Изобретение относится к биологии и медицине и предназначено для подавления функций или разрушения клеточных культур.
В медицине и биологии хорошо известны методы физического воздействия на клетку: действие магнитных полей, звуковых колебаний, лазерного и ионизирующих облучений и другие.
Особое место среди всех физических методов воздействия занимает воздействие электромагнитными полями, как постоянными, так и переменными.
Попытки непосредственного воздействия ифранизкочастотным электромагнитным полем (ЭМП) на опухолевые ткани начали осуществлять достаточно давно. Известен способ лечения злокачественных новообразований путем воздействия прерывистым синусоидальным ЭМП (амплитуда индукции составляла 40 мТл.) (А.с. №522688, А61 №1/42, Опубл. 05.03.77). По результатам исследований отмечалось размягчение тканей опухоли. Однако эффективность такого воздействия ниже по сравнению с используемыми лучевой терапией и химиотерапией.
Наиболее близким решением является способ подавления функций и разрушения клеток злокачественных опухолей (патент РФ №2376043, МПК A61N 2/04, опубл. 20.12.2009), включающий облучение опухоли электромагнитным полем перед операцией удаления, при том, что облучение злокачественной опухоли проводят регулируемым локальным знакопеременным инфранизкочастотным импульсным электромагнитным полем (ЗИИ ЭМП) при индукции магнитного поля В=(120÷220) мТл, при времени релаксации переднего фронта импульса 0,01 с, продолжительности электромагнитного импульса tимп=0,75 с и паузы tпауз=0,5 с, с общим временем облучения 30 мин в течение 30 дней, при этом хирургическую операцию по удалению злокачественной опухоли проводят на 3-5 день после окончания курса облучения ЗИИ ЭМП.
Недостатком, заявленного технического решения является то, что данные по энергетическому и временному воздействиям весьма ограничены, хотя и имеют положительный эффект, но требуют довольно длительного (по времени) воздействия, что может вызвать и нежелательный побочный эффект.
Задачей предлагаемого технического решения является разработка способа импульсного электромагнитного воздействия на биологическую клетку с параметрами, существенно отличающимися от используемых в настоящее время.
Техническим результатом является повышение интенсивности подавления функций и последующее разрушение клеточных культур путем локального воздействия импульсного электромагнитного поля.
Технический результат достигается за счет того, что согласно способу клеточную культуру облучают импульсным электромагнитным полем при индукции магнитного поля В=(0,35÷4) Тл, частоте f=(10÷70) кГц, числом импульсов n=(3÷9) и скважностью t=(1÷3) с.
Реализация способа представлена следующими чертежами.
На фиг. 1 представлена схема физических процессов в биотканях при воздействии на них импульсным магнитным полем (ИМП);
на фиг. 2 изображена схема эксперимента воздействия ИМП на клетки.
Устройство для импульсного электромагнитного воздействия на биологическую клетку содержит индуктор 1 (токопровод), соединенный с магнитной импульсной установкой (МИУ).
Магнитное поле 2 с определенной напряженностью Н воздействует на биоткань 3. Наведенный в ткани импульсный ток 4 ослабевает на глубине Δ в "е" (2,7) раз.
Предлагается, использовать такой процесс магнитно-импульсной обработки, где параметры воздействия на биологическую клетку существенно отличаются от используемых в настоящее время в медицине (см. таблицу 1).
Учитывая, что биологическая клетка электропроводна, то этот факт предполагает влияние таких факторов как:
- наведение в клетке вихревых токов, как источник внутреннего дополнительного тепла (порождает тепловой эффект при воздействии на клетку, возникновение дополнительных потоков протоплазмы);
- силовое воздействие, возникающие электродинамические силы, которые могут привести к разрушению целостности мембраны;
- магнитное поле приводит к переориентированию зараженных частиц ионов клетки и изменению их функций.
Приведен пример эксперимента по оценке влияния параметров воздействия ИМП высокой напряженности на изменение физиологических параметров культуры мезенхимально-стромальных клеток человека (МСКч) in vitro 5, полученной из пупочного канатика новорожденного ребенка. Клетки в экспоненциальной фазе роста были рассажены на чашки Петри 6 приблизительно 39⋅105 на чашку. При этом использовалась ростовая среда α-MEM (Пан-Эко, Россия) с содержанием 10% фетальной бычьей сыворