Способ нанесения покрытия из антифрикционного твердого сплава методом взрывного прессования Российский патент 2018 года по МПК B22F3/08 B23K20/08 

Описание патента на изобретение RU2673594C1

Изобретение относится к области нанесения покрытий с применением взрывного прессования смесей порошков карбида кремния с титаном и может быть использовано при изготовлении заготовок многослойных композиционных деталей узлов торцевых механических уплотнителей для использования во вращающемся оборудовании, для обеспечения герметизации вала, передающего механическую энергию к рабочему органу механизма, типа насосов, компрессоров, химических реакторов и т.д.

Известен способ получение твердых сплавов с использованием прослойки (Харламов В.О., Крохалев А.В., Кузьмин С.В., Лысак В.И., Рогозин В.Д. / Известия Волгоградского государственного технического университета, 2012, №14, с. 110-119) в качестве которой, использовался титановый порошок толщиной 1 мм между стальным основанием и порошковой смесью (78 мас. % Cr3C2 и 22 мас. % Ti), при этом общая насыпная толщина порошка составляет 7 мм.

Недостатком данных способов получения покрытия является низкая прочность соединения (70-75 МПа) между порошковым твердым сплавом карбида хрома с титаном (78 мас. % Cr3C2 и 22 мас. % Ti) и слоя титанового порошка из-за высокого уровня термических напряжений и не равномерного распределения.

Наиболее близким по техническому уровню и полученному результату является известный способ нанесения покрытия (RU 2619550 C1, B23K 20/08, опубл. 16.05.2017 Бюл. №14), при котором осуществляют нанесение покрытия из порошкового материала на поверхность детали путем инициирования заряда взрывчатого вещества, отличающийся тем, что, с целью повышения прочности соединения при нанесении покрытий, в промежуточный слой вводится идентичный порошковый материал с большим содержанием металлической связки.

Недостатком данного способа является невысокая прочность соединения (135…150 МПа) между порошковым твердым сплавом карбида хрома с титаном (78 мас. % Cr3C2 и 22 мас. % Ti), и слоем титанового порошка (титан 100 мас. %) из-за высокого уровня остаточных термических напряжений, возникающих при совместном охлаждении слоев спрессованных взрывом порошковых материалов, имеющих значительную разницу коэффициентов линейного расширения.

В связи с этим актуальной задачей является разработка нового способа нанесения покрытия из антифрикционного твердого сплава взрывным прессованием смесей порошков карбида хрома с титаном, позволяющего изготавливать высококачественные многослойные композиционные детали узлов торцевых механических уплотнителей, обеспечивая высокую прочность.

Технический результат, который обеспечивается при осуществлении изобретения, - увеличение прочности соединения покрытия с металлической подложкой.

Поставленный технический результат достигается тем, что в предлагаемом способе нанесения покрытия из антифрикционного твердого сплава на металлическую подложку, включающий последовательное нанесение на поверхность металлической подложки порошковых материалов, состоящих из слоя титанового порошка и смеси порошков карбида хрома с титаном Cr3C2 и Ti, и взрывное прессование смесей порошков, между слоем из титанового порошка и слоем из смеси порошков карбида хрома Cr3C2 и Ti размещают промежуточный слой из смеси порошков карбида кремния с титаном в соотношении 38..42 мас. % SiC и 58..62 мас. % Ti, при этом слой из смеси порошков карбида кремния и титана составляет 2,5-3,5 мм.

В отличие от прототипа, благодаря введению промежуточного слоя из смеси порошков карбида кремния с титаном в соотношении 38..42 мас. % SiC и 58..62 мас. % Ti имеющего значение коэффициента линейного расширения 6,3×10°С-1, достигается состояние при котором происходит значительное изменение коэффициента линейного расширения от 8,5×10°С-1 у слоя из титанового порошка до 7,8×10°С-1 у слоя из антифрикционного твердого сплава карбида хрома с титаном в соотношении 78 мас. % Cr3C2 и 22 мас. % Ti, что увеличивает торможение усадки верхнего и нижнего порошковых слоев, приводящее к увеличению прочности соединения покрытия со стальным основанием, а так же введение промежуточного слоя из смеси порошков карбида кремния с титаном в соотношении 38..42 мас. % SiC и 58..62 мас. % Ti снижает упругое последействие из-за более низкого модуля упругости, что приводит к уменьшению внутренних напряжений в слое смеси порошков карбида хрома с титаном в соотношении 78 мас. % Cr3C2 и 22 мас. % Ti и в слое титанового порошка.

