Фосфониевые соли на основе бетулиновой кислоты, обладающие цитотоксической активностью в отношении аденокарциномы предстательной железы Российский патент 2018 года по МПК C07F9/54 A61K31/66 A61P35/00 

Описание патента на изобретение RU2665922C1

Изобретение относится к области органической химии, в частности, к новым фосфониевым солям на основе лупанового тритерпеноида - бетулиновой кислоты формулы 1-5:

которые могут найти применение в фармакологии и медицине.

Природные пентациклические тритерпеноиды лупанового ряда характеризуются широким спектром биологической активности, в частности, противоопухолевой (Planta Med. 2009, 75, 1549-1560), относительной легкостью получения из растительного сырья и огромной сырьевой базой. Некоторые из них, например, соединение NVX-207 проходит клинические испытания в качестве противоопухолевого препарата (Eur. J. Clin. Invest. 2009, 39, 5, 384-394).

К настоящему времени "классическая" химиотерапия, мишенью для которой является жизненно важные белки и нуклеиновые кислоты клетки, достигла своей эффективности. Опухолевые клетки быстро приобретают резистентность к известным противоопухолевым препаратам, а применение новых цитостатиков со сходным механизмом действия редко приводит к значительным успехам. Изменение структуры цитостатиков, увеличение доз, использование ингибиторов лекарственной резистентности не позволяют добиться увеличения терапевтического индекса, т.е. летального повреждения опухолевых клеток без развития острой токсичности для организма в целом. В настоящее время все большую популярность получает новое направление противоопухолевой терапии - таргетная терапия. Среди большого числа таргетных соединений, которые действуют на определенные мишени опухолевой клетки, выделяют митохондриально-направленные противоопухолевые соединения.

В ряде исследований показано, что тритерпеноиды лупанового ряда вызывают гибель опухолевых клеток посредством активации апоптоза по митохондриальному пути (Cancer Res. 1997, 57, 4956-4964; BioMed Res. Int. 2015, 2015, 584189). Изучение механизма гибели показало, что под действием тритерпеноидов наблюдается выход проапоптотических белков из межмембранного митохондриального пространства в цитоплазму. Бетулиновая кислота стимулирует открытие митохондриальных транзитных пор (МТП). Открытие МТП приводит к утечке протонов, нарушению функционирования дыхания и как следствие - выходу в цитоплазму митохондриальных апоптотических белков (Apoptosis 2009, 14, 191-202)

Известно, что катион трифенилфосфония (ТРР) селективно накапливается в раковых клетках (Biomed. Pharmacother. 1985, 39, 220-226).

Соединения, содержащие трифенилфосфониевую группу (ТРР), предложены в качестве митохондриальных агентов, влияющих на ингибирование пролиферации опухолевых клеток (Anti-Cancer Drug Des. 1989, 4, 265-280.) Серия митохондриально-направленных соединений на основе бетулина и бетулиновой кислоты, содержащих ТРР группу, была синтезирована и определена их цитотоксичность на опухолевых линиях различного генеза.

Так, цитотоксическая активность трифенилфосфониевых солей бетулиновой кислоты Al (IC50=1.20 μM), А2 (IC50=1.15 μМ) и А5 (IC50 1.10 μМ) в отношении клеток мастоцитомы Р-815 превысила активность бетулиновой кислоты (IC50 41.00 μM) в ~35-40 раз. В отношении клеток опухоли Эрлиха соединения Al, А2 и А5 проявили цитотоксичность в интервале IC50 2.30÷1.37 μМ, в то время как бетулиновая кислота была малоактивна (IC50 54.00 μМ) (патент РФ №2551647, опубл. 12.11.2012).

Цитотоксичная активность солей А8 (IC50 0.98 μМ), А10 (IC50 0.74 μМ) и A11 (IC50 0.95 μМ) в отношении опухолевых клеток нейробластомы (TET21N), АН (IC50 0.70 μМ) в отношении опухолевых клеток карциномы молочной железы (MCF-7) превысила активность бетулиновой кислоты для MCF-7 и эфира бетулиновой кислоты с дихлоруксусной кислотой в отношении к TET21N (Med. Chem. Commun., 2017, 8, 1934-1945).

