Способ очистки возвратного растворителя Российский патент 2018 года по МПК C08F6/10 C08C2/06 C08L21/00 

Описание патента на изобретение RU2663295C1

Изобретение относится к производству синтетических каучуков, получаемых растворной полимеризацией, в частности к регенерации возвратного растворителя со стадии выделения каучуков.

Известен способ очистки возвратного растворителя в производстве диеновых полимеров путем ректификации [Т.В.Башкатов, Я.Л. Жигалин. Технология синтетических каучуков. Л.: Химия. 1987 г., с. 170, 174]. Он применяется в промышленности, однако не позволяет очистить возвратный растворитель от галоидсодержащих примесей, исключить образование хлористого водорода, вызывающего коррозию оборудования.

Известен способ очистки возвратного растворителя, где для очистки возвратного растворителя тяжелые углеводороды предварительно концентрируют до содержания 0,5-25%мас. путем частичного испарения углеводородного слоя за счет тепла паров дегазации и направляют на ректификацию, куда отдельным потоком подают испарившуюся часть [Способ переработки возвратного растворителя. Авторское свидетельство СССР №1147714 А. кл. С08С 2/06. 1985 Бюл. №12].В предлагаемом способе из-за подогрева сырьевого потока снижается число ступеней контакта на массообменных устройствах ректификационной колонны и соответственно становится возможным проскок паров хлороводорода в верхнюю часть колонны, что приведет к коррозии дефлегматора и емкостей сбор конденсата.

Известен способ очистки возвратного растворителя, в котором с целью регулирования процесса очистки растворителя от примесей в производстве синтетического каучука путем экстрагирования водным раствором щелочи часть растворителя на выходе установки возвращают в рецикл на ее вход [Способ регулирования процесса очистки растворителя от примесей в производстве синтетического каучука. Авторское свидетельство №1361154 А1. Кл. С08 F 136/04. 1987. Бюл. №47]. Установка экстракционной очистки растворителя не предполагает ее нагрева и становится невозможным полного разложения галогенированных углеводородов. Экстрагентом выступает водный раствор щелочного агента, что обуславливает протекание массообменного процесса на поверхности раздела фаз.

В известном способе регулирование процесса очистки растворителя предлагается проводить на ректификационной колонне. Параметрами, регулирующими очистку растворителя, являются флегмовое число и расход пара в кипятильнике колонны. [Способ регулирования процесса очистки растворителя. Авторское свидетельство №1306928 А1. Кл. С08 F 136/04, G05 D 27/00. 1987. Бюл. №16]. Регулирование процесса очистки растворителя флегмовым числом и нагревом кубовой части колонны позволяет предотвратить попадание углеводородов С5 в толуольную фракцию и наоборот попадание толуола в дистиллят углеводородов С5, и не решает проблему нейтрализации образующегося хлороводорода.

Задачей данного изобретения является очистка возвратного растворителя в производстве синтетического каучука от галоидсодержащих примесей, поддержание в нем нейтральной среды для исключения коррозии оборудования, повышение техники безопасности производства растворных полимеров.

Для решения поставленной задачи предлагается способ очистки возвратного растворителя включающий ректификацию возвратного растворителя на колонне, охлаждение паров в дефлегматоре, сбор дистиллята в емкости, подачу флегмы с щелочным агентом в ректификационную колонну, откачивание тяжелых углеводородов с кубовой части колонны на стадию выделения толуола, возврат кубового продукта колонны ректификации, содержащего щелочной агент, отличающийся тем, что производится возврат кубового продукта от 10 до 90%, содержащего неизрасходованный щелочной агент, на колонну ректификации, который предварительно смешивается с сырьевым потоком в трубчатом турбулентном аппарате диффузор-конфузорной конструкции и направляется в среднюю часть колонны.

На фиг. 1 представлена заявляемая схема очистки возвратного растворителя:

I - сырьевой поток на колонну очистки возвратного растворителя

II - пары углеводородной фракции С5

III - конденсат углеводородной фракции С5

IV - щелочной агент

V - толуольная фракция с тяжелыми углеводородами

VI - толуол на полимеризацию

VII - тяжелые углеводороды

VIII - рецикловый поток из кубового продукта колонны очистки возвратного растворителя

1 - колонна очистки возвратного растворителя

2 - колонна очистки толуола от тяжелых углеводородов

3 - дефлегматор

4 - емкость сбора дистиллята

6 - емкость с фенолятами щелочных металлов

5, 7, 8 - насосы

9 - кипятильник

10 - трубчатый турбулентный аппарат диффузор-конфузорной конструкции.

