СПОСОБ ПОЛУЧЕНИЯ СИНТЕЗ-ГАЗА Российский патент 2018 года по МПК C10J3/00 C10G15/08 

Описание патента на изобретение RU2668043C1

Изобретение относится к области получения синтез-газа путем термохимической переработки комбинированного сырья, состоящего из растительного сырья и тяжелых нефтяных остатков.

Известен способ термохимической переработки биомассы для получения синтез-газа, заключающийся в загрузке измельченного сырья - биомассы в термохимический реактор, пиролизе биомассы без доступа воздуха до температуры термического разложения с образованием сопутствующих продуктов и синтез-газов, отводимых из реактора в циркулирующий поток и к потребителю. Процесс пиролиза в реакторе осуществляют при одновременном вводе в него теплоносителя на основе нагретых до температуры пиролиза газообразных продуктов, в качестве которых используют отводимые из циркулирующего потока синтез-газы, при этом используемый в процессе пиролиза теплоноситель дополнительно содержит пары воды и/или углекислый газ, последний из которых или воду вводят в поток газообразных продуктов до нагрева их до температуры пиролиза (RU 2464295, 2010).

Также известен способ получения газов из нефтяных остатков, включающий эмульгирование гудрона или битума с водой с образованием водно-гудроновой эмульсии, парокислородную газификацию эмульсии и очистку полученного синтез-газа (RU 41307, 2004).

Главным недостатком известных способов является использование в процессе получения синтез-газа только одного вида сырья, либо растительного происхождения, либо углеводородного.

Из известных технических решений наиболее близким к предлагаемому по технической сущности и достигаемому результату является способ получения синтеза-газа из комбинированного сырья, состоящего из биомассы и тяжелой углеводородной фракции, заключающийся в смешивании биомассы с предварительно подогретой тяжелой углеводородной фракцией с получением смеси с заданной степенью влажности, измельчении полученной смеси и последующей подачей измельченной смеси в виде суспензии мелких частиц биомассы, диспергированных в тяжелой углеводородной фракции, на стадию газификации (RU 2455344, 2008).

Указанный способ предусматривает проведение сушки на стадии смешивания биомассы с тяжелой углеводородной фракцией за счет удаления воды и осуществление процесса измельчения биомассы, но не непосредственно самой биомассы, а ее смеси с тяжелой углеводородной фракцией, что, с одной стороны, снижает энергозатраты и не требует охлаждения твердой фазы для снижения риска ее возгорания, а с другой стороны приводит к получению синтез - газа с соотношением Н2:СО не более 0,85-0,92 и не решает проблемы сажеобразования.

Технической проблемой, на решение которой направлено настоящее изобретение, является повышение соотношения Н2:СО в синтез-газе при одновременном снижении сажеобразования.

Указанная проблема решается описываемым способом получения синтез-газа из комбинированного сырья, состоящего из растительного сырья и тяжелого углеводородного сырья, заключающимся в том, что тяжелое углеводородное сырье нагревают до температуры 60-90°С, а растительное сырье подвергают измельчению до степени помола не менее 100 мкм, после чего осуществляют смешение указанных тяжелого углеводородного сырья и растительного сырья с последующим диспергированием полученной смеси в присутствии воды и сажи с получением суспензии, которую подвергают последовательно акустической обработке с частотой излучения 21-25 кГц, интенсивностью излучения 5-10 Вт/см2 при температуре 50-70°С и времени обработки 1-3 час и электромагнитной обработке с частотой излучения 40-60 МГц, мощностью 0,2-0,6 кВт при температуре 50-70°С, времени обработки 1,0-8,0 час, после чего осуществляют газификацию обработанной суспензии при температуре 800-1200°С с получением синтез-газа, который подвергают очистке с отделением сажи, используемой на стадии диспергирования.

Достигаемый технический результат заключается в реализации деструктивных процессов в углеводородной составляющей смеси используемых видов сырья при низких температурах.

Сущность способа заключается в следующем.

