СПОСОБ ПЕРЕРАБОТКИ ОТХОДОВ ИЗ РЕЗИНОТЕХНИЧЕСКИХ И ПОЛИМЕРНЫХ МАТЕРИАЛОВ Российский патент 2018 года по МПК B29B17/00 C08J11/04 F23G7/12 

Описание патента на изобретение RU2672295C1

Изобретение относится к технологии переработки отходов из резинотехнических и полимерных материалов, преимущественно отработавших автомобильных шин в ценные жидкие, газообразные и твердые продукты.

Известен способ переработки низкотемпературным пиролизом твердых органических отходов, преимущественно резинотехнических изделий [Патент РФ №2393200, МПК C10G 1/10 (2006.01). Способ термической переработки твердых органических отходов и установка для его осуществления. Опубл. 27.06.2019, БИ №18]. Способ заключается в низкотемпературном пиролизе резинотехнических отходов в реакторе в противотоке с газообразным теплоносителем, полученным от сжигания технологического топлива, вводимым в нижнюю часть реактора, загрузке отходов и выгрузке твердого углеродистого остатка с последующим его охлаждением, конденсацией получаемой парогазовой смеси с разделением ее на несколько фракций топливной жидкости и пиролизный газ. Загрузку отходов осуществляют с интервалом, включающим время разогрева загружаемых отходов и дополнительное время, равное 0,4-0,6 от времени максимальной скорости выделения пиролизного газа. В период пуска реактора с его полной загрузкой газообразный теплоноситель подают двумя потоками: основной поток в количестве 60-70% от общего расхода - в осевую зону реактора, а остальной - в его пристенную зону. Парогазовую смесь перед конденсацией предварительно очищают от сажистых и смолистых фракций орошением органической и/или водно-органической жидкостью при температуре 500-350°С. Конденсацию парогазовой смеси с последовательным выделением топливных фракций проводят в диапазоне температур 350-70°С, а конденсацию воды при температуре 25-60°С. Получаемый при этом остаточный пиролизный газ направляют на сжигание с утилизацией тепла.

Недостатки известного способа состоят в относительно большой продолжительности и сложности процесса переработки отходов, включающей подготовку шин перед пиролизом и предварительную очистку парогазовой смеси перед конденсацией.

Наиболее близким по технической сущности к заявляемому техническому решению является способ переработки полимерных составляющих изношенных автомобильных шин [Патент РФ №2402591, МПК C10G 1/10 (2006.01). Опубл. 27.10.2010, БИ №10. Способ переработки полимерных составляющих изношенных автомобильных шин]. Способ включает загрузку измельченных автомобильных шин в реактор, пиролиз в среде газа с последующим разделением продуктов пиролиза и выгрузку твердого остатка. Измельченные полимерные составляющие изношенных автомобильных шин обрабатывают водным раствором хлорида кобальта из расчета 2% хлорида кобальта от массы полимерных составляющих с последующей сушкой обработанных материалов при комнатной температуре. Пиролиз проводят в среде азота при атмосферном давлении при температуре 450-460°С в течение 1,0÷1,5 часов.

К недостаткам способа относится отсутствие рекомендаций по определению длительности процесса до полной переработки отходов при минимальных затратах на энергоресурсы, а также по выбору отношения масс загружаемых в реактор отходов и свинецсодержащего металлического расплава. Отсутствие рекомендации по определению длительности процесса не позволяют провести автоматизацию процесса переработки отходов.

Перед авторами стояла задача устранить указанные недостатки, а именно определить длительность процесса при минимизации затрат на энергоресурсы и установить отношение масс загружаемых в реактор отходов и свинецсодержащего металлического расплава.

Технический результат - оптимизация процесса переработки отходов из резинотехнических и полимерных материалов, исключающая перерасход энергоресурсов и обеспечивающая полную переработку отходов.

Для решения поставленной задачи в способе переработки отходов из резинотехнических и полимерных материалов, включающем загрузку отходов в реактор, нагрев реактора до температуры деструкции отходов, пиролиз отходов с отводом газообразных продуктов переработки и их конденсацией с разделением на несколько фракций и последующую выгрузку твердых продуктов переработки предлагается:

- пиролиз проводить в свинецсодержащем металлическом расплаве;

- учитывать соотношение масс загружаемых отходов и свинецсодержащего металлического расплава, удельных теплоемкостей перерабатываемых отходов и свинецсодержащего металлического расплава, температур переработки отходов и загружаемых отходов, минимальной температуры свинецсодержащего металлического расплава;

- переработку производить в течение времени с учетом массы загружаемых отходов, удельной теплоемкости перерабатываемых отходов, температур переработки отходов и загружаемых отходов, коэффициента теплопередачи, площади теплообмена и минимальной температуры свинецсодержащего металлического расплава.