Высокая цитотоксичность была установлена для соединения А12 в отношении опухолевых клеток миелоидной лейкемии K562 (IC50 0.57 μМ), промиелоцитарного лейкоза HL-60 (IC50 0.6 μМ), плоскоклеточного рака пищевода ЕСА-109 (IC50 0.78 μМ), карциномы легкого А 549 (IC50 0.61 μМ) (J. Med. Chem. 2017, 60, 6353-6363). Для соединения А13 установлена высокая цитотоксичность в отношении опухолевых клеток промиелоцитарного лейкоза HL-60 (IC50 0.32 μМ) (J. Med. Chem. 2017, 60, 6353-6363).

Найдено, что соединение А14 обладает высокой активностью в отношении винбластин резистентных клеток MCF-7/Vinb (IC50 составляет 0.045 μМ) (J. Nat. Prod., 2017, 80, 8, 2232-2239).

Наиболее структурно близким аналогом заявляемым соединениям является производное бетулиновой кислоты А15 (Med. Chem. Commun., 2017, 8, 1934-1945), где ТРР группа присоединена ковалентно к С-28 углеродному атому лупанового остова через алкильный спейсер С4. Цитотоксичность соединения А15 определена в отношении опухолевых клеток нейробластомы (TET21N) и опухолевых клеток карциномы молочной железы (MCF-7).

Авторами в уровне техники не выявлены фосфониевые соли на основе бетулиновой кислоты, проявляющие цитотоксическую активность в отношении опухолевой клеточной линии РС-3 (аденокарцинома предстательной железы человека).

По данным ВОЗ, смертность от злокачественных новообразований в развитых странах занимает третье место в структуре общей смертности, уступая лишь ишемической болезни сердца и цереброваскулярным нарушениям. Среди онкологических заболеваний существенную часть представляют гормон зависимые опухоли репродуктивной системы.

Рак предстательной железы (РПЖ) считается сегодня одной из самых серьезных медицинских проблем среди мужского населения. В Европе РПЖ является наиболее распространенной солидной неоплазмой (опухолью), заболеваемость которой составляет 214 случаев на 1000 мужчин, опережая рак легких и колоректальный рак. К тому же в настоящее время РПЖ занимает 2-е место среди основных причин смерти от рака у мужчин. Широкое распространение и применение в клинической онкологии получили антрациклиновые антибиотики, в частности, доксорубицин. Однако применение доксорубицина, как и других химиотерапевтических средств, сопряжено с развитием побочных эффектов, в некоторых случаях требующих снижения дозы или полной отмены препарата. Кроме того, со временем развивается резистентность опухолевых клеток к цитостатическому действию доксорубицина.

Задачей изобретения является разработка новых соединений на основе природного лупанового тритерпеноида - бетулиновой кислоты, обладающие высокой противоопухолевой активностью в отношении аденокарциомы простаты и расширяющие арсенал известных лекарственных средств указанного назначения.

Технический результат - новые фосфониевые соли на основе бетулиновой кислоты, обладающие цитотоксической активностью в отношении аденокарциномы предстательной железы на уровне доксорубицина.

Технический результат достигается заявляемыми фосфониевыми солями на основе бетулиновой кислоты формулы (1-5), получаемыми нагреваниием С-28 галогеналкильных эфиров бетулиновой кислоты (6-10) с трифенилфосфином в ацетонитриле в атмосфере аргона по схеме 1

Исходные С-28 галогеналкильные эфиры бетулиновой кислоты (6-10) синтезированы по известной методике: (J. Asian Nat. Prod. Res. 2014, V. 16, 34-42).

Изобретение иллюстрируется примерами получения заявляемых соединений (1-5) и исследования их противоопухолевой активности.