В качестве растительного сырья в описываемом способе возможно использовать любые остатки сельскохозяйственного производства, например, кукурузные кочерыжки и стебли, лузгу, жмых и шрот от переработки подсолнечника, стебли подсолнечника, рисовую шелуху, отходы производства льна и другие отходы, образующиеся при переработке сельскохозяйственного сырья растительного происхождения или их смеси.

Используемое тяжелое углеводородное сырье в рамках данной заявки представляет собой, в частности, разнообразные тяжелые нефтяные остатки (ТНО, такие как, например, мазут, гудрон), тяжелые фракции нефти, вакуумные газойли, газойли в смеси с мазутом, битуминозная нефть, смолы пиролиза, асфальтосмолистые парафинистые отложения (АСПО), концентрированные нефтешламы с высоким содержанием нефтяной составляющей или их смесь.

Способ проводят следующим образом.

Тяжелое углеводородное сырье нагревают до температуры 60-90°С.

Растительное сырье подвергают измельчению до степени помола не менее 100 мкм, например, последовательно в дробилке до 1-3 мм и в мельнице до 100-200 мкм.

Затем смешивают указанные нагретое тяжелое углеводородное сырье и измельченное растительное сырье. Полученную смесь подвергают диспергированию. Процесс диспергирования проводят в присутствии воды и сажи.

Указанный процесс проводят путем подачи в диспергатор смеси тяжелого углеводородного сырья с измельченным растительным сырьем, воды и сажи, взятых в заданном количестве. Предпочтительно тяжелое углеводородное сырье, растительное сырье, сажу и воду смешивают, в количествах, равных, соответственно, %масс: 24,15-44,4; 44,4-48,3; 1,2-1,7; остальное, до 100. Предпочтительно, также, тяжелое углеводородное сырье и растительное сырье смешивают в массовом соотношении 1:1-1:2

Температура диспергирования составляет 60-90°С. Возможно проведение процесса непрерывно, в проточных условиях. Используют различные типы проточных диспергаторов. Скорость вращения дисков диспергатора предпочтительно составляет от 1400 до 6000 об в минуту. Зазор между дисками предпочтительно составляет 1,5-5,0 мм. Процесс диспергирования проводят до достижения среднего размера частиц воды, диспергированной в углеводородной составляющей смеси 5-20 мкм. Таким образом, использование указанного процесса диспергирования приводит к переводу используемой воды в мелкодисперсное состояние.

В результате получают суспензию, в которой вода содержится в мелкодисперсном виде с дисперсностью 10-20 мкм.

Полученную суспензию подвергают последовательно акустической обработке с частотой излучения 21-25 кГц, интенсивностью излучения 5-10 Вт/см2, при температуре 50-70°С, времени обработки 1,0-3,0 час. и электромагнитной обработке с частотой излучения 40-60 МГц, мощностью 0,2-0,6 кВт, при температуре 50-70°С, времени обработки 1,0-8,0 час.

При этом при акустической обработке используют акустические активаторы, при электромагнитной обработке - высокочастотные электромагнитные активаторы.

Обработанную суспензию подвергают газификации при температуре 800-1200°С. Газификация может быть проведена традиционным способом при воздушном, воздушно-кислородном и кислородном дутье. При проведении газификации использование пара не рекомендуется вследствие наличия в используемой суспензии воды в мелкодисперсном состоянии. Указанная вода становится реакционно-активной в процессе газификации, так как способствует явлению микровзрыва, распыляет и активно газифицирует асфальто-смолистые, смолистые вещества, находящиеся в используемом тяжелом углеводородном сырье, что позволяет снизить смоло- и сажеобразование.

Газ, образующийся при газификации, охлаждают, подвергают очистке с отделением сажи, которую возвращают на рецикл, на стадию диспергирования, что дополнительно снижает процесс сажеобразования.

