений, но также предполагает контроль над кинетикой реакции, избавление от продуктов реакции (таких как гидроксид натрия и водород), а также отсутствие накопления реагентов.

В то же время спеченный карбид бора является химически стабильным, малопористым материалом с пористостью, составляющей в целом менее 1% от объема материала. Таким образом, натрий очень ограничен внутри этого материала. Следовательно, могут быть необходимы многочисленные манипуляции с оболочкой для обработки радиоактивной смеси натрий-карбид бора. Однако такая манипуляция является длительной и сложной, поскольку прочность гранул карбида бора является такой, что можно повредить и загрязнить режущие инструменты.

Присутствие радиоактивного вещества также подразумевает работу в камере, предотвращающей распространение радиоактивности, и в атмосфере инертного газа, такой как перчаточный бокс. В то же время операции по резке также являются сложными по причине сложностей манипуляций, присущих этому типу камер. Более того, существует возможность дисперсии радиоактивного вещества в камере, которая должна быть ограничена в максимально возможной степени.

Таким образом, низкая доступность загрязненного натрия значительно усложняет его обработку в качестве отходов.

Краткое описание изобретения

Одной из целей настоящего изобретения является устранение или уменьшение одного или более описанных выше недостатков путем осуществления способа, который, среди прочего, позволяет легко обрабатывать натрий и радиоактивное вещество, находящиеся в трещинах материала на основе спеченного карбида бора, который является химически стабильным высокопрочным материалом, при этом подлежащий обработке натрий является труднодоступным, поскольку находится внутри трещин.

Настоящее изобретение, таким образом, относится к способу обработки стержня-поглотителя, стержня, содержащего оболочку, в которой находится материал на основе спеченного карбида бора с трещинами, содержащими натрий и по меньшей мере одно радиоактивное вещество.

Способ включает в себя этап обработки, во время которого натрий преобразовывается в карбонат натрия путем реакции карбонизации за счет взаимодействия материала с реакционной смесью для обработки, содержащей в молярных процентах 0,5% - 5% пара, 5 % - 25% углекислого газа и 74,5% - 94,5% химически инертного газа, таким образом, что увеличение в объеме карбоната вызывает раскрытие трещин и оболочки, которое начинается по меньшей мере из одной щели, сделанной в оболочке, а также распространение эффектов указанного способа обработки внутри материала.

Этап обработки включает в себя взаимодействие материала с реакционной смесью для обработки для проведения реакции карбонизации, в результате которой гидроксид натрия, полученный в ходе реакции гидролиза, после взаимодействия натрия с паром, преобразовывается в карбонат после реакции с углекислым газом, находящимся в реакционной смеси для обработки.

Реакционная смесь для обработки содержит реагенты в газообразной форме. Поэтому она легче взаимодействует с труднодоступным натрием, содержащимся в трещинах гранул карбида бора, или даже с натрием, содержащимся на переломах или стыках отдельных гранул спеченного карбида бора. Этого результата нельзя достигнуть посредством способа обработки только с помощью воды, даже в больших количествах.

В результате реакции карбонизации, используемой в соответствии с этапом обработки, образуется карбонат, состоящий практически из карбоната натрия Na2CO3 и/или гидрокарбоната натрия NaHCO3, который в настоящем описании классифицируется как карбонат натрия. Объем, занимаемый карбонатом, превышает объем, первоначально занимаемый натрием.

Затем проводят реакцию карбонизации таким образом, чтобы увеличение объема карбоната преимущественно вызывало расширение трещин и раскрытие оболочки, причем последняя была предварительно ослаблена механически посредством создания по меньшей мере одной щели. Полученные таким образом отверстия открывают путь к продолжению реакции карбонизации и ее распространению в те зоны, которые первоначально были недоступными для таких реагентов, как вода и углекислый газ. Таким образом может быть обработан весь натрий, содержащийся в оболочке.

Предпочтительно щель является продольной и/или выполнена по всей длине оболочки.

Поскольку оболочка выполнена в основном из металла, состоящего зачастую из нержавеющей стали, щель можно создать, например, с помощью лазера.

В случае необходимости концы оболочки могут быть разрезаны вдоль поперечной плоскости для увеличения кинетики химических реакций, используемых на этапах предобработки и обработки.

После раскрытия трещин и оболочки реакция карбонизации, в соответствии с этапом обработки, продолжается путем постепенного увеличения в области взаимодействия между натрием и газообразной реакционной смесью.

