Изобретение относится к области химической технологии получения производных фторароматических соединений, а именно пентафторфенола и полифторфенолов, которые могут быть использованы для получения лекарственных препаратов, фторированных мономеров, реагентов для пептидного синтеза (аминокислот, пептидов, нуклеозидов), в качестве компонента металлоценовых каталитических систем для полимеризации олефинов.
В настоящее время известно несколько методов получения пентафторфенола и полифторфенолов.
Одним из известных способов является синтез пентафторфенола из гексафторбензола и гидроокиси калия в среде полярного органического растворителя: трет-бутилового спирта или безводного пиридина.
Выход пентафторфенола в среде трет-бутилового спирта достигает 71% (J.M. Birchall, R.N. Haszeldine, J. Chem. Soc, Jan., p. 13-17, 1959).
Выход пентафторфенола в среде безводного пиридина составляет 52% (W. Pummer, L. Wall, Science, 127, р. 643, 1958).
Причина, препятствующая получению требуемого технического результата, заключается в невысоком выходе и низком качество целевого продукта.
Известен способ получения пентафторфенола через пентафторфенилмагнийбромид, который получают взаимодействием бромпентафторбензола с магнием в эфире и дальнейшем разложении пероксидами до пентафторфенола (Патент CN 100434410).
Причины, препятствующие получению требуемого технического результата, заключаются в сложности промышленного производства пентафторфенилмагнийбромида вследствие пожароопасности при использовании в процессе реактива Гриньяра в диэтиловом эфире и в образовании большого количества жидких отходов при разложении пентафторфенилмагнийбромида пероксидами.
Известен способ получения пентафторфенола разложением пентафторфенилалкиловых эфиров, которые получают реакцией соответствующих алкоголятов с гексафторбензолом.
Разложение пентафторфенилалкиловых эфиров проводят йодистоводородной, бромистоводородной, серной или фосфорной кислотой с выходом пентафторфенола до 20% или безводным хлоридом или бромидом алюминия с выходом пентафторфенола до 58% (Е. Forbes, R. Richardson, М. Stasey, J. Tatlow, J. Chem. Soc, June, p. 2019-2021, 1959).
Причина, препятствующая получению в известном способе требуемого технического результата, заключается в невысоком общим выходе целевого продукта. Кроме того, полученный пентафторфенол, требует дополнительной очистки от примесей вследствие неполной конверсии при разложении пентафторфенилалкиловых эфиров безводным галогенидом алюминия и образовании при этом побочных продуктов. А в случае разложения неорганическими кислотами - увеличивает количество жидких кислых отходов.
Известен способ получения фторфенолов формулы FC6H4OH взаимодействием фторгалоидбензола с твердыми основаниями при нагревании в среде гидроксилсодержащего растворителя, где в качестве фторгалоидбензола используют дифторбензол, в качестве основания используют гранулированный гидроксид калия, а в качестве гидроксилсодержащего растворителя - низший алифатический вторичный или третичный спирт. Процесс ведут в автоклаве при 150÷300°С и аутогенном давлении. Выход фторфенола составляет 80÷85% (Патент RU 1759829).
Причины, препятствующие получению в известном способе требуемого технического результата, заключаются в невысоком выходе целевого продукта, в необходимости проведения реакции при повышенной температуре 150÷300°С и аутогенном давлении, что предусматривает использование в целях наработки автоклавного оборудования.
Известен способ получения фторфенолов окислением фторбензола закисью азота в присутствии гетерогенных катализаторов. Окисление фторбензола ведут закисью азота при 225÷450°С в присутствии цеолитного катализатора, который предварительно активируют при повышенной температуре путем двустадийной термообработки при 350÷450°С и при 450÷1100°С. При окислении фторбензола образуется смесь, содержащая преимущественно n-изомер фторфенола до 75%. Выход фторфенола составляет 20% при селективности 97% (Патент RU 2127721).