В частных случаях реализации способа предлагается:

- во-первых, конденсацию газообразных продуктов переработки осуществлять с разделением получаемых жидких продуктов в последовательно установленных баках-конденсаторах, в каждом из которых поддерживается температурный режим, равный температуре конденсации соответствующих газообразных продуктов пиролиза;

- во-вторых, значения температур конденсации соответствующих газообразных продуктов пиролиза, поддерживаемой в каждом баке-конденсаторе, уменьшать по направлению отвода газовой фазы из реактора от одного бака-конденсатора к другому.

Сущность способа переработки отходов из резинотехнических и полимерных материалов состоит в следующем.

Способ включает загрузку отходов в реактор, нагрев реактора до температуры деструкции отходов, пиролиз отходов с отводом газообразных продуктов переработки и их конденсацией с разделением на несколько фракций и последующую выгрузку твердых продуктов переработки.

Пиролиз резинотехнических и полимерных отходов представляет собой их химическое разложение при нагреве в бескислородной среде. При таком разложении возможно образование твердых, жидких и газообразных продуктов, включающих целый спектр полезных товарных продуктов. При этом важно, чтобы длительность пиролиза была относительно невелика, так как увеличение продолжительности процесса пиролиза приводит к уменьшению доли товарных продуктов в общей массе продуктов переработки и ухудшает экономические показатели из-за необходимости подводить тепло более длительное время. По этой причине пиролиз отходов из резинотехнических и полимерных материалов в газовой среде не нашел широкого применения. Удачное сочетание физических, химических и термодинамических свойств свинецсодержащего металлического расплава позволило обосновать и доказать эффективность пиролиза отходов путем их непосредственного контакта со свинецсодержащим металлическим расплавом.

Пиролиз проводят в свинецсодержащем металлическом расплаве при условии

где М1 - масса загружаемых отходов, кг; Ср1 - удельная теплоемкость перерабатываемых отходов, Дж/(кг⋅°С); t - температура переработки отходов, °С; t1 - температура загружаемых отходов, °С; М2 - масса свинецсодержащего металлического расплава, кг; Ср2 - удельная теплоемкость свинецсодержащего металлического расплава, Дж/(кг⋅°С), t2 - минимальная температура свинецсодержащего металлического расплава, °С.

Переработку отходов проводят в течение времени, равного:

где М1 - масса загружаемых отходов, кг; Ср1 - удельная теплоемкость перерабатываемых отходов, Дж/(кг⋅°С); t - температура переработки отходов, °С; t1 - температура загружаемых отходов, °С; k - коэффициент теплопередачи, Вт/(м2⋅°С); F - площадь теплообмена, м2; t2 - минимальная температура свинецсодержащего металлического расплава, °С.

Продолжительность времени переработки определена исходя из сопоставления количества тепла, необходимого для нагрева перерабатываемых отходов с использованием уравнения теплопередачи для нестационарного режима в случае переработки отходов из резинотехнических и полимерных материалов в среде свинецсодержащего металлического расплава.

Частные случаи реализации способа.

Во-первых, конденсацию газообразных продуктов переработки осуществляют с разделением получаемых жидких продуктов в последовательно установленных баках-конденсаторах, в каждом из которых поддерживается температурный режим, равный температуре конденсации соответствующих газообразных продуктов пиролиза.

Во-вторых, значения температуры конденсации соответствующих газообразных продуктов пиролиза, поддерживаемой в каждом баке-конденсаторе, уменьшают по направлению отвода газовой фазы из реактора от одного бака-конденсатора к другому.

Во всех баках-конденсаторах, кроме последнего по направлению отвода газовой фазы из реактора, заданная температура поддерживается с помощью электронагревателей, температуру которых можно регулировать в зависимости от необходимости получения фракции с определенной температурой кипения (конденсации). Последний бак-конденсатор представляет собой теплообменник с проточной холодной водой в качестве хладагента и служит для конденсации остаточного количества продуктов пиролиза с низкой температурой кипения.

Пример конкретного исполнения способа.

В качестве отходов использованы отработавшие автомобильные шины, в качестве свинецсодержащего металлического расплава - эвтектический сплав свинца с висмутом (44,5 Pb-55,5 Bi).

Масса загружаемых отходов М1=0,1 кг; удельная теплоемкость перерабатываемых отходов Ср1=2000 Дж/(кг⋅°С); температура переработки отходов t=450°С; температура загружаемых отходов t1=30°С; масса свинецсодержащего металлического расплава М2=13 кг; удельная теплоемкость свинецсодержащего расплава Ср2=130 Дж/(кг⋅°С); минимальная температура свинецсодержащего металлического расплава t2=400°С.

При этом выполняется соотношение (1).