Пример 1. О-(3-Трифенилфосфониопропил)-3β-гидроксилуп-20(29)-ен-28-оат бромид (1) Смесь 1.5 г (2.5 ммоль) соединения 6, 15 мл ацетонитрила и 1.4 г (5.2 ммоль) трифенилфосфина нагревают при кипении в атмосфере аргона 4-5 ч (контроль методом ТСХ). Затем растворитель удаляют отгонкой в вакууме (12 Торр), осадок растворяют в 3 мл CHCl3, осаждают петролейным эфиром и отфильтровывают. Выход 1.8 г (90%). Белый порошок, Т пл.=155°С, [α]D20=-1.0 (С 1.0 CHCl3). ИКС, ν, см-1: 3378 (С3-ОН), 3060, 2943, 2869, 1722 (С=O), 1641 (С=С), 1588, 1439, 1377, 1295, 1154, 1040, 997. 1H ЯМР (CDCl3, 400 МГц)δ, м.д.: 0.73, 0.76, 0.79, 0.93, 0.97 (15Н, с, Н-(23-27)), 1.66 (3Н, с, Н-30), 2.9 (1Н, м, Н-19), 3.16 (1Н, д.д, J=11.1, 4.7 Гц, Н-3), 3.7 (2Н, м, CH2P), 4.46 (2Н, м, С(O)O-CH2), 4.6 (1Н, с, HA-29), 4.7 (1Н, с, HB-29), 7.6-7.8 (15Н, м, Н-Сар); 13С ЯМР (CDCl3, 400 МГц) δС, м.д.: 14.7, 15.4, 16.0, 16.1, 18.2, 19.2, 19.3, 20.8, 22.5, 22.6, 25.4, 27.3, 28.0, 29.0, 29.6, 30.5, 32.0, 36.9, 37.1, 38.1, 38.8, 40.6, 42.3, 46.8, 49.3, 50.4, 55.2, 56.5, 62.8, 63.4, 72.2., 78.7, 109.7, 117.5 (СН, д, J=88.8 Гц, Сипсо), 130.28 (СН, д, J=13.2 Гц, Смета), 133.98 (СН, д, J=11.0 Гц, Сорто), 135.15 (СН, д, J=2.9 Гц, Спара), 150.2, 175.6; 31Р ЯМР (CDCl3, 400 МГц) δР, м.д.: 25.4; Масс спектр (MALDI-TOF), m/z: 681.6 [М-Br]+(вычислено 761.6: [М]+)

Пример 2. О-(5-Трифенилфосфониопентил)-3β-гидроксилуп-20(29)-ен-28-оат бромид (2) получают аналогично примеру 1 из 1.1 г (1.8 ммоль) соединения 7, 15 мл ацетонитрила и 0.95 г (3.6 ммоль) трифенилфосфина. Выход 1.8 г (95%). Белый порошок, Т пл.=150°С, [α]D20=+0.5 (С 1.0 СНС13). ИКС, ν, см-1: 3393 (С3-ОН), 2941, 2868, 1718 (С=O), 1641 (С=С), 1588, 1439, 1376, 1242, 1176, 1046, 983. 1Н ЯМР (CDCl3, 400 МГц)δ, м.д.: 0.74, 0.77, 0.83, 0.93, 0.95 (15Н, с, Н-(23-27)), 1.65 (3Н, с, Н-30), 2.9 (1H, м, Н-19), 3.16 (1Н, д.д, J - 11.1, 4.7 Гц, Н-3), 3.9 (2Н, м, CH2P), 4.0 (2Н, м, С(O)O-CH2), 4.57 (1Н, с, HA-29), 4.7 (1Н, с, HB-29), 7.7-7.9 (15Н, м, Н-Сар); 13С ЯМР (CDCl3, 400 МГц) δС, м.д.: 14.6, 15.3, 16.0, 16.1, 18.2, 19.3, 20.9, 22.2, 22.5, 22.8, 25.5, 26.6, 26.7, 27.4, 28.0, 28.2, 29.6, 29.5, 29.6, 30.6, 32.0, 34.3, 37.0, 37.1, 38.2, 38.7, 39.3, 40.7, 42.3, 47.0, 49.3, 50.5, 55.3, 56.4, 63.2, 78.8, 109.5, 118.4 (СН, д, J=88.8 Гц, Сипсо), 130.28 (СН, д, J=13.2 Гц, Смета), 133.98 (СН, д, J=11.0 Гц, Сорто), 135.15 (СН, д, J=2.9 Гц, Спара), 150.5, 176.0;31Р ЯМР(CDCl3, 400 МГц) δР, м.д.: 24.3 Масс спектр (MALDI-TOF), m/z: 710.6 [М-Br]+(вычислено 790.6:[М]+)