Далее газ подвергают очистке от сероводорода, аммиака и роданидов с помощью моноэтаноламина. В зависимости от типа дутья, состав газовой смеси после очистки меняется: с повышением количества кислорода уменьшается количество азота в газовой смеси с 55-60% до 1,5-3,0% и, соответственно, возрастает соотношение Н2:СО - от 1,1 до 1,3.

Ниже приведены примеры, иллюстрирующие, но не ограничивающие изобретение.

Пример 1.

В качестве тяжелого углеводородного сырья используют тяжелый нефтяной остаток - мазут, в качестве растительного сырья - кукурузные кочерыжки.

Исходный мазут нагревают до 60°С. Кукурузные кочерыжки подвергают двухстадийному измельчению последовательно в дробилке до среднего размера 1-3 мм и мельнице до степени помола 150 мкм.

Нагретый мазут и измельченные кукурузные кочерыжки смешивают. Полученную смесь подвергают диспергированию (механоактивации в диспергаторе) в присутствии воды и сажи. При этом используют сажу, образующуюся при очистке целевого синтез-газа, направляемую на диспергирование.

В данном примере диспергированию подвергают смесь, содержащую тяжелое углеводородное сырье, растительное сырье, сажу и воду, взятые в количестве, соответственно, %масс (здесь и далее по примерам указанные проценты определены от суммарной массы исходных компонентов -тяжелого углеводородного сырья, растительного сырья, воды и сажи, подаваемых на стадию диспергирования): 44,4; 44,4; 1,2; 10.

Температура диспергирования составляет 80°С. Диспергирование проводят при скорости вращения дисков диспергатора 3000 об/мин, зазоре между дисками 3 мм. Процесс проводят до достижения среднего размера частиц воды, диспергированной в углеводородной составляющей, равном 5-20 мкм.

Полученную при диспергировании суспензию подвергают последовательно акустической обработке с частотой излучения 25 кГц, интенсивностью излучения 9 Вт/см2 при температуре 60°С, времени обработки 2,5 час и затем электромагнитной обработке с частотой излучения 60 МГц, мощностью 0,2 кВт при температуре 60°С, времени обработки 6,0 час.

Обработанную суспензию подвергают газификации при воздушном дутье. Газификацию проводят при коэффициенте недостатка воздуха 0,3 в пересчете на кислород, при температуре 800°С, без использования давления.

Газ, образующийся при газификации, охлаждают, подвергают очистке с отделением сажи, которую возвращают на рецикл, на стадию диспергирования, в диспергатор.

Далее газ подвергают очистке от сероводорода, аммиака и роданидов с помощью моноэтаноламина.

Выход целевого продукта - синтез-газа (СО+Н2) составляет 31%. Количество образующейся сажи составляет 1,2% масс.

Пример 2.

В качестве тяжелого углеводородного сырья используют мазут, в качестве растительного сырья - кукурузные кочерыжки.

Исходный мазут нагревают до 80°С.

Кукурузные кочерыжки подвергают двухстадийному измельчению последовательно в дробилке до среднего размера 1-3 мм и мельнице до степени помола 150 мкм.

Нагретый мазут и измельченные кукурузные кочерыжки смешивают. Полученную смесь подвергают диспергированию (механоактивации) в диспергаторе в присутствии воды и сажи. При этом используют сажу, образующуюся при очистке целевого синтез-газа, направляемую на диспергирование.

В данном примере диспергированию подвергают смесь, содержащую тяжелое углеводородное сырье, растительное сырье, сажу и воду, взятые в количестве, соответственно, %масс: 24,15; 48,3; 1,5; 26,05.

Температура диспергирования составляет 80°С. Диспергирование проводят при скорости вращения дисков диспергатора 5000 об/мин, зазоре между дисками 4 мм. Процесс проводят до достижения среднего размера частиц воды, диспергированной в углеводородной составляющей, равном 5-20 мкм.

Полученную суспензию подвергают воздушно - кислородной газификации. Газификацию проводят при коэффициенте недостатка воздуха 0,4 в пересчете на кислород, при температуре 1000°С, без использования давления.