Вводя промежуточный слой из смеси порошков карбида кремния с титаном в соотношении больше 42 мас. % SiC и соответственно менее 58 мас. % Ti уменьшается коэффициент линейного расширения менее 6,3×10°С-1, что приводит к увеличению напряжений между слоем из карбида хрома с титановой связкой. Уменьшая содержания в смеси порошков карбида кремния SiC менее 38 мас. % и соответственно увеличение содержания титанового порошка более 62 мас. % Ti увеличивает коэффициент линейного расширения выше 6,3×10°С-1, что приводит к снижению способности материала к релаксации термических напряжений.

Введение промежуточного слоя с высоким коэффициентом температурного расширения из смеси порошков карбида кремния с титаном в соотношении 38..42 мас. % SiC и 58..62 мас. % Ti толщиной 2,5-3,5 мм обеспечивает высокое сцепление из-за снижения температурного расширения смеси порошков карбида хрома с титаном в соотношении 78 мас. % Cr3C2 и 22 мас. % Ti и титаном.

Увеличение толщины слоя из смеси порошков карбида кремния с титаном в соотношении 38..42 мас. % SiC и 58..62 мас. % Ti свыше 3,5 мм, приводит к недостаточному разогреву всего покрытия из-за высокой теплопроводности, что приводит к недостаточной спресованности порошковых смесей и как следствие низкой прочности соединения покрытий (таблица 1). Кроме того, увеличение толщины промежуточного слоя свыше значения, равного 3,5 мм, приведет к снижению толщины слоя из смеси порошков карбида кремния и титана в соотношении 78 мас. % Cr3C2 и 22 мас. % Ti, а следовательно, и к снижению толщины рабочего слоя из антифрикционного твердого сплава после взрывного прессования, что негативно скажется на ресурсе работы узла трения.

Уменьшение торщины промежуточного слоя менее 2,5 мм так же приводит к негативным последствиям в виде снижения прочности соединения покрытия вследствие не возможности перераспределения и релаксации термических напряжений.

Опытные данные по влиянию толщины слоя получены на средних значениях из смеси порошков карбида кремния с титаном в соотношении 40 мас. % SiC и 60 мас. % Ti на прочность соединения покрытия приведены в таблице 1.

Сущность изобретения поясняется чертежами, где на фиг. 1 изображена схема нанесения покрытия из порошкового твердого сплава взрывным прессованием нормально падающей детонационной волной, на фиг. 2 - микроструктура и распределение полученного твердого сплава.

Предлагаемый способ нанесения покрытия осуществляется в следующей последовательности (фиг. 1). Во взрывной камере (или на полигоне) на сформированную подушку 1 из утрамбованного влажного песка устанавливают металлическую подложку 2 (заготовку узла трения). На поверхность подложки устанавливают картонный контейнер высотой h=7 мм, внутрь которого методом свободной засыпки наносят слой из титанового порошка 3, толщиной h1=1 мм. Далее наносят промежуточную прослойку из смеси порошков карбида кремния с титаном в соотношении 38..42 мас. % SiC и 58..62 мас. % Ti 4 толщиной h2=2,5-3,5 мм. Затем наносят слой из смеси порошков карбида хрома и титана в соотношении 78 мас. % Cr3C2 и 22 мас. % Ti толщиной h3 5. Далее на порошковый материал устанавливают металлическую пластину 6 с контейнером для ВВ 7 и отрезками детонирующего шнура 8 равной длины связанных с электродетонатором 9. Затем монтируют электрическую цепь, подключая ее к взрывной машинке. После инициирования заряда ВВ нормально падающая детонационная волна со скоростью D=4200 м/с, воздействуя через промежуточную пластину на порошок, вызывает появление в нем ударной волны, двигающейся по направлению к основанию, которая уплотняет порошковый материал до практически беспористого состояния (остаточная пористость не более 1%) и создает условия, оптимальные (максимальное давление прессования 13-15 ГПа; температура разогрева порошковой смеси до Т=0,4 Тпл, где Тпл - температура плавления карбида, К) для соединения компонентов между собой и со стальной заготовкой.