Причины, препятствующие получению в известном способе требуемого технического результата, заключаются в невысоком выходе целевого продукта и необходимости проведения реакции при повышенной температуре до 450°С.
Известен способ получения фторсодержащих фенолов, заключающийся в том, что фторгалоидбензолы нагревают под давлением с водными растворами щелочных агентов в присутствии соединений меди (закись меди, хлористая медь). В качестве щелочных агентов применяют едкие щелочи, карбонаты, ацетаты щелочных металлов, фториды и бифториды щелочных металлов.
Выходы целевых продуктов составляют 52÷85% (Патент SU 143404).
Причины, препятствующие получению в известном способе требуемого технического результата, заключаются в невысоком общим выходе целевого продукта и необходимости проведения реакции при повышенной температуре 250°С и аутогенном давлении, что предусматривает использование в целях наработки автоклавного оборудования.
Известен способ получения пентафторфенола без растворителя взаимодействием гексафторбензола с концентрированным водным раствором гидроксида калия в автоклаве при температуре 145÷180°С и давлении 15÷16 атмосфер. Выход пентафторфенола составляет 60÷65% («Синтезы фторорганических соединений», под редакцией Кнунянца И.Л., Москва, «Химия», 1973, стр. 182).
Причины, препятствующие получению в известном способе требуемого технического результата, заключаются в невысоком общим выходе целевого продукта и необходимости проведения реакции при повышенной температуре до 180°С и аутогенном давлении до 16 атмосфер, что предусматривает использование в целях наработки автоклавного оборудования. Кроме того, разложение фенолята калия проводят неорганическими кислотами, что увеличивает количество жидких отходов и уменьшает время службы основного технологического оборудования вследствие повышенной коррозионной активности.
Известен способ получения пентафторфенола реакцией с концентрированным водным раствором гидроксида калия в автоклаве при перемешивании и температуре 175°С с выходом 83,5% (L. Wall, W. Pummer, J. Fearn, J. Antonucci, J. Rcs. NBS, 67A, p. 481÷497, 1963).
Причина, препятствующая получению в известном способе требуемого технического результата, заключается в необходимости проведения реакции при давлении выше 15 атмосфер, что существенно ограничивает промышленную реализацию данного метода. Кроме того, разложение фенолята калия проводят неорганическими кислотами, что увеличивает количество жидких отходов и уменьшает время службы основного технологического оборудования вследствие повышенной коррозионной активности
Известен способ получения пентафторфенола реакцией гексафторбензола с водными растворами гидроксидов щелочных и щелочноземельных металлов в присутствии катализатора межфазного переноса при температуре 100÷140°С и давлении 4,5 атмосферы в начале процесса и 2,2 атмосферы в конце процесса. Выход до 92,7% (Патент RU 2343142).
Причины, препятствующие получению в известном способе требуемого технического результата, заключаются в использовании неорганических кислот при гидролизе фенолята калия, что увеличивает количество жидких отходов и уменьшает время службы основного технологического оборудования вследствие повышенной коррозионной активности.
Известен способ получения моно- или дигидроксиполифторбензолов из полифторароматических кислот, включающий:
- получение триметилсилилового эфира соответствующей полифторароматической кислоты нагреванием ее с триметилхлорсиланом;
- взаимодействие триметилсилилового эфира соответствующей полифторароматической кислоты с предварительно обезвоженными солями цинка или окисью цинка при нагревании в полярном апротонном растворителе, таком как диметилформамид, диметилацетамид, N-метилпироллидон, ацетонитрил, в результате получают раствор соответствующего цинкового производного;
- взаимодействие полученного раствора цинкорганического соединения в одном из перечисленных растворителей с пероксисоединением, либо таким как трет-бутиловый эфир пероксикислоты, например: трет-бутилпероксибензоатом, трет-бутилпероксиацетатом, трет-бутилперокситрифторацетатом, либо пероксидом мочевины, при катализе галогенидами одновалентной меди (хлоридом, бромидом или йодидом) при комнатной температуре. Взаимодействуя с трет-бутиловый эфиром пероксикислоты, получают трет-бутиловый эфир соответствующего полифторфенола, для выделения которого к реакционной смеси добавляют разбавленную соляную кислоту, перемешивают и отделяют нижний слой, состоящий из трет-бутилового эфира полифторфенола, который кипятят с соляной кислотой, после чего выливают реакционную смесь в воду, продукт отделяют и ректифицируют. Получают целевой полифторгидроксибензол с выходом 32÷90% (Патент RU 2536872).