Проведение очистки возвратного растворителя в соответствии с предлагаемым способом на узле очистки растворителя осуществляют следующим образом.

Поток возвратного растворителя по трубопроводу I в качестве сырья поступает в среднюю или ниже средней части колонны 1.Температура по кубу исчерпывающей части колонны 1 составляет 125÷135°С, по верху укрепляющей части колонны 1 - 70÷80°С. Температурный режим по исчерпывающей части колонны является достаточным условием для испарения углеводородов С5, разложения первичных и третичных гидрохлоридов изопрена и выделения хлороводорода. Поток II пары углеводородной фракции С5 с хлороводородом через дефлегматор 3 собираются в емкости 4. Из емкости 4 часть потока III насосом 5 направляют в качестве флегмы на верхнюю тарелку укрепляющей части колонны, а балансовый избыток углеводородного потока III направляется на стадию разделения углеводородов С5. К потоку III, движущемуся по флегмовой линии, из емкости 6 насосом 7 подают щелочной агент IV. Из-за высокой плотности щелочного агента он полностью перетекает в кубовую часть колонны 1 и с потоком толуола и тяжелых углеводородов с pH 10÷12 по трубопроводу V насосом 8 поступает на колонну очистки толуола 2. На ректификационной колонне 2 происходит разделение на толуольную фракцию VI и тяжелые углеводороды VII. Часть потока V oт 10 до 90% направляется в колонну очистки возвратного растворителя 1 по линии VIIIв трубчатый турбулентный аппарат диффузор-конфузорной конструкции10, где смешивается с сырьевым потоком и направляется в среднюю часть колонны.

Использование трубчатого турбулентного аппарат диффузор-конфузорной конструкции обусловлено различием физико-химических показателей сырьевого потока и углеводородов кубового продукта, в т.ч. плотностью. В трубчатом турбулентном аппарате диффузор-конфузорной конструкции происходит перемешивание жидких углеводородных потоков, после прохождения которого, поток гомогенизируется.

В трубчатом турбулентном аппарате диффузор-конфузорной конструкции при увеличении скорости движения жидких углеводородных потоков, отличающихся по плотности, сужается распределение капель дисперсной фазы по размерам с формированием однородных тонкодисперсных систем. Увеличение скорости движения потока и переход смеси углеводородного потока в трубчатом турбулентном аппарате диффузор-конфузорной конструкции от 1-ой секции к 5-ой приводит к увеличению дисперсности капель кубового продукта и, соответственно, к увеличению удельной поверхности раздела фаз, что интенсифицирует протекание процесса смешения. Использование трубчатого турбулентного аппарата диффузор-конфузорной конструкции с числом диффузор-конфузорных секций 5±1 и длине, рассчитываемой как 8÷10 кратное произведение диаметра аппарата, делает эти устройства компактными, а также простыми и дешевыми в изготовлении и эксплуатации.

Существует определенный интервал объемного расхода движения двухфазного потока, которому соответствует геометрия канала трубчатого турбулентного аппарата диффузор-конфузорной конструкции с оптимальным соотношением диаметров диффузора dд к конфузору dк. Снизу этот интервал ограничивается зоной расслоенного течения двухфазного потока, сверху - энергетическими затратами, возникающими вследствие увеличения перепада давленияΔр на концах аппарата (Δp~w2). В частности, соотношению dд/dк = 3 соответствует интервал 44<w<80 см3/с, а соотношению dд/dк=1,6 - интервал 80<w<180 см3/с, причем дальнейшее увеличение расхода дисперсной системы (w>180 см3/с) определяет необходимость дальнейшего уменьшения соотношения dд/dк вплоть до 1, т.е. в этом случае достаточно эффективными являются трубчатые турбулентные аппараты цилиндрической конструкции. В аппарате диффузор-конфузорной конструкции по сравнению с цилиндрической, диспергированные частицы кубового продукта равномерно распределяются в сырьевом потоке по всему объему аппарата, что позволяет получить гомогенную систему при более низких скоростях движения углеводородного потока.

Полученные закономерности при использовании простого по конструкции малогабаритного аппарата диффузор-конфузорной конструкции позволяют создавать тонкие однородные дисперсии углеводородов кубового продукта в сырьевом потоке при минимальном времени пребывания в зоне смешения и получать гомогенную среду перед точкой подачи в колонну ректификации возвратного растворителя,не прибегая ктехнической необходимости монтировать отдельную линию подачи кубового продукта на колонну ректификации.