Пример №1

Предлагаемый способ нанесения покрытия из антифрикционного твердого сплава на металлическую подложку взрывным прессованием смесей порошков карбида кремни с титаном и карбида вольфрама с титаном опробовали при изготовлении образцов уплотнителей из антифрикционного покрытия. Способ осуществляли на полигоне согласно схеме, приведенной на фиг. 1. На поверхность металлической подложки, после зачистки от окислов и удаления жировых загрязнений устанавливали картонный контейнер высотой 7 мм, в который последовательно насыпали слои порошкового материала. Использовали порошок чистого карбида кремния SiC (ГОСТ Р 52381-2005), дисперсность 6-10 мкм, порошок титана ПТОМ-1 (ТУ 14-22-57-92), дисперсность 10-15 мкм, порошок чистого карбида хрома Cr3C2 КХНП-1 (ТУ 14-22-28-90) дисперсность 3-10 мкм и порошок титана ПТС (ТУ 14-22-57-92) дисперсность 50-150 мкм Исходные порошки подвергали просеву через сито, а затем смешивали в необходимых для получения заданного состава смеси пропорциях. С целью достижения однородности порошковой смеси применяли сухое перемешивание без размольных тел в барабанном смесителе типа «пьяная бочка». Насыпную плотность порошковых смесей (таблица 2) определяли экспериментально путем взвешивания мерной чашки известного объема.

Сначала на поверхность подложки путем свободной засыпки наносили слой, состоящий из титанового порошка толщиной h1=1,0 мм, далее промежуточный слой из смеси порошков порошков карбида кремния с титаном в соотношении 40 мас. % SiC и 60 мас. % Ti толщиной h2=3 мм. Затем наносили смесь порошков карбида кремния и титана в соотношении 78 мас. % Cr3C2 и 22 мас. % Ti, толщиной h3=3 мм. Далее на порошковый материал устанавливали металлическую пластину из Ст. 3 толщиной 0,75 мм с контейнером для ВВ (аммонит 6 ЖВ ГОСТ 21984-76). В контейнер с ВВ устанавливали отрезки детонирующего шнура равной длины (300 мм), которые свободным концом связывали с электродетонатором. После взрывного прессования нормально падающей детонационной волной получили заготовку для торцевого уплотнителя насосов ЦНС с покрытием из антифрикционного твердого слава из смеси порошков карбида кремния и титана в соотношении 78 мас. % Cr3C2 и 22 мас. % Ti. Как видно из фиг. 2, получившееся покрытие имеет равномерное распределение частиц карбида хрома Cr3C2 в титановой матрице с остаточной пористостью около 1%, а так же равномерное распределение частиц карбида кремния SiC в титановой матрице с остаточной пористостью около 1% которое не отслаивается при последующей токарной обработке и испытаниях в условиях эксплуатации. После вырезки образцов для механических испытаний прочность соединения покрытия составила 190 МПа, что выше, чем у прототипа.

Пример №2

Способ получения покрытия совпадает с примером №1, но в качестве промежуточной прослойки взята смесь порошков карбида кремния с титаном в соотношении 38 мас. % SiC и 62 мас. % Ti толщиной 3 мм. После вырезки образцов для механических испытаний получили прочность соединения покрытия на срез 185 МПа. Данный показатель прочности значительно выше показателей прочности прототипа, и попадает в диапазон значений полученных при изменении насыпной толщины слоя 2,5-3,5 мм.