Таким образом, раскрытие трещин и оболочки вызывает ускорение реакции карбонизации, которая может затем распространяться на всю оболочку, обрабатывая в результате весь натрий.

Этот результат получают несмотря на факт, что трещины, как правило, не связаны и образуют замкнутые реакционные пространства. Эти пространства априори препятствуют или ограничивают распространение реакции карбонизации или реакции гидролиза с применением только воды, которая обычно предусмотрена при этом типе обработки.

Вопреки низкой первоначальной доступности натрия, содержащегося в трещинах материала, реакционная смесь для обработки проникает глубоко и полностью взаимодействует с загрязненным натрием. Таким образом, оболочку можно обработать посредством способа, описанного в настоящем изобретении, без множественных операций по резке.

Последнее является особенно преимущественным, поскольку из-за присутствия радиоактивного вещества способ обработки, описанный в настоящем изобретении, зачастую осуществляют в камере, предотвращающей распространение радиоактивности, такой как перчаточный бокс, горячая камера или химический реактор, в которой, как указано выше, нужно стараться ограничивать операции по резке.

Более того, благодаря применению реакции карбонизации способ обработки, описанный в настоящем изобретении, обладает таким преимуществом, как выработка только твердых отходов (карбонат натрия, карбид бора, оболочка и радиоактивное вещество) и газообразных отходов (водород). Таким образом, не образуется никакого жидкого или газообразного радиоактивного стока.

Карбонат натрия представляет собой продукт, который является инертным и стабильным. Его легко обрабатывать, и он совместим с конечными каналами выхода стержней с карбидом бора. Его можно хранить непосредственно в долгосрочном глубоком хранилище.

Водород, получаемый в результате реакции карбонизации, может быть удален с помощью продувочного газа.

Способ обработки согласно настоящему изобретению является также легко контролируемым, поскольку реакция карбонизации, в соответствии с этапом обработки, может быть замедлена путем уменьшения доли пара в газообразной реакционной смеси для обработки или даже остановлена путем замещения этой смеси инертным газом. Это делает способ обработки по настоящему изобретению крайне безопасным.

Кроме относительной простоты применения, способ обработки по настоящему изобретению также делает возможной обработку большего количества стержней-поглотителей за одну операцию, что обеспечивает важное экономическое преимущество.

Тем не менее дополнительная трудность может возникнуть в случае, когда корка, содержащая гидроксид натрия (NaOH) и/или оксида натрия (Na2O), покрывает по меньшей мере часть поверхности, разграничивая трещины в материале. Такая корка может сформироваться в результате гидролиза натрия в присутствии воды и последующей концентрации и кристаллизации полученных продуктов реакции. Корка в дальнейшем покрывает натрий, присутствующий в трещинах, и становится защитным слоем, препятствующим взаимодействию реакционной смеси для обработки с натрием и, следовательно, распространению реакции карбонизации для обработки находящегося под коркой загрязненного натрия.

Поэтому в соответствии с предпочтительным вариантом осуществления способа обработки согласно настоящему изобретению выполняют этап предобработки, в ходе которого материал приводят в контакт с реакционной смесью для предобработки, содержащей, в молярных процентах, 0,5% - 25% углекислого газа и химически инертный газ в качестве оставшейся части. Этап предобработки предшествует этапу обработки.

Реакционная смесь для предобработки является сухой смесью, не содержащей воды или содержащей малые количества воды, для того, чтобы углекислый газ, содержащийся в данной смеси, разрушал корку путем преобразования гидроксида натрия и/или оксида натрия в карбонат натрия. Таким образом, допустимые малые количества воды являются тем, что предотвращает рост корки, что является более приемлемым, чем ее разрушение на этапе предобработки.

Она содержит химически инертный газ с теми же свойствами, что и в реакционной смеси для обработки. Подходящим может быть любой газ, который химически инертен по отношению к натрию. Инертным газом является, например, азот, аргон или их смесь. Реакционная смесь для предобработки и реакционная смесь для обработки могут быть идентичными.

Следовательно, химический состав реакционной смеси для обработки существенно отличается от химического состава реакционной смеси для предобработки дополнительным присутствием воды. Это приводит к упрощению установки, в которой осуществляют способ обработки согласно настоящему изобретению, такой, например, как камера, предотвращающая распространение радиоактивности. Так ограничивают число путей для введения реагентов в камеру. Это усиливает способность камеры предотвращать распространение радиоактивности и, таким образом, увеличивает надежность и безопасность способа обработки, несмотря на наличие радиоактивного вещества.