Коэффициент теплопередачи составляет 196 Вт/(м2⋅°С), площадь поверхности шины - 0,054 м2.

Согласно соотношению (2) время переработки отходов составляло τ=24±1 мин.

Температура в баках-конденсаторах один, два и три соответственно составляла 178°С, 135°С и 20°С.

При уменьшении времени переработки отходов процесс их переработки будет проходить не полностью, увеличение времени переработки будет сопровождаться перерасходом энергоресурсов, затрачиваемых на разогрев свинецсодержащего расплава и твердых продуктов переработки.

Энергозатраты на переработку отходов массой 0,1 кг составляют 0,08 кВт-ч.

Похожие патенты RU2672295C1

название год авторы номер документа
Устройство для переработки отходов из резинотехнических и полимерных материалов 2018
  • Ульянов Владимир Владимирович
  • Кошелев Михаил Михайлович
  • Асхадуллин Радомир Шамильевич
RU2693800C1
СПОСОБ ПЕРЕРАБОТКИ ОТХОДОВ ИЗ ПОЛИМЕРНЫХ, КОМПОЗИТНЫХ И РЕЗИНОТЕХНИЧЕСКИХ МАТЕРИАЛОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2021
  • Потёмкин Максим Александрович
RU2773469C1
УСТРОЙСТВО ДЛЯ ПЕРЕРАБОТКИ ОРГАНИЧЕСКИХ ОТХОДОВ 2004
  • Иваненко Владимир Сергеевич
  • Митропольский Павел Владимирович
  • Шелепугин Дмитрий Николаевич
RU2283761C2
СПОСОБ КОМПЛЕКСНОГО ПЕРЕДЕЛА МАТЕРИАЛОВ, УСТАНОВКА И ТОПЛИВНЫЙ ЭЛЕМЕНТ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2006
  • Дядик Анатолий Анатольевич
  • Даукш Виктор Владимирович
RU2333425C2
СПОСОБ ТЕРМИЧЕСКОЙ ПЕРЕРАБОТКИ ИЗНОШЕННЫХ ШИН И РЕЗИНОТЕХНИЧЕСКИХ ИЗДЕЛИЙ 2003
  • Антоненко В.Ф.
  • Заика Ю.П.
  • Аникеев В.Н.
RU2248881C2
СПОСОБ ПЕРЕРАБОТКИ РЕЗИНОТЕХНИЧЕСКИХ И ОРГАНИЧЕСКИХ ОТХОДОВ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2005
  • Крестовников Михаил Павлович
  • Снегоцкий Александр Леопольдович
RU2321492C2
СПОСОБ ПЕРЕРАБОТКИ ИЗНОШЕННЫХ ШИН И/ИЛИ РЕЗИНОТЕХНИЧЕСКИХ ИЗДЕЛИЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2008
  • Коновалов Николай Петрович
  • Яцун Андрей Владимирович
  • Коновалов Петр Николаевич
RU2361731C1
СПОСОБ ТЕРМИЧЕСКОЙ ПЕРЕРАБОТКИ ТВЕРДЫХ ОРГАНИЧЕСКИХ ОТХОДОВ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2008
  • Руднев Вадим Евгеньевич
  • Назаров Вячеслав Иванович
  • Баринский Евгений Анатольевич
  • Клюшенкова Марина Ивановна
  • Семенов Михаил Сергеевич
  • Алексеев Сергей Юрьевич
RU2393200C2
Устройство для утилизации отходов на органической основе 2020
  • Ванюшкин Алексей Викторович
RU2753540C1
СПОСОБ ПЕРЕРАБОТКИ ИЗНОШЕННЫХ ШИН И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2003
  • Дроздов Алексей Владимирович
  • Ковалев В.В.
  • Могильнер Александр Симонович
  • Калацкий Николай Иванович
RU2251483C2

Реферат патента 2018 года СПОСОБ ПЕРЕРАБОТКИ ОТХОДОВ ИЗ РЕЗИНОТЕХНИЧЕСКИХ И ПОЛИМЕРНЫХ МАТЕРИАЛОВ

Изобретение относится к технологии переработки отходов из резинотехнических и полимерных материалов. Техническим результатом является оптимизация процесса переработки отходов из резинотехнических и полимерных материалов, исключающая перерасход энергоресурсов и обеспечивающая полную переработку отходов. Способ переработки отходов включает загрузку отходов в реактор, нагрев реактора до температуры деструкции отходов, пиролиз отходов в свинецсодержащем металлическом расплаве с отводом газообразных продуктов переработки и их конденсацией с разделением на несколько фракций и последующую выгрузку твердых продуктов переработки. Способ осуществляют с учетом соотношения масс загружаемых отходов и свинецсодержащего металлического расплава, удельных теплоемкостей перерабатываемых отходов и свинецсодержащего металлического расплава, температур переработки отходов и загружаемых отходов, минимальной температуры свинецсодержащего металлического расплава. Переработку производят в течение времени с учетом массы загружаемых отходов, удельной теплоемкости перерабатываемых отходов, температур переработки отходов и загружаемых отходов, коэффициента теплопередачи, площади теплообмена и минимальной температуры свинецсодержащего металлического расплава. 2 з.п. ф-лы.