Причины, препятствующие получению в известном способе требуемого технического результата, заключаются в использовании неорганических кислот при гидролизе трет-бутилового эфира гидроксиполифторбензола, что создает большое количество жидких кислых отходов и уменьшает время службы основного технологического оборудования вследствие повышенной коррозионной активности.
Наиболее близким к заявляемому способу является способ получения пентафторфенола из бромпентафторбензола, который заключается в том, что бромпентафторбензол подвергают взаимодействию с цинком в полярном апротонном растворителе в интервале температур 30÷70°С.
Полученный раствор пентафторфенилцинкбромида подвергают взаимодействию с трет-бутиловым эфиром пероксикислоты в присутствии солей одновалентной меди, а образовавшийся трет-бутиловый эфир пентафторфенола отделяют и гидролизуют нагреванием с концентрированной соляной кислотой. Целевой пентафторфенол выделяют известными приемами с выходом 75÷91% (Патент RU 2527046).
Признаком, являющимся общим для известного и заявленного способа, заключается в использовании в качестве исходного соединения на последней стадии при получении пентафторфенола - трет-бутилового эфира пентафторфенола (трет-бутоксипентафторбензо-ла).
Причины, препятствующие получению в известном способе требуемого технического результата, заключаются в использовании на последней стадии неорганических кислот при гидролизе трет-бутилового эфира, что увеличивает количество жидких отходов и уменьшает время службы основного технологического оборудования вследствие повышенной коррозионной активности.
Задача, на решение которой направлено изобретение по сравнению с прототипом, заключается в улучшении технологии получения пентафторфенола и полифторфенолов с высоким выходом и высокой степенью чистоты, в улучшении экологии производства и в создании универсального метода для получения полифторфенолов различных модификаций.
Технический результат достигается путем каталитического разложения пентафтор- или полифторфенилалкиловых простых эфиров в проточной системе при температуре 180÷210°С и атмосферном давлении.
Технический результат, обуславливающий решение задачи, заключается в том, что каталитическое разложение пентафтор- или полифторфенилалкиловых простых эфиров до пентафторфенола или полифторфенолов ведут на катализаторе, где в качестве каталитической системы используют активированную гранулированную окись алюминия, что исключает из производства использование неорганических кислот при разложении эфиров, следовательно, и образование кислых жидких отходов.
В заявляемом способе гранулированную окись алюминия предварительно активируют при температуре 250÷300°С промоторами, в качестве которых берут органические соединения с температурой кипения не выше 300°С, содержащие не менее одного атома фтора, или фтористый водород.
Количество промотора, необходимого для активации катализатора, берут из расчета 5÷10% (вес.) от количества исходного катализатора.
В заявляемом способе активацию катализатора промотором подвергают только в случае свежевзятой гранулированной окиси алюминия. Далее активированный катализатор сохраняет свою активность вне зависимости от времени использования.
В заявляемом способе в качестве галоидсодержащих фенилалкиловых простых эфиров предпочтительно использовать эфиры разветвленного строения, получаемые на основе вторичных и третичных спиртов.
Преимущества использования вышеуказанных эфиров:
- их доступность, они легко могут быть получены взаимодействием гексафтор- или полифторбензолов с 25÷50%-ными спиртовыми растворами гидроксидов щелочных или щелочноземельных металлов;
- каталитическое разложение вышеуказанных эфиров проходит в более мягких условиях (180÷210°С) и с количественным выходом целевых продуктов.