На этапе предобработки вырабатывается карбонат натрия, который является соединением, также получаемым в конце этапа обработки. Таким образом, ограничен химический состав отходов, получаемых в конце этапов предобработки и обработки. Это преимущественно уменьшает количество каналов утилизации и количество операций, необходимых для последующей обработки отходов.

Подробное описание изобретения

В настоящем описании изобретения такие глаголы, как «охватывать», «содержать», «объединять», «включать», а также их производные являются открытыми словами и, следовательно, не исключают наличия дополнительного элемента(элементов) и/или этапа(этапов), которые могут быть добавлены к исходному элементу(элементам) и/или этапу(элементам), указанному после данных слов. Тем не менее данные открытые слова дополнительно относятся к конкретному варианту осуществления, в котором указан только исходный элемент(ы) и/или этап(ы), исключая все остальное; причем в этом случае открытое слово дополнительно подразумевает закрытое слово «состоять из» и его сопряженные формы.

Выражение «и/или» понимают как связывающее элементы с целью обозначения индивидуального наличия, а также их смеси или комбинации.

Более того, если не указано иное, значения в пределах включены в диапазонах указанных параметров.

Несмотря на наличие радиоактивного вещества, например цезия или трития (продуктов распада), кобальта 60 или марганца 54 (продуктов активации), способ по настоящему изобретению позволяет обрабатывать натрий, присутствующий в трещинах материала на основе спеченного карбида бора.

Этот материал, как правило, имеет форму гранул. Он полностью или частично состоит из спеченного карбида бора, имеющего обычно в своем составе от 8,8% до 20% атомов углерода, и, следовательно, может варьировать в этом диапазоне относительно стехиометрической формулы B4C, которая соответствует 20% атомов углерода, или даже иметь избыток атомов углерода до 1 масс. %.

Способ обработки по настоящему изобретению включает этап обработки, в процессе которого материал приводят в контакт с реакционной смесью для обработки, содержащей в молярных процентах 0,5% - 5% пара, 5% - 25% углекислого газа и 74,5% - 94,5% химически инертного газа. Незначительная доля воды в реакционной смеси для обработки предотвращает какую-либо конденсацию воды на стенках оболочки и, таким образом, позволяет проводить полностью безопасную обработку натрия.

Время контакта реакционной смеси для обработки или предобработки с материалом зависит, соответственно, от количества требующих обработки корки или натрия, а также от состава реакционной смеси. Специалист в данной области может легко адаптировать такое время для получения максимально полной обработки натрия, содержащегося в стержне-поглотителе, на что указывает, например, окончание выделения водорода.

Взаимодействие с реакционной смесью для обработки или предобработки проводят, например, в течение периода, который составляет от 5 часов до 15 дней.

Обработку осуществляют предпочтительно при температуре от 40°С до 55°С. Относительно этапа обработки, этот температурный диапазон предотвращает конденсацию воды, даже при максимальных концентрациях пара 5 мол. %, и бурную реакцию с натрием.

Поскольку материал содержит по меньшей мере одно радиоактивное вещество, обработку по настоящему изобретению зачастую проводят в камере, предотвращающей распространение радиоактивности, такой как перчаточный бокс или горячая камера.

Реакционную смесь для обработки или предобработки затем обычно вводят в камеру, предотвращающую распространение радиоактивности, со скоростью потока, позволяющей ее постоянное обновление по меньшей мере раз в час, как правило один-два раза в час.

Другие цели, характерные признаки и преимущества настоящего изобретения будут теперь указаны в приведенном ниже описании конкретного варианта осуществления способа по настоящему изобретению, которое приведено с целью иллюстрации, а не ограничения.

Описание конкретных вариантов осуществления

Концы металлической оболочки, содержащей в себе спеченные гранулы карбида бора, которые имеют трещины и содержат натрий и радиоактивное вещество, отрезают с использованием лазера.

Затем в металлической оболочке создают продольную щель.

В перчаточном боксе, при поддерживаемой в нем температуре 45°С, гранулы приводят в контакт с реакционной смесью для предобработки с целью удаления корки гидроксида натрия, образующейся на поверхности трещин. Эта смесь содержит, в молярных процентах, 10% углекислого газа и 90% азота.

Затем гранулы приводят в контакт с реакционной смесью для обработки, содержащей, в молярных процентах, 3% пара, 10% углекислого газа и 87% азота.

Спустя несколько часов отсутствие высвобождения водорода означает окончание обработки.