Формула изобретения RU 2 672 295 C1

1. Способ переработки отходов из резинотехнических и полимерных материалов, включающий загрузку отходов в реактор, нагрев реактора до температуры деструкции отходов, пиролиз отходов с отводом газообразных продуктов переработки и их конденсацией с разделением на несколько фракций и последующую выгрузку твердых продуктов переработки, отличающийся тем, что пиролиз проводят в свинецсодержащем металлическом расплаве при условии

где

М1 - масса загружаемых отходов, кг;

Ср1 - удельная теплоемкость перерабатываемых отходов, Дж/(кг⋅°С);

t - температура переработки отходов, °С;

t1 - температура загружаемых отходов, °С;

М2 - масса свинецсодержащего металлического расплава, кг;

Ср2 - удельная теплоемкость свинецсодержащего металлического расплава, Дж/(кг⋅°С).

t2 - минимальная температура свинецсодержащего металлического расплава, °С, а переработку проводят в течение времени, равного

где

М1 - масса загружаемых отходов, кг;

Ср1 - удельная теплоемкость перерабатываемых отходов, Дж/(кг⋅°С);

t - температура переработки отходов, °С;

t1 - температура загружаемых отходов, °С;

k - коэффициент теплопередачи, Вт/(м2оС);

F - площадь теплообмена, м2;

t2 - минимальная температура свинецсодержащего металлического расплава, °С.

2. Способ по п. 1, отличающийся тем, что конденсацию газообразных продуктов переработки осуществляют с разделением получаемых жидких продуктов в последовательно установленных баках-конденсаторах, в каждом из которых поддерживается температурный режим, равный температуре конденсации соответствующих газообразных продуктов пиролиза.

3. Способ по п. 2, отличающийся тем, что значения температур конденсации соответствующих газообразных продуктов пиролиза, поддерживаемой в каждом баке-конденсаторе, уменьшают по направлению отвода газовой фазы из реактора от одного бака-конденсатора к другому.

Документы, цитированные в отчете о поиске Патент 2018 года RU2672295C1

СПОСОБ ПЕРЕРАБОТКИ ПОЛИМЕРНЫХ СОСТАВЛЯЮЩИХ ИЗНОШЕННЫХ АВТОМОБИЛЬНЫХ ШИН 2009
  • Луговой Юрий Владимирович
  • Алферов Вячеслав Валерьевич
  • Косивцов Юрий Юрьевич
  • Сульман Эсфирь Михайловна
  • Сульман Михаил Геннадьевич
RU2402591C1
0
SU159025A1
СПОСОБ ПЕРЕРАБОТКИ ИЗНОШЕННЫХ ШИН И/ИЛИ РЕЗИНОТЕХНИЧЕСКИХ ИЗДЕЛИЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2008
  • Коновалов Николай Петрович
  • Яцун Андрей Владимирович
  • Коновалов Петр Николаевич
RU2361731C1
СПОСОБ ПЕРЕРАБОТКИ ОТХОДОВ ТЕРМОПЛАСТОВ И УСТАНОВКА ДЛЯ ЕГО РЕАЛИЗАЦИИ 2010
  • Шаповалов Юрий Николаевич
  • Ульянов Андрей Николаевич
  • Андреев Владимир Александрович
  • Саликов Павел Юрьевич
  • Скляднев Евгений Владимирович
  • Луговая Галина Анатольевна
RU2459843C1
СПОСОБ ТЕРМИЧЕСКОЙ ПЕРЕРАБОТКИ ИЗНОШЕННЫХ ШИН 1997
  • Антоненко В.Ф.
  • Анищенко С.А.
  • Бевз А.С.
  • Попов В.Т.
  • Крючков В.А.
RU2139187C1
СПОСОБ ПОЛУЧЕНИЯ МЕТИЛФОСФИТА АЛЮМИНИЯ 1998
  • Бондаренко С.Н.
  • Желтобрюхов В.Ф.
  • Лябин М.П.
  • Москвичев С.М.
  • Тужиков О.И.
RU2152949C1

RU 2 672 295 C1

Авторы

Ульянов Владимир Владимирович

Гулевский Валерий Алексеевич

Кошелев Михаил Михайлович

Харчук Сергей Евгеньевич

Мельников Валерий Петрович

Даты

2018-11-13Публикация

2017-12-28Подача