Для осуществления заявляемого способа предпочтительно использовать эфиры с температурой кипения не более 210°С.
Ограничения по заявляемому способу относятся к получению полифторфенолов с температурой плавления выше 210°С.
Новые признаки заявленного способа заключаются в проведении каталитического разложения пентафтор- или полифторфенилалкиловых простых эфиров в проточной системе при атмосферном давлении и температуре 180÷210°С на катализаторе, представляющим собой активированную окись алюминия.
Пентафторфенол или полифторфенолы, получаемые по предлагаемому способу, очищают ректификацией до чистоты 99,5÷99,9%. Выход продуктов составляет 95÷98%.
Синтез пентафторфенола и полифторфенолов на катализаторе - активированной окиси алюминия позволяет существенно упростить процесс, исключить из производства жидкие и твердые отходы, уменьшить количество образующихся побочных продуктов и увеличить выход целевого продукта.
Каталитическое разложение проводят в типовом реакторе проточного типа, представляющим собой цельнотянутую трубу с ложным днищем, снабженную обогревом и заполненную катализатором - активированной окисью алюминия.
Время контакта при каталитическом разложении пентафтор- или полифторфенилалкиловых простых эфиров зависит от типа используемого эфира, чем короче линейная эфирная цепь, тем выше время контакта, в случае использования разветвленных эфирных группировок, время контакта на зависит от длины цепи.
Предлагаемый способ позволяет получать на промышленной установке по единой методике пентафторфенол и разнообразные полифторфенолы.
Преимущества предлагаемого способа:
- простота аппаратурного оформления;
- отсутствие жидких и твердых отходов;
- высокий выход целевых продуктов (95-98%);
- возможность получения чистых целевых продуктов с содержанием основного вещества 99,5-99,9%;
- доступность исходного сырья: пентафтор- или полифторфенилалкиловых простых эфиров;
- возможность использования данного метода при получении полифторфенолов различных модификаций.
Следующие примеры подтверждают возможность осуществления способа получения пентафторфенола и полифторфенолов согласно изобретению, но не исчерпывают его. Результаты экспериментов приведены в таблице №1.
Изобретение иллюстрируется следующими примерами его осуществления:
Пример №1
В реактор проточного типа, представляющий собой цельнотянутую трубу, изготовленную из нержавеющей стали, вместимостью 0,7 дм3 (L=1000 мм; Внар.=38 мм; Dвн.=32 мм; δ=3 мм), снабженную ложным днищем, обогревом и карманом для термопары загружают 450÷460 г гранулированной окиси алюминия (диаметр гранулы Al2O3=2,0÷6 мм; насыпная плотность ~0,65 г/см3). Испаритель, представляющий собой аппарат емкостного типа, изготовленный из нержавеющей стали, вместимостью 0,5 дм3 заполняют насадкой из нержавеющей стали (стружкой, кольцами Рашига 5×5 мм или спиральной насадкой 5×5 мм).
Реактор и испаритель разогревают до 250°С и проводят активацию катализатора промотором, дозируя в реактор 45÷46 г фтористого водорода со скоростью 15÷25 г/ч.
По окончании активации, катализатор продувают азотом в течение 10÷15 минут, устанавливают температуру в реакторе и испарителе 210°С и начинают подачу исходного эфира - пентафторанизола (C6F5OCH3).
Первоначально устанавливают минимальный расход пентафторанизола таким образом, чтобы температура реактора не превышала 210°С, после чего снижают температуру обогрева реактора, одновременно увеличивая расход пентафторанизола, поддерживая температуру реактора в пределах 210°С за счет экзотермичности реакции.
Расход пентафторанизола устанавливают в пределах 200-220 г/ч (время контакта t=100÷110 секунд). Контроль расхода пентафторанизола ведут по весам.
После расхода 1,0 кг исходного пентафторанизола, процесс прекращают, реактор продувают азотом при рабочей температуре в течение 10÷15 минут.