Пример №3

Способ получения покрытия совпадает с примером №1, но в качестве промежуточной прослойки взята смесь порошков карбида кремния с титаном в соотношении 42 мас. % SiC и 58 мас. % Ti толщиной 3 мм. После вырезки образцов для механических испытаний получили прочность соединения покрытия 185 МПа. Данный показатель прочности значительно выше показателей прочности прототипа, и попадает в диапазон значений полученных при изменении насыпной толщины слоя 2,5-3,5 мм.

При использовании в качестве промежуточной прослойки смесь порошков карбида кремния в соотношении менее 38 мас. % SiC и соответственно более 62 мас. % Ti или больше 42 мас. % SiC и соответственно менее 58 мас. % Ti толщиной 3 мм, получаем прочность соединения покрытия в пределах 140-150 МПа.

Таким образом, приведенный способ позволяет получить высокую прочность соединения покрытия со стальным основанием при использовании карбида кремния с титаном является 38..42 мас. % SiC и 58..62 мас. % Ti и толщина слоя h2=2,5-3,5 мм.

Похожие патенты RU2673594C1

название год авторы номер документа
СПОСОБ НАНЕСЕНИЯ ПОКРЫТИЯ ИЗ АНТИФРИКЦИОННОГО ТВЕРДОГО СПЛАВА 2016
  • Харламов Валентин Олегович
  • Крохалев Александр Васильевич
  • Кузьмин Сергей Викторович
  • Лысак Владимир Ильич
  • Тупицин Михаил Андреевич
RU2619550C1
ПОДЛОЖКА ДЛЯ ХИМИЧЕСКОГО ОСАЖДЕНИЯ ИЗ ПАРОВОЙ ФАЗЫ (CVD) АЛМАЗА И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2010
  • Левашов, Евгений А.
  • Азарова, Екатерина В.
  • Ральченко, Виктор Г.
  • Большаков, Андрей
  • Ашкинази, Евгений Э.
  • Исидзука, Хироси
  • Хосоми, Сатору
RU2577638C2
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННЫХ ПОКРЫТИЙ ИЗ ПОРОШКОВЫХ МАТЕРИАЛОВ 2013
  • Григорьев Сергей Николаевич
  • Тарасова Татьяна Васильевна
  • Попова Екатерина Вячеславовна
  • Смуров Игорь Юрьевич
RU2542199C1
Способ нанесения износостойкого покрытия на детали газотурбинной установки 2023
  • Дорофеев Антон Сергеевич
  • Тарасов Дмитрий Сергеевич
  • Фокин Николай Иванович
  • Ивановский Александр Александрович
  • Гуляев Игорь Павлович
  • Ковалев Олег Борисович
  • Кузьмин Виктор Иванович
  • Сергачев Дмитрий Викторович
RU2813538C1
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКОВОЙ КОМПОЗИЦИИ НА ОСНОВЕ КАРБОСИЛИЦИДА ТИТАНА 2010
  • Анциферов Владимир Никитович
  • Новиков Роман Сергеевич
  • Каченюк Максим Николаевич
RU2460706C2
Способ аддитивного производства изделий из титановых сплавов с функционально-градиентной структурой 2018
  • Колубаев Евгений Александрович
  • Псахье Сергей Григорьевич
  • Рубцов Валерий Евгеньевич
  • Фортуна Сергей Валерьевич
  • Калашников Кирилл Николаевич
  • Калашникова Татьяна Александровна
  • Хорошко Екатерина Сергеевна
  • Савченко Николай Леонидович
  • Иванов Алексей Николаевич
RU2700439C1
СПОСОБ НАНЕСЕНИЯ ЗАЩИТНОГО ПОКРЫТИЯ НА ИЗДЕЛИЯ ИЗ СТАЛИ ИЛИ ТИТАНА 2011
  • Рачковский Анатолий Иванович
  • Сморчков Георгий Юрьевич
  • Вичканский Игорь Евгеньевич
  • Филиппов Руслан Константинович
RU2492281C2
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО МАТЕРИАЛА НА ОСНОВЕ КАРБИДА ТИТАНА 1996
  • Мержанов А.Г.
  • Боровинская И.П.
  • Закоржевский В.В.
  • Махонин Н.С.
RU2095193C1
СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНЫХ КОМПОЗИТНЫХ ПОКРЫТИЙ 2015
  • Русинов Петр Олегович
  • Бледнова Жесфина Михайловна
RU2605717C1
СПОСОБ ПОЛУЧЕНИЯ КОЛЬЦА СКОЛЬЖЕНИЯ ТОРЦЕВОГО УПЛОТНЕНИЯ 2016
  • Каченюк Максим Николаевич
  • Оглезнева Светлана Аркадьевна
  • Сомов Олег Васильевич
RU2639437C1