Пример 3. О-(6-Трифенилфосфониогексил)-3β-гидроксилуп-20(29)-ен-28-оат бромид (3) получают аналогично примеру 1 из 0.57 г (0.9 ммоль) соединения 8, 15 мл ацетонитрила и 0.49 г (1.8 ммоль) трифенилфосфина. Выход 0.7 г (85%). Белый порошок, Т пл.=158-162°С, [α]D20=+2.3 (С 0.87 СНС13). ИКС, ν, см-1: 3369 (С3-ОН), 2941, 2866, 1718 (С=O), 1640 (С=С), 1588, 1438, 1376, 1318, 1176, 1047, 983. 1Н ЯМР (CDCl3, 400 МГц)δ, м.д.: 0.74, 0.77, 0.85, 0.93, 0.95 (15Н, с, Н-(23-27)), 1.66 (3H, с, Н-30), 2.95 (1H, м, Н-19), 3.17 (1Н, д.д, J=11.1, 4.7 Гц, Н-3), 3.9 (2Н, м, CH2P), 4.0 (2Н, м, С(O)O-CH2), 4.57 (1H, с, НА-29), 4.68 (1Н, с, HB-29), 7.7-7.9 (15Н, м, Н-Сар); 13С ЯМР (CDCl3, 400 МГц) δС, м.д.: 14.6, 15.3, 16.0, 16.1, 18.2, 19.3, 20.9, 22.5, 22.6, 22.6, 23.0, 25.2, 25.5, 25.7, 25.7, 27.4, 28.0, 28.3, 29.6, 29.9, 30.0, 30.6, 32.1, 34.3, 37.0, 37.1, 38.2, 38.7, 38.8, 40.7, 42.3, 47.0, 49.3, 50.3, 55.3, 56.5, 63.7, 78.9, 109.5, 118.4 (СН, д, J=88.8 Гц, Сипсо), 130.4 (СН, д, J=13.2 Гц, Смета), 133.7 (СН, д, J=11.0 Гц, Сорто), 135.0 (СН, д, J=2.9 Гц, Спара), 150.6, 176.1; 31Р ЯМР (CDC13, 400 МГц) δР, м.д.: 24.9 Масс спектр (MALDI-TOF), m/z: 801.59 [М-Br]+ (вычислено 881.6: [М]+)

Пример 4. О-(9-Трифенилфосфониононил)-3β-гидроксилуп-20(29)-ен-28-оат бромид (4) получают аналогично примеру 1 из 0.5 г (0.75 ммоль) соединения 9, 15 мл ацетонитрила и 0.4 г (1.5 ммоль) трифенилфосфина. Выход 0.6 г (95%). Т пл.=105°С, [α]D20=+1.3 (С 1.0 СНС13). ИКС, ν, см-1: 3371 (С3-ОН), 2936, 2864, 1719 (С=O), 1641 (С=С), 1588, 1484, 1376, 1271, 1176, 1046, 983. 1Н ЯМР (CDCl3, 400 МГц)δ, м.д.: 0.74, 0.80, 0.89, 0.95 (15Н, с, Н-(23-27)), 1.67 (3H, с, Н-30), 2.9 (1Н, м, Н-19), 3.16 (1H, д.д, J=11.1, 4.7 Гц, Н-3), 3.7 (2Н, м, CH2P), 4.0 (2Н, т, J=6.4 Гц С(O)O-CH2), 4.57 (1H, с, HA-29), 4.7 (1Н, с, HB-29), 7.7-7.9 (15Н, м, Н-Сар); 13С ЯМР(СОС13, 400 МГц) δС, м.д.: 14.7, 15.3, 16.0, 16.1, 18.2, 19.3, 20.9, 22.6, 22.7, 22.75, 25.5, 26.0, 27.3, 28.0, 28.6, 29.0, 29.1, 29.6, 30.3, 30.4, 30.6, 30.8, 32.2, 34.3, 37.0, 37.2, 38.3, 38.7, 40.7, 42.4, 47.0, 49.4, 50.5, 55.3, 56.5, 63.9, 78.9, 109.5, 118.4 (СН, д, J=88.8 Гц, Сипсо), 130.28 (СН, д, J=13.2 Гц, Смета), 133.98 (СН, д, J=11.0 Гц, Сорто), 135.15 (СН, д, J=2.9 Гц, Спара), 150.6, 176.2; 31Р ЯМР(CDC13, 400 МГц) δР, м.д.: 24.3 Масс спектр (MALDI-TOF), m/z: 843.9 [M-Br]+ (вычислено 923.9:[М]+)