Полученный сырец пентафторфенола сливают, взвешивают и анализируют методом ГЖХ (хроматографическая капиллярная колонка с привитой неподвижной жидкой фазой SE-30).
Получают 933,2 г сырца пентафторфенола, в том числе:
- пентафторфенол 94,8%;
- исходный пентафторанизол 0,3%;
- прочие 4,9%.
Выход пентафторфенола составляет 95,2% в пересчете на 100%-ный.
Пример №2.
Используется реактор с активированным катализатором, описанный в примере №1.
Реактор и испаритель разогревают до 210°С и начинают подачу пентафторфенетола (C6F5OC2H5).
Расход пентафторфенетола устанавливают в пределах 260÷280 г/ч (время контакта t=85÷90 секунд). Контроль расхода пентафторфенетола ведут по весам.
После расхода 1,0 кг исходного пентафторфенетола, процесс прекращают, реактор продувают азотом при рабочей температуре в течение 10÷15 минут.
Получают 872,5 г сырца пентафторфенола, в том числе:
- пентафторфенол 95,4%;
- исходный пентафторфенетол 0,3%;
- прочие 4,3%.
Выход пентафторфенола составляет 95,9% в пересчете на 100%-ный.
Пример №3.
Используется реактор с активированным катализатором, описанный в примере №1.
Устанавливают температуру в реакторе 190°С, испаритель разогревают до 210°С и начинают подачу изопропоксипентафторбензола (C6F5OCH(СН3)2).
Расход изопропоксипентафторбензола устанавливают в пределах 670÷690 г/ч (время контакта t=37÷38 секунд). Контроль расхода изопропоксипентафторбензола ведут по весам.
После расхода 1,0 кг исходного изопропоксипентафторбензола, процесс прекращают, реактор продувают азотом при рабочей температуре в течение 10-15 минут.
Получают 811,7 г сырца пентафторфенола, в том числе:
- пентафторфенол 98,3%;
- исходный изопропоксипентафторбензол 0,2%;
- прочие 1,5%.
Выход пентафторфенола составляет 98,0% в пересчете на 100%-ный.
Пример №4.
Используется реактор с активированным катализатором, описанный в примере №1.
Устанавливают температуру в реакторе 180°С, испаритель разогревают до 200°С и начинают подачу трет-бутоксипентафторбензола (C6F5OC(СН3)3).
Расход трет-бутоксипентафторбензола устанавливают в пределах 710÷730 г/ч (время контакта t=37÷38 секунд). Контроль расхода трет-бутоксипентафторбензола ведут по весам.
После расхода 1,0 кг исходного трет-бутоксипентафторбензола, процесс прекращают, реактор продувают азотом при рабочей температуре в течение 10-15 минут.
Получают 764,4 г сырца пентафторфенола, в том числе:
- пентафторфенол 98,5%;
- исходный трет-бутоксипентафторбензол 0,1%;
- прочие 1,4%.
Выход пентафторфенола составляет 98,2% в пересчете на 100%-ный.
Пример №5.
Используется реактор с активированным катализатором, описанный в примере №1.
Устанавливают температуру в реакторе 190°С, испаритель разогревают до 210°С и начинают подачу 4-гидротетрафторфенилизопропилового эфира (HC6F4OCH(СН3)2).
Расход 4-гидротетрафторфенилизопропилового эфира устанавливают в пределах 615÷630 г/ч (время контакта t=37÷38 секунд).
Контроль расхода 4-гидротетрафторфенилизопропилового эфира ведут по весам.
После расхода 1,0 кг исходного 4-гидротетрафторфенилизопропилового эфира, процесс прекращают, реактор продувают азотом при рабочей температуре в течение 10-15 минут.
Получают 794,0 г сырца 4-гидротетрафторфенола, в том числе:
- 4-гидротетрафторфенол 98,0%;
- исходный 4-гидротетрафторфенилизопропиловый эфир 0,2%;
- прочие 1,8%.