Похожие патенты RU2663295C1

название год авторы номер документа
Способ очистки возвратного растворителя 2017
  • Захаров Вадим Петрович
  • Шевляков Федор Борисович
  • Насыров Ильдус Шайхитдинович
  • Каримова Зульфира Хабировна
RU2648754C1
Способ переработки возвратного растворителя 1983
  • Скульский Анатолий Самуилович
  • Щербань Георгий Трофимович
  • Паученко Евгений Владимирович
  • Ривин Эрвин Михайлович
  • Львов Владимир Иванович
  • Несмелов Игорь Васильевич
SU1147714A1
СПОСОБ ПРОИЗВОДСТВА ТЕХНИЧЕСКОГО УГЛЕРОДА, КОМПОНЕНТОВ УГЛЕВОДОРОДНЫХ ТОПЛИВ И СЫРЬЯ ДЛЯ ХИМИЧЕСКОЙ ПРОМЫШЛЕННОСТИ ИЗ СЫРЬЯ - РЕЗИНОСОДЕРЖАЩИХ ПРОМЫШЛЕННЫХ И БЫТОВЫХ ОТХОДОВ 2006
  • Бочавер Кирилл Зыськович
RU2352600C2
СПОСОБ ОЧИСТКИ ВОЗВРАТНОГО РАСТВОРИТЕЛЯ 2003
  • Моисеев В.В.
  • Полуэктов И.Т.
  • Гуляева Н.А.
  • Лыкова Н.Р.
  • Искаков Б.А.
  • Баженов Ю.П.
  • Бокин А.И.
  • Насыров И.Ш.
  • Абдуллин А.Н.
RU2246504C1
СПОСОБ РЕГЕНЕРАЦИИ УГЛЕВОДОРОДНОГО РАСТВОРИТЕЛЯ ИЗ ВОЗВРАТНОГО РАСТВОРИТЕЛЯ В ПРОИЗВОДСТВЕ СИНТЕТИЧЕСКОГО КАУЧУКА 1991
  • Молодыка А.В.
  • Ковтуненко А.В.
  • Ившин П.М.
  • Шубин Ю.А.
  • Марушак Г.М.
  • Кузьменко В.В.
RU2039756C1
СПОСОБ РЕГЕНЕРАЦИИ ВОЗВРАТНОГО РАСТВОРИТЕЛЯ ПРОЦЕССА ПОЛУЧЕНИЯ СИНТЕТИЧЕСКИХ КАУЧУКОВ 2000
  • Зиятдинов А.Ш.
  • Курочкин Л.М.
  • Садриева Ф.М.
  • Вафина С.Ф.
  • Погребцов В.П.
  • Бурганов Т.Г.
  • Воробьев А.И.
  • Гусамов Р.Г.
RU2176648C2
СПОСОБ ПЕРЕРАБОТКИ УГЛЕВОДОРОДНОЙ ФРАКЦИИ 1998
  • Болдырев А.П.
  • Бурганов Т.Г.
  • Курочкин Л.М.
  • Погребцов В.П.
  • Силантьев В.Н.
  • Калинина И.Е.
  • Абзалин З.А.
  • Командирова М.И.
  • Новиков А.А.
  • Воробьев А.И.
  • Блинов А.А.
RU2141935C1
СПОСОБ ПОЛУЧЕНИЯ БУТАДИЕНСОДЕРЖАЩИХ ПОЛИМЕРОВ 2000
  • Павлов С.Ю.
  • Горшков В.А.
  • Чуркин В.Н.
  • Павлов О.С.
  • Золотарев В.Л.
  • Кузьменко В.В.
RU2187514C2
СПОСОБ ОЧИСТКИ БУТАН-БУТИЛЕНОВОЙ ФРАКЦИИ В ПРОИЗВОДСТВЕ БУТАДИЕНА-1,3 2019
  • Шурупов Олег Константинович
  • Данилов Алексей Георгиевич
  • Шелудченко Владимир Анатольевич
  • Насыров Ильдус Шайхитдинович
  • Захаров Вадим Петрович
  • Шевляков Федор Борисович
  • Умергалин Талгат Галеевич
RU2691049C1
СПОСОБ ОЧИСТКИ ОТ ЛЕГКОКИПЯЩЕЙ ФРАКЦИИ УГЛЕВОДОРОДОВ ВОЗВРАТНОГО ЭТИЛБЕНЗОЛА ПРОИЗВОДСТВА ОКСИДА ПРОПИЛЕНА СО СТИРОЛОМ 1998
  • Петухов А.А.
  • Марушак Г.М.
  • Васильев И.М.
  • Галимзянов Р.М.
  • Нургалиев Н.С.
  • Борисов М.И.
RU2140896C1