Газ, образующийся при газификации, охлаждают, подвергают очистке с отделением сажи в количестве 1,5% масс, которую возвращают на рецикл, на стадию диспергирования в диспергаторе. Далее газ подвергают очистке от сероводорода, аммиака и роданидов с помощью моноэтаноламина.

Выход целевого продукта - синтез-газа (СО+Н2) составляет 55%. Количество образующейся сажи составляет 1,5% масс.

Пример 3.

В качестве тяжелого углеводородного сырья используют гудрон, в качестве растительного сырья - отходы переработки подсолнечника.

Исходный гудрон нагревают до 90°С.

Отходы переработки подсолнечника подвергают двухстадийному измельчению последовательно в дробилке до среднего размера 1-3 мм и мельнице до степени помола 170 мкм.

Нагретый гудрон и измельченные отходы переработки подсолнечника смешивают и подвергают диспергированию механоактивации в диспергаторе. Процесс диспергирования проводят в присутствии воды и сажи. При этом используют сажу, образующуюся при очистке целевого синтез-газа, направляемую на диспергирование.

В данном примере диспергированию подвергают смесь, содержащую тяжелое углеводородное сырье, растительное сырье, сажу и воду, взятые в количестве, соответственно, %масс: 24,15; 48,3; 1,7; 25,85.

Температура диспергирования составляет 90°С. Диспергирование проводят при скорости вращения дисков диспергатора 3000 об/мин, зазоре между дисками 3 мм. Процесс проводят до достижения среднего размера частиц воды, диспергированной в углеводородной составляющей, равном 5-20 мкм.

В результате получают суспензию, содержащую воду в мелкодисперсном виде. При этом вода в мелкодисперсном виде, диспергированная в суспензии, имеет дисперсность 5-20 мкм.

Полученную суспензию подвергают газификации при кислородном дутье. Газификацию проводят при коэффициенте недостатка воздуха 0,5 в пересчете на кислород, при температуре 1200°С, без использования давления.

Газ, образующийся при газификации, охлаждают, подвергают очистке с отделением сажи в количестве 1,7% масс, которую возвращают на рецикл, на стадию диспергирования в диспергатор. Далее газ подвергают очистке от сероводорода, аммиака и роданидов с помощью моноэтаноламина.

Выход целевого продукта - синтез-газа (СО+Н2) составляет 85%. Количество образующейся сажи составляет 1,7% масс.

Использование при проведении описываемого способа получения синтез-газа иных режимных условий, не выходящих за рамки заявленных, приводит к аналогичным результатам, а использование указанных условий, отличных от заявленных, не приводит к желаемым результатам.

Таким образом, описываемый способ получения синтез-газа засчет комплексирования двух видов физического воздействия - магнитного и акустического и проведения деструктивных процессов (механоактивации) позволяет повысить соотношение Н2:СО в синтез -газе до 1,1-1,3 по сравнению с известным Н2:СО, равным 0,85-0,92 и снизить количество образующейся сажи - до 1,2-1,7% по сравнению с известным 2,5-4%.