Выход 4-гидротетрафторфенола составляет 97,5% в пересчете на 100%-ный.
Пример №6 (контрольный опыт).
В реактор, описанный в примере №1, загружают 450 г гранулированной окиси алюминия (диаметр гранулы Al2O3=2,0÷6 мм; насыпная плотность ~0,65 г/см3). Испаритель, представляющий собой аппарат емкостного типа, изготовленный из нержавеющей стали, вместимостью 0,5 дм3 заполняют насадкой из нержавеющей стали (стружкой, кольцами Рашига 5×5 мм или спиральной насадкой 5×5 мм).
Реактор и испаритель разогревают до 250°С и продувают азотом в течение 1 часа, после чего охлаждают реактор и испаритель до рабочих температур:
- реактор - до температуры 190°С;
- испаритель - до температуры 210°С.
После установления в реакторе и испарителе рабочих температур, прекращают продувку азотом и начинают подачу исходного эфира - изопропоксипентафторбензола (C6F5OCH(СН3)2).
Расход изопропоксипентафторбензола устанавливают в пределах 670÷690 г/ч (время контакта t=37÷38 секунд), поддерживая температуру в реакторе 190°С при помощи обогрева реактора. Контроль расхода изопропоксипентафторбензола ведут по весам.
После расхода 1,0 кг исходного изопропоксипентафторбензола, процесс прекращают, реактор продувают азотом при рабочей температуре в течение 10÷15 минут.
Получают 992,9 г исходного изопропоксипентафторбензола. Пентафторфенол в сырце отсутствует.
После этого, разогревают реактор и испаритель до температуры 250°С и проводят активацию катализатора промотором. В качестве промотора берется исходный эфир - изо-пропоксипентафторбензол. Изопропоксипентафторбензол дозируют в реактор в количестве 45 г со скоростью 15÷25 г/ч.
По окончании активации, катализатор продувают азотом в течение 10-15 минут, сливают отработанный промотор, устанавливают температуру в реакторе 190°С, в испарителе 210°С и начинают подачу изопропоксипентафторбензола (C6F5OCH(СН3)2).
Расход изопропоксипентафторбензола устанавливают в пределах 670÷690 г/ч (время контакта t=37-38 секунд). Контроль расхода изопропоксипентафторбензола ведут по весам.
После расхода 1,0 кг исходного изопропоксипентафторбензола, процесс прекращают, реактор продувают азотом при рабочей температуре в течение 10-15 минут.
Получают 812,9 г сырца пентафторфенола, в том числе:
- пентафторфенол 98,4%;
- исходный изопропоксипентафторбензол 0,1%;
- прочие 1,5%.
Выход пентафторфенола составляет 98,2% в пересчете на 100%-ный.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ ПЕНТАФТОРФЕНОЛА | 2013 |
|
RU2527046C1 |
СПОСОБ ПОЛУЧЕНИЯ МОНО- И ДИГИДРОКСИПОЛИФТОРБЕНЗОЛОВ | 2013 |
|
RU2536872C1 |
СПОСОБ ПОЛУЧЕНИЯ ЭТРИОЛА | 2014 |
|
RU2560156C1 |
СПОСОБ ПОЛУЧЕНИЯ ПЕНТАФТОРФЕНОЛА | 2007 |
|
RU2343142C2 |
СПОСОБ ПОЛУЧЕНИЯ ВНУТРИМОЛЕКУЛЯРНОГО АНГИДРИДА ТРИМЕЛЛИТОВОЙ КИСЛОТЫ | 1998 |
|
RU2152937C1 |
СПОСОБ ПОЛУЧЕНИЯ N-АЦЕТИЛГЛЮКОЗАМИНИЛ-N-АЦЕТИЛМУРАМИЛ-L-АЛАНИЛ-D-ГЛУТАМИНОВОЙ КИСЛОТЫ | 2015 |
|
RU2573991C1 |
Способ получения пропаналя гидроформилированием этилена в разбавленных газовых потоках | 2019 |
|
RU2737189C1 |
СПОСОБ ПОЛУЧЕНИЯ ОЛИГОМЕРОВ АЛЬФА-ОЛЕФИНА C, C ИЛИ C | 2015 |
|
RU2570650C1 |