Полученные твердые отходы, а именно карбонат натрия, карбид бора, оболочка и радиоактивное вещество, могут быть упакованы с целью дальнейшего удаления по соответствующим каналам.

Похожие патенты RU2656224C2

название год авторы номер документа
СПОСОБ ОБРАБОТКИ СТРУКТУРЫ, СОДЕРЖАЩЕЙ НАТРИЙ И РАДИОАКТИВНОЕ ВЕЩЕСТВО 2009
  • Сельер Серж
  • Верделли Жаник
  • Годлевски Жоэль
  • Сусиль Мишель
  • Пулен Сандрин
RU2492535C2
СПОСОБ ОБРАБОТКИ ОБОЛОЧКИ, СОДЕРЖАЩЕЙ ПРОКАЛЕННЫЙ ГИДРИД КАЛЬЦИЯ 2012
  • Селлиер Серж
  • Леклерк Арнауд
  • Верделли Дженик
  • Годлевски Йоль
RU2622500C2
ПОГЛОТИТЕЛЬ УГЛЕКИСЛОГО ГАЗА И СПОСОБ ОЧИСТКИ ГАЗОВОЙ СМЕСИ ОТ УГЛЕКИСЛОГО ГАЗА 2008
  • Окунев Алексей Григорьевич
  • Лысиков Антон Игоревич
  • Нестеренко Светлана Сергеевна
RU2379102C1
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОПЛОТНОГО КОМПОЗИЦИОННОГО МАТЕРИАЛА НА ОСНОВЕ Al2O3 - TiCN 2020
  • Веселов Сергей Викторович
  • Янпольский Василий Васильевич
  • Карагедов Гарегин Раймондович
  • Тюрин Андрей Геннадиевич
  • Кузьмин Руслан Изатович
  • Лазарев Алексей Олегович
  • Квашнин Вячеслав Игоревич
  • Зыкова Екатерина Дмитриевна
  • Карпович Захар Алексеевич
  • Виноградов Алексей Александрович
  • Максимов Руслан Александрович
  • Батаев Владимир Андреевич
  • Батаев Анатолий Андреевич
  • Буров Владимир Григорьевич
RU2741032C1
СПОСОБ ПОЛУЧЕНИЯ ПРОППАНТА (ВАРИАНТЫ) И СПОСОБ ГИДРАВЛИЧЕСКОГО РАЗРЫВА ПЛАСТА С ИСПОЛЬЗОВАНИЕМ ПОЛУЧЕННОГО ПРОППАНТА (ВАРИАНТЫ) 2008
  • Першикова Елена Михайловна
  • Усова Зинаида Юрьевна
  • Найдукова Светлана Анатольевна
RU2507178C2
СПОСОБ ПОЛУЧЕНИЯ ХРОМАТОВ ЩЕЛОЧНЫХ МЕТАЛЛОВ И УСТРОЙСТВО ДЛЯ ОКИСЛИТЕЛЬНОЙ ДЕЗАГРЕГАЦИИ МИНЕРАЛОВ 1991
  • Бруццоне Джузеппе[It]
  • Перроне Диего[It]
  • Пароди Альфредо[It]
RU2084403C1
Способ получения кальцинированной соды из природного содосодержащего сырья 2020
  • Нефедов Роман Андреевич
  • Орлов Владислав Викторович
  • Медведев Родион
  • Решетников Дмитрий Михайлович
  • Шегарова Наталья Александровна
  • Лукьянцев Сергей Вячеславович
RU2736461C1
ТВЕРДАЯ ПРОМЕЖУТОЧНАЯ ПРОКЛАДКА С ОТКРЫТОЙ ПОРИСТОСТЬЮ ДЛЯ ЯДЕРНОГО УПРАВЛЯЮЩЕГО СТЕРЖНЯ 2011
  • Забьего Максим
  • Давид Патрик
  • Равене Ален
  • Роше Денис
RU2567874C2
Способ получения высокотемпературных адсорбентов CO 2017
  • Тарасов Андрей Леонидович
  • Кустов Леонид Модестович
  • Портякова Ирина Семеновна
  • Игнатов Александр Владимирович
RU2659256C1
ТВЭЛ ЯДЕРНОГО РЕАКТОРА 1997
  • Ватулин А.В.
  • Костомаров В.П.
  • Лысенко В.А.
  • Савченко А.М.
  • Солонин М.И.
  • Стелюк Ю.И.
RU2124767C1