Иллюстрации к изобретению RU 2 673 594 C1

Реферат патента 2018 года Способ нанесения покрытия из антифрикционного твердого сплава методом взрывного прессования

Изобретение может быть использовано для изготовления взрывным прессованием композиционных многослойных деталей. На поверхности металлической подложки размещают титановый порошок. Затем формируют промежуточный слой из смеси порошков карбида хрома с титаном в соотношении 78 мас. % Cr3C2 и 22 мас. % Ti , после чего наносят смесь порошков карбида кремния с титаном в соотношении 38-42 мас. % SiC и 58-62 мас. % Ti. Толщина промежуточного слоя равна 2,5-3,5 мм. Инициируют заряд взрывчатого вещества, расположенный над порошковым материалом, отделенный от него металлической пластиной. Нормально падающая детонационная волна уплотняет порошковый материал до практически беспористого состояния и создает условия для соединения компонентов между собой и со стальной подложкой. Технический результат заключается в увеличении прочности соединения покрытия с металлической подложкой. 2 ил., 2 табл., 3 пр.

Формула изобретения RU 2 673 594 C1

Способ нанесения покрытия из антифрикционного твердого сплава на металлическую подложку, включающий последовательное нанесение на поверхность металлической подложки порошковых материалов, состоящих из слоя титанового порошка и смеси порошков карбида хрома с титаном в соотношении 78 мас. % Cr3C2 и 22 мас. % Ti, и взрывное прессование смесей порошков, отличающийся тем, что между слоем из титанового порошка и слоем из смеси порошков карбида хрома Cr3C2 и Ti размещают промежуточный слой из смеси порошков карбида кремния с титаном в соотношении 38…42 мас. % SiC и 58…62 мас. % Ti, при этом толщина слоя из смеси порошков карбида кремния и титана составляет 2,5-3,5 мм.

Документы, цитированные в отчете о поиске Патент 2018 года RU2673594C1

СПОСОБ НАНЕСЕНИЯ ПОКРЫТИЯ ИЗ АНТИФРИКЦИОННОГО ТВЕРДОГО СПЛАВА 2016
  • Харламов Валентин Олегович
  • Крохалев Александр Васильевич
  • Кузьмин Сергей Викторович
  • Лысак Владимир Ильич
  • Тупицин Михаил Андреевич
RU2619550C1
СПОСОБ ВЗРЫВНОГО ПРЕССОВАНИЯ ПОРОШКОВ 1993
  • Рахимов Артур Эдуардович
RU2037379C1
Способ получения покрытий из порошковых материалов 1991
  • Анциферов Владимир Никитович
  • Шмаков Александр Михайлович
  • Мазеин Сергей Александрович
SU1822386A3
Способ получения пористых покрытий из металлического порошка 1981
  • Кот Анатолий Андреевич
  • Кот Валерий Андреевич
  • Миронов Виктор Александрович
SU959925A1
CN 103966595 A, 06.08.2014.

RU 2 673 594 C1

Авторы

Тупицин Михаил Андреевич

Харламов Валентин Олегович

Крохалев Александр Васильевич

Кузьмин Сергей Викторович

Лысак Владимир Ильич

Даты

2018-11-28Публикация

2017-12-25Подача