Пример 5. О-(10-Трифенилфосфониодецил)-3β-гидроксилуп-20(29)-ен-28-оат бромид (5) получают аналогично примеру 1 из 1.35 г (1.9 ммоль) соединения 10, 15 мл ацетонитрила и 1 г (3.9 ммоль). Выход 1.5 г (89%). Белый порошок, Т пл.=110°С, [α]D20=+2.7 (С 1.0 CHCl3). ИКС, ν, см-1: 3393 (С3-ОН), 2933, 2863, 1720 (С=O), 1641 (С=С), 1588, 1484, 1376, 1269, 1176, 1047, 984. 1Н ЯМР (CDCl3, 400 МГц)δ, м.д.: 0.69, 0.75, 0.85, 0.91 (15Н, с, Н-(23-27)), 1.63 (3H, с, Н-30), 2.9 (1Н, м, Н-19), 3.12 (1Н, д.д, J=11.1, 4.7 Гц, Н-3), 3.6 (2Н, м, CH2P), 4.0 (2Н, т, J=6.4 Гц С(O)O-CH2), 4.53 (1H, с, HA-29), 4.66 (1Н, с, HB-29), 7.7-7.9 (15Н, м, Н-Сар); 13С ЯМР(CDCl3, 400 МГц) δС, м.д.: 14.6, 15.4, 15.9, 16.0, 18.2, 19.3, 20.8, 22.6, 22.65, 22.75, 25.5, 26.0, 27.3, 28.0, 28.6, 29.1, 29.3, 29.6, 30.3, 30.5, 30.6, 32.1, 34.3, 37.0, 37.1, 38.2, 38.7, 38.8, 40.7, 42.3, 47.0, 49.3, 50.5, 55.3, 56.5, 63.8, 78.8, 109.5, 118.3 (СН, д, J=88.8 Гц, Сипсо), 130.28 (СН, д, J=13.2 Гц, Смета), 133.98 (СН, д, J=11.0 Гц, Сорто), 135.15 (СН, д, J=2.9 Гц, Спара), 150.6, 176.2; 31Р ЯМР (CDCl3, 400 МГц) δР, м.д.: 24.8; Масс спектр (MALDI-TOF), w/z: 777.6 [M-Br]+ (вычислено 857.6: [М]+)

Пример 6. Биологическая активность

Использовались линия опухолевых клеток РС-3 (аденокарцинома предстательной железы человека), нормальные первичные фибробласты кожи человека (HSF). Клетки культивировали асептически на поверхности культуральных фласков в стандартных условиях: в базовой питательной среде DMEM, содержащей 10% фетальной бычьей сыворотки, 2 mM L-глутамина, 100 U/мл пенициллина и 100 мкг/мл стрептомицина при 37°С в увлажненной воздушной атмосфере с 5% CO2.

Для исследования цитотоксичности клетки высаживали на поверхности 96-луночного планшета в питательной среде. Добавляли к клеткам растворы соединений до конечной концентрации от 2 нМ до 12,5 мкМ и культивировали 3 суток в стандартных условиях. Цитотоксичность соединений оценивали с помощью МТТ-теста согласно стандартному протоколу (The molecular probes handbook. A guide to fluorescent probes and labeling technologies. Editors I. Johnson, M. T. Z. Spence, 11th Edition, 2010, Life technologies, 1060 p)

Жизнеспособность клеток оценивалась как процент от контрольных клеток, выращенных без соединений (жизнеспособность контрольных клеток 100%). Полумаксимальные ингибирующие концентрации (IC50) рассчитывались по кривым жизнеспособности клеток с использованием программного обеспечения OriginPro 8.0.