Похожие патенты RU2668043C1

название год авторы номер документа
Способ получения синтез-газа 2018
  • Нисковская Марина Юрьевна
  • Ясьян Юрий Павлович
  • Шумовский Александр Всеволодович
  • Горлов Евгений Григорьевич
  • Иванов Евгений Владимирович
  • Гущин Павел Александрович
  • Винокуров Владимир Арнольдович
RU2688737C1
Способ получения синтез-газа 2018
  • Нисковская Марина Юрьевна
  • Ясьян Юрий Павлович
  • Шумовский Александр Всеволодович
  • Горлов Евгений Григорьевич
  • Иванов Евгений Владимирович
  • Гущин Павел Александрович
  • Винокуров Владимир Арнольдович
RU2688614C1
Способ переработки биомассы 2019
  • Горлов Евгений Григорьевич
  • Шумовский Александр Всеволодович
  • Иванов Евгений Владимирович
  • Фролов Валентин Ивлиевич
  • Гущин Павел Александрович
  • Винокуров Владимир Арнольдович
  • Асатрян Альвина Аркадяевна
  • Ясьян Юрий Павлович
  • Нисковская Марина Юрьевна
RU2723864C1
Способ получения синтез-газа 2019
  • Фролов Валентин Ивлиевич
  • Гущин Павел Александрович
  • Иванов Евгений Владимирович
  • Лесин Сергей Викторович
  • Мюллер Райэн Фридрихович
  • Горлов Евгений Григорьевич
  • Шумовский Александр Всеволодович
  • Ясьян Юрий Павлович
  • Нисковская Марина Юрьевна
RU2732808C1
Способ получения синтез-газа из биомассы растительного происхождения 2019
  • Горлов Евгений Григорьевич
  • Шумовский Александр Всеволодович
  • Иванов Евгений Владимирович
  • Фролов Валентин Ивлиевич
  • Гущин Павел Александрович
  • Винокуров Владимир Арнольдович
  • Ольгин Артем Александрович
  • Ясьян Юрий Павлович
  • Нисковская Марина Юрьевна
RU2723865C1
Способ получения синтез-газа 2022
  • Яковенко Роман Евгеньевич
  • Бакун Вера Григорьевна
  • Ильин Владимир Борисович
  • Савостьянов Андрей Александрович
  • Сулима Сергей Иванович
  • Савостьянов Александр Петрович
RU2812781C1
СПОСОБ ПОЛУЧЕНИЯ СИНТЕТИЧЕСКОЙ НЕФТИ 2016
  • Гуляева Людмила Алексеевна
  • Виноградова Наталья Яковлевна
  • Хавкин Всеволод Артурович
  • Хурамшин Ринат Талгатович
  • Горлов Евгений Григорьевич
  • Битиев Георгий Владимирович
RU2616607C1
СПОСОБ ПОЛУЧЕНИЯ ЖИДКИХ УГЛЕВОДОРОДНЫХ СМЕСЕЙ ПУТЕМ ГИДРОКОНВЕРСИИ ЛИГНОЦЕЛЛЮЛОЗНОЙ БИОМАССЫ 2014
  • Хаджиев Саламбек Наибович
  • Кадиев Хусаин Магамедович
  • Зекель Леонид Абрамович
  • Дандаев Асхаб Умалтович
RU2556860C1
СПОСОБ ПРЕОБРАЗОВАНИЯ СОЛНЕЧНОЙ ЭНЕРГИИ В ХИМИЧЕСКУЮ И АККУМУЛИРОВАНИЕ ЕЕ В ВОДОРОДСОДЕРЖАЩИХ ПРОДУКТАХ 2012
  • Столяревский Анатолий Яковлевич
RU2520475C1
СПОСОБ И УСТАНОВКА ПЛАЗМОТЕРМИЧЕСКОЙ ПЕРЕРАБОТКИ УГЛЕРОДСОДЕРЖАЩИХ ПРОМЫШЛЕННЫХ И СЕЛЬСКОХОЗЯЙСТВЕННЫХ ОТХОДОВ ДЛЯ ПОЛУЧЕНИЯ ПЛАЗМОГАЗА 2011
  • Стребков Дмитрий Семенович
  • Столбов Николай Васильевич
  • Прокудин Юрий Александрович
  • Емельянцев Сергей Викторович
  • Зиновьев Алексей Владимирович
  • Росс Марина Юрьевна
  • Чирков Владимир Григорьевич
  • Чиркова Татьяна Григорьевна
  • Щекочихин Юрий Михайлович
RU2451715C1