Иллюстрации к изобретению RU 2 663 295 C1

Реферат патента 2018 года Способ очистки возвратного растворителя

Изобретение относится к производству синтетических каучуков, получаемых растворной полимеризацией, в частности к регенерации возвратного растворителя со стадии выделения каучуков. Способ очистки возвратного растворителя со стадии выделения каучуков включает ректификацию возвратного растворителя в ректификационной колонне, охлаждение паров в дефлегматоре, сбор дистиллята в емкости, подачу части потока из емкости в качестве флегмы со щелочным агентом в ректификационную колонну, откачивание тяжелых углеводородов, толуола и щелочного агента с кубовой части колонны на стадию выделения толуола в колонну очистки толуола, где происходит разделение на толуольную фракцию и тяжелые углеводороды, возврат кубового продукта колонны ректификации, содержащего щелочной агент, где возврат кубового продукта, содержащего неизрасходованный щелочной агент, производится в количестве от 10 до 90% в колонну ректификации, которое предварительно смешивается с сырьевым потоком в трубчатом турбулентном аппарате диффузор-конфузорной конструкции и направляется в среднюю часть колонны. Задачей данного изобретения является очистка возвратного растворителя в производстве синтетического каучука от галоидсодержащих примесей, поддержание в нем нейтральной среды для исключения коррозии оборудования, повышение техники безопасности производства растворных полимеров. 1 ил.

Формула изобретения RU 2 663 295 C1

Способ очистки возвратного растворителя со стадии выделения каучуков, включающий ректификацию возвратного растворителя в ректификационной колонне, охлаждение паров в дефлегматоре, сбор дистиллята в емкости, подачу части потока из емкости в качестве флегмы со щелочным агентом в ректификационную колонну, откачивание тяжелых углеводородов, толуола и щелочного агента с кубовой части колонны на стадию выделения толуола в колонну очистки толуола, где происходит разделение на толуольную фракцию и тяжелые углеводороды, возврат кубового продукта колонны ректификации, содержащего щелочной агент, где возврат кубового продукта, содержащего неизрасходованный щелочной агент, производится в количестве от 10 до 90% в колонну ректификации, которое предварительно смешивается с сырьевым потоком в трубчатом турбулентном аппарате диффузор-конфузорной конструкции и направляется в среднюю часть колонны.

Документы, цитированные в отчете о поиске Патент 2018 года RU2663295C1

Способ переработки возвратного растворителя 1983
  • Скульский Анатолий Самуилович
  • Щербань Георгий Трофимович
  • Паученко Евгений Владимирович
  • Ривин Эрвин Михайлович
  • Львов Владимир Иванович
  • Несмелов Игорь Васильевич
SU1147714A1
Способ регулирования процесса очистки растворителя от примесей в производстве синтетического каучука 1985
  • Болдырев Анатолий Петрович
  • Галкин Виталий Иванович
  • Габбасов Рафаил Каюмович
  • Осовский Евгений Львович
  • Тараканов Александр Александрович
  • Рудаков Юрий Михайлович
  • Поплавский Василий Фокович
  • Поляков Александр Васильевич
SU1361154A1
СПОСОБ РЕГЕНЕРАЦИИ УГЛЕВОДОРОДНОГО РАСТВОРИТЕЛЯ ИЗ ВОЗВРАТНОГО РАСТВОРИТЕЛЯ В ПРОИЗВОДСТВЕ СИНТЕТИЧЕСКОГО КАУЧУКА 1991
  • Молодыка А.В.
  • Ковтуненко А.В.
  • Ившин П.М.
  • Шубин Ю.А.
  • Марушак Г.М.
  • Кузьменко В.В.
RU2039756C1
US 3499883 A1, 10.03.1970
Способ приготовления мыла 1923
  • Петров Г.С.
  • Таланцев З.М.
SU2004A1
Способ регулирования процесса очистки растворителя 1985
  • Галкин Виталий Иванович
  • Бродов Давид Юдович
  • Болдырев Анатолий Петрович
  • Габбасов Рафаил Каюмович
  • Миненкова Тамара Ивановна
  • Подольский Тадей Станиславович
  • Борейко Юрий Иванович
  • Подвальный Семен Леонидович
SU1306928A1
КИРПИЧНИКОВ П.А
и др
Альбом технологических схем основных производств промышленности синтетического каучука
- Л.: Химия, 1986, с
Вага для выталкивания костылей из шпал 1920
  • Федоров В.С.
SU161A1

RU 2 663 295 C1

Авторы

Захаров Вадим Петрович

Шевляков Федор Борисович

Даты

2018-08-03Публикация

2017-05-31Подача