На основании полученных результатов по цитотоксичности фосфониевых солей бетулиновой кислоты 1-5 можно сделать следующие выводы:

Заявляемые соединения обладают более высокой цитотоксичностью по сравнению с доксорубицином при длине линкера n=3, 5 (соединения 1, 2). Индекс селективности (IS), т.е. отношение значений IC50 для клеток HSF и клеток РС-3, наилучший у соединений 1 и 2, и составляет 17.1 и 11.8 соответственно. Для доксорубицина индекс селективности составляет 8.5.

Таким образом, соединения 1, 2 - фосфониевые соли бетулиновой кислоты обладают высокой цитотоксичностью в отношении опухолевых клеток РС-3 с высокой селективностью в сравнении с нормальными клетками, что свидетельствует о возможности их использования в качестве противоопухолевых препаратов.

Заявлены новые фосфониевые соли на основе бетулиновой кислоты, обладающие высокой цитотоксичностью в отношении аденокарциомы предстательной железы и расширяющие арсенал известных лекарственных средств указанного назначения. Выявлены соединения, превышающие уровень активности доксорубицина и в сравнении с этим препаратом с более высоким индексом селективности по отношению к нормальным клеткам.

Похожие патенты RU2665922C1

название год авторы номер документа
ТРИФЕНИЛФОСФОНИЕВЫЕ СОЛИ ЛУПАНОВЫХ ТРИТЕРПЕНОИДОВ, СПОСОБ ПОЛУЧЕНИЯ И ПРИМЕНЕНИЕ В КАЧЕСТВЕ ПРОТИВООПУХОЛЕВЫХ ВЕЩЕСТВ 2012
  • Спивак Анна Юльевна
  • Халитова Резеда Рафисовна
  • Шакурова Эльвира Рифовна
  • Недопекина Дарья Александровна
  • Губайдуллин Ринат Равильевич
  • Одиноков Виктор Николаевич
  • Джемилев Усеин Меметович
  • Бельский Юрий Павлович
  • Бельская Наталия Витальевна
  • Станкевич Сергей Александрович
  • Хазанов Вениамин Абрамович
RU2551647C2
Фосфониевые соли на основе гликозидов бетулиновой кислоты, обладающие противоопухолевой активностью 2022
  • Цепаева Ольга Викторовна
  • Салихова Талия Илшатовна
  • Ишкаева Резеда Анасовна
  • Немтарев Андрей Владимирович
  • Абдуллин Тимур Илдарович
  • Лайков Александр Владимирович
  • Идрисова Лейсан Радиковна
  • Миронов Владимир Федорович
RU2803739C1
Фосфониевые соли на основе салициловой и ацетилсалициловой кислот, обладающие антибактериальной и антиоксидантной активностью" 2019
  • Цепаева Ольга Викторовна
  • Немтарев Андрей Владимирович
  • Миронов Владимир Федорович
  • Абдуллин Тимур Илдарович
  • Салихова Талия Илшатовна
  • Данг Тхи Вьет Чинь
RU2704025C1
КОНЪЮГАТЫ ТРИТЕРПЕНОВЫХ КИСЛОТ И (Е)-4-(1Н-ИНДОЛ-3-ИЛВИНИЛ)-ПИРИДИНИЙ БРОМИДА С ПРОТИВООПУХОЛЕВОЙ АКТИВНОСТЬЮ 2020
  • Спивак Анна Юльевна
  • Недопёкина Дарья Александровна
  • Давлетшин Эльдар Валерьевич
  • Джемилева Лиля Усеиновна
  • Дьяконов Владимир Анатольевич
  • Джемилев Усеин Меметович
RU2786134C2
Фосфониевые соли на основе алантолактона, обладающие противоопухолевой активностью, и способ их получения 2023
  • Шемахина Мария Эдуардовна
  • Немтарев Андрей Владимирович
  • Миронов Владимир Федорович
  • Волошина Александра Дмитриевна
  • Любина Анна Павловна
  • Амерханова Сюмбель Камильевна
  • Пухов Сергей Александрович
RU2818095C1
Производные пиридоксина и ацетона с противоопухолевой активностью 2017
  • Штырлин Юрий Григорьевич
  • Пугачев Михаил Владимирович
  • Павельев Роман Сергеевич
  • Нгуен Тхи Нят Тханг
  • Иксанова Альфия Габдулахатовна
  • Бондарь Оксана Владимировна
  • Аймалетдинов Александр Маазович
RU2639879C1
СПОСОБ СОВМЕСТНОГО ПОЛУЧЕНИЯ 3'-ЗАМЕЩЕННЫХ СПИРО[3,9-ДИОКСАТЕТРАЦИКЛО[5.3.2.0.0]ДОДЕЦ-5-ЕН-11,2'-ОКСИРАНОВ] И СПИРО[3,9-ДИОКСАТЕТРАЦИКЛО[5.3.2.0.0]ДОДЕЦ-5-ЕН-12,2'-ОКСИРАНОВ], ПРОЯВЛЯЮЩИХ ПРОТИВООПУХОЛЕВУЮ АКТИВНОСТЬ 2019
  • Джемилев Усеин Меметович
  • Дьяконов Владимир Анатольевич
  • Кадикова Гульнара Назифовна
  • Джемилева Лиля Усеиновна
  • Газизуллина Гузель Фаритовна
RU2735664C2
1-Сульфонил-2-(дифенилфосфорил)пирролидины, обладающие цитотоксичностью в отношении раковых клеток шейки матки, и способ их получения 2020
  • Газизов Альмир Сабирович
  • Смолобочкин Андрей Владимирович
  • Турманов Рахымжан Ахметханович
  • Волошина Александра Дмитриевна
  • Бурилов Александр Романович
RU2736205C1
Бромсодержащие пространственно-затрудненные фенолы, обладающие противоопухолевой активностью 2023
  • Бурилов Александр Романович
  • Гибадуллина Эльмира Мингалеевна
  • Волошина Александра Дмитриевна
  • Любина Анна Павловна
  • Сапунова Анастасия Сергеевна
  • Чугунова Елена Александровна
  • Нгуен Хоанг Бао Чан
  • Алабугин Игорь Владимирович
  • Шакиров Адель Маратович
RU2822270C1
(1-Бензил-1H-1,2,3-триазол-4-ил)метил (Z)-2-((3S,4S,8S,10S,11R,14S,16S)-16-ацетокси-3,11-дигидрокси-4,8,10,14-тетраметилгексадекагидро-17H-циклопента[a]фенантрен-17-илиден)-6-метилгепт-5-еноат, проявляющий антибактериальную и фунгицидную активность 2022
  • Салимова Елена Викторовна
  • Парфенова Людмила Вячеславовна
RU2784215C1