Реферат патента 2018 года СПОСОБ ОБРАБОТКИ СТЕРЖНЯ-ПОГЛОТИТЕЛЯ, СОДЕРЖАЩЕГО ЗАГРЯЗНЕННЫЙ КАРБИД БОРА И НАТРИЙ

Изобретение относится к области обработки ядерных отходов. Способ обработки стержня-поглотителя, содержащего оболочку, в которой находится материал на основе спеченного карбида бора, пористость которого составляет менее 1% от объема материала, причем материал имеет трещины, которые содержат натрий и, по меньшей мере, одно радиоактивное вещество, при этом способ включает в себя этап обработки, во время которого натрий преобразовывают в карбонат натрия путем реакции карбонизации в результате приведения материала в контакт с реакционной смесью для обработки, содержащей, в молярных процентах, 0,5-5% пара, 5-25% углекислого газа и 74,5-94,5% химически инертного газа, таким образом, что увеличение в объеме карбоната вызывает раскрытие трещин и оболочки, которое начинается, по меньшей мере, из одной щели, сделанной в оболочке, а также распространение эффектов указанного способа обработки внутри материала. Изобретение позволяет в максимально возможной степени преодолевать трудности, связанные с физико-химическими свойствами материала на основе спеченного карбида бора. 9 з.п. ф-лы.

Формула изобретения RU 2 656 224 C2

1. Способ обработки стержня-поглотителя, причем указанный стержень содержит оболочку, в которой находится материал на основе спеченного карбида бора, пористость которого составляет менее 1% от объема материала, причем материал имеет трещины, которые содержат натрий и по меньшей мере одно радиоактивное вещество, при этом способ включает в себя этап обработки, во время которого натрий преобразовывают в карбонат натрия путем реакции карбонизации в результате приведения материала в контакт с реакционной смесью для обработки, содержащей, в молярных процентах, 0,5% - 5% пара, 5% - 25% углекислого газа и 74,5% - 94,5% химически инертного газа, таким образом, что увеличение в объеме карбоната вызывает раскрытие трещин и оболочки, которое начинается по меньшей мере из одной щели, сделанной в оболочке, а также распространение эффектов указанного способа обработки внутри материала.

2. Способ обработки по п. 1, где перед этапом обработки проводят этап предобработки путем приведения материала в контакт с реакционной смесью для предобработки, содержащей, в молярных процентах, 0,5% - 25% углекислого газа и химически инертный газ в качестве оставшейся части.

3. Способ обработки по п. 1 или 2, где материал имеет форму гранул.

4. Способ обработки по п. 1 или 2, где карбид бора имеет состав с 8,8% - 20% атомов углерода.

5. Способ обработки по п. 1 или 2, где инертным газом является азот, аргон или их смесь.

6. Способ обработки по п. 1, где приведение в контакт с реакционной смесью для обработки осуществляют при температуре от 40°С до 55°С.

7. Способ обработки по п. 2, где приведение в контакт с реакционной смесью для предобработки осуществляют при температуре от 40°С до 55°С.

8. Способ обработки по п. 1 или 2, где способ осуществляют в камере, предотвращающей распространение радиоактивности.

9. Способ обработки по п. 8, где камерой, предотвращающей распространение радиоактивности, является перчаточный бокс, горячая камера или химический реактор.

10. Способ обработки по п. 8, где реакционную смесь для обработки или предобработки вводят в камеру, предотвращающую распространение радиоактивности, со скоростью потока, позволяющей ее постоянное обновление по меньшей мере раз в час.

Документы, цитированные в отчете о поиске Патент 2018 года RU2656224C2

Приспособление для суммирования отрезков прямых линий 1923
  • Иванцов Г.П.
SU2010A1
СПОСОБ ОТМЫВКИ ОБОРУДОВАНИЯ ОТ НАТРИЯ 1998
  • Штында Ю.Е.
  • Корольков А.С.
  • Паниковский К.В.
RU2138867C1
Способ переработки радиоактивных отходов щелочных металлов 1986
  • Васильев К.Ф.
  • Осипов В.Н.
  • Симановский Ю.М.
  • Назаренко С.Ю.
  • Чеснокова С.А.
SU1347788A1
US 8206677 B2, 26.06.2012
FR 2933227 A1, 01.01.2010
CN 102077300 A, 25.05.2011.

RU 2 656 224 C2

Авторы

Годлевски Жоэль

Гастальди Оливье

Пелисс Брюно

Леклер Арно

Блевен Гвендаль

Даты

2018-06-04Публикация

2014-07-08Подача