СПОСОБ ПОЛУЧЕНИЯ ПЛАСТИФИКАТОРА | 2003 |
|
RU2235716C1 |
ГОМОГЕННЫЙ КАТАЛИЗАТОР ДЛЯ СИНТЕЗА МЕТАНОЛА, СПОСОБ ЕГО ПОЛУЧЕНИЯ И СПОСОБ ПОЛУЧЕНИЯ МЕТАНОЛА | 1989 |
|
RU2062648C1 |
Настоящее изобретение относится к способу получения пентафторфенола или полифторфенолов (4-гидротетрафторфенола), которые могут быть использованы для получения лекарственных препаратов, фторированных мономеров, реагентов для пептидного синтеза (аминокислот, пептидов, нуклеозидов), в качестве компонента металлоценовых каталитических систем для полимеризации олефинов. Способ заключается в каталитическом разложении пентафтор- или полифторфенилалкиловых простых эфиров, при этом в качестве катализатора разложения используется предварительно промотированная фторсодержащими соединениями гранулированная окись алюминия. Предлагаемый способ позволяет упростить технологию синтеза, а также получать целевые продукты с высоким выходом и высокой степени чистоты. 6 з.п. ф-лы, 1 табл., 6 пр.
1. Способ получения пентафторфенола или полифторфенолов (4-гидротетрафторфенола) каталитическим разложением пентафтор- или полифторфенилалкиловых простых эфиров, отличающийся тем, что в качестве катализатора разложения используется предварительно промотированная фторсодержащими соединениями гранулированная окись алюминия.
2. Способ по п. 1, отличающийся тем, что в качестве исходных реагентов используются пентафтор- или 4-гидротетрафторфенилалкиловые простые эфиры с температурой кипения не более 210°С, содержащие алкоксигруппы:
-ОСН3; -ОС2Н5; -ОСН(СН3)2; -ОС(СН3)3.
3. Способ по любому из пп. 1, 2, отличающийся тем, что в качестве исходных реагентов предпочтительно используются пентафтор- или полифторфенилалкиловые простые эфиры, содержащие разветвленную алкоксигруппу, получаемую на основе вторичных и третичных спиртов.
4. Способ по любому из пп. 1 - 3, отличающийся тем, что процесс ведут в проточной системе при атмосферном давлении и температуре 180-210°С.
5. Способ по п. 1, отличающийся тем, что в качестве промотора катализатора используются фтористый водород или исходный пентафтор- или полифторфенилалкиловый эфир с температурой кипения не выше 300°С, содержащие не менее одного атома фтора.
6. Способ по любому из пп. 1, 5, отличающийся тем, что количество промотора, необходимого для активации катализатора, берут из расчета 5-10% (вес.) от количества исходного катализатора.
7. Способ по любому из пп. 1, 5, 6, отличающийся тем, что активацию катализатора промотором ведут при температуре 250÷300°С.
СПОСОБ ПОЛУЧЕНИЯ ПЕНТАФТОРФЕНОЛА | 2013 |
|
RU2527046C1 |
W.J.Pummer et al | |||
Pentafluorophenyl Alkyl and Vinyl Ethers | |||
Journal of Research of the National Bureau of Standarts-A | |||
Physics and Chemistry, 1966, 70A(3), 233-242 | |||
П.В | |||
Подсевалов и др | |||
Новый промышленный метод получения пентафторфенола | |||
Разборный с внутренней печью кипятильник | 1922 |
|
SU9A1 |
Фокина, 22-26 октября 2012, Москва, Россия | |||
Сборник тезисов, 2012, Р-18 | |||
CN 105016983 A, 04.11.2015. |
Авторы
Даты
2018-10-12—Публикация
2017-01-09—Подача