Реферат патента 2018 года Фосфониевые соли на основе бетулиновой кислоты, обладающие цитотоксической активностью в отношении аденокарциномы предстательной железы

Изобретение относится к солям формул 1-5, которые могут быть применены в медицине.

Предложены новые соли на основе бетулиновой кислоты, обладающие цитотоксичностью с улучшенной селективностью в отношении клеток аденокарциомы предстательной железы. 1 з.п. ф-лы, 1 табл., 6 пр.

Формула изобретения RU 2 665 922 C1

1. Фосфониевые соли на основе бетулиновой кислоты формулы 1-5

2. Фосфониевые соли на основе бетулиновой кислоты по п. 1, обладающие цитотоксичностью в отношении аденокарциомы простаты.

Документы, цитированные в отчете о поиске Патент 2018 года RU2665922C1

Darya A
Nedopekina et al
Med
Chem
Commun., 2017, 8, 1934-1945
КОМПОЗИЦИЯ АЛЬФА-ФЕТОПРОТЕИНА И ИНДУКТОРОВ АПОПТОЗА ДЛЯ ЛЕЧЕНИЯ РАКА 2006
  • Пак Владимир
RU2438695C2
СПОСОБ ПРОФИЛАКТИКИ И/ИЛИ ЛЕЧЕНИЯ РАКОВЫХ ЗАБОЛЕВАНИЙ 2006
  • Вальдефнер Норберт
  • Йордан Андреас
  • Шольц Регина
RU2480201C2

RU 2 665 922 C1

Авторы

Цепаева Ольга Викторовна

Немтарев Андрей Владимирович

Григорьева Лейсан Радиковна

Миронов Владимир Федорович

Абдуллин Тимур Илдарович

Салихова Талия Илшатовна

Хозяинова Светлана Александровна

Даты

2018-09-05Публикация

2018-04-24Подача