Реферат патента 2018 года СПОСОБ ПОЛУЧЕНИЯ СИНТЕЗ-ГАЗА

Изобретение относится к способу получения синтез-газа путем термохимической переработки комбинированного сырья, состоящего из растительного сырья и тяжелого углеводородного сырья. Способ осуществляется путем нагрева тяжелого углеводородного сырья до температуры 60-90°С, а растительное сырье подвергают измельчению до степени помола не менее 100 мкм. После чего осуществляют смешение указанных тяжелого углеводородного сырья и растительного сырья с последующим диспергированием полученной смеси в присутствии воды и сажи с получением суспензии, которую подвергают последовательно акустической обработке с частотой излучения 21-25 кГц, интенсивностью излучения 5-10 Вт/см2 при температуре 50-70°С и времени обработки 1-3 ч и электромагнитной обработке с частотой излучения 40-60 МГц, мощностью 0,2-0,6 кВт при температуре 50-70°С, времени обработки 1,0-8,0 ч. Затем осуществляют газификацию обработанной суспензии при температуре 800-1200°С с получением синтез-газа, который подвергают очистке с отделением сажи, используемой на стадии диспергирования. Технический результат заключается в повышении соотношения Н2:СО в синтез-газе при одновременном снижении сажеобразования. 3 пр.

Формула изобретения RU 2 668 043 C1

Способ получения синтез-газа из комбинированного сырья, состоящего из растительного сырья и тяжелого углеводородного сырья, заключающийся в том, что тяжелое углеводородное сырье нагревают до температуры 60-90°С, а растительное сырье подвергают измельчению до степени помола не менее 100 мкм, после чего осуществляют смешение указанных тяжелого углеводородного сырья и растительного сырья с последующим диспергированием полученной смеси в присутствии воды и сажи с получением суспензии, которую подвергают последовательно акустической обработке с частотой излучения 21-25 кГц, интенсивностью излучения 5-10 Вт/см2 при температуре 50-70°С и времени обработки 1-3 ч и электромагнитной обработке с частотой излучения 40-60 МГц, мощностью 0,2-0,6 кВт при температуре 50-70°С, времени обработки 1,0-8,0 ч, после чего осуществляют газификацию обработанной суспензии при температуре 800-1200°С с получением синтез - газа, который подвергают очистке с отделением сажи, используемой на стадии диспергирования.

Документы, цитированные в отчете о поиске Патент 2018 года RU2668043C1

СПОСОБ ПРИГОТОВЛЕНИЯ СМЕШАННОЙ ШИХТЫ, СОДЕРЖАЩЕЙ БИОМАССУ И ТЯЖЕЛУЮ УГЛЕВОДОРОДНУЮ ФРАКЦИЮ, С ЦЕЛЬЮ ДАЛЬНЕЙШЕЙ ГАЗИФИКАЦИИ 2008
  • Роллан Маттье
RU2455344C2
FR 2904405 A1, 01.02.2008
Переносный прибор для расточки вкладышей подшипников 1933
  • Козерацкий С.В.
  • Чистяков Ф.Ф.
SU41307A1
СПОСОБ ПОЛУЧЕНИЯ СИНТЕЗ-ГАЗА ИЗ ВОДОУГОЛЬНОЙ СУСПЕНЗИИ 2002
  • Диденко А.Н.
  • Кондратьев А.С.
  • Петраков А.П.
RU2233312C1
СПОСОБ ТЕРМОХИМИЧЕСКОЙ ПЕРЕРАБОТКИ БИОМАССЫ ДЛЯ ПОЛУЧЕНИЯ СИНТЕЗ-ГАЗА 2010
  • Кондратюк Владимир Александрович
  • Воскобойников Игорь Васильевич
  • Щелоков Вячеслав Михайлович
  • Пашкин Сергей Васильевич
  • Иванова Маргарита Анатольевна
RU2464295C2

RU 2 668 043 C1

Авторы

Нисковская Марина Юрьевна

Ясьян Юрий Павлович

Шумовский Александр Всеволодович

Горлов Евгений Григорьевич

Иванов Евгений Владимирович

Гущин Павел Александрович

Винокуров Владимир Арнольдович

Даты

2018-09-25Публикация

2017-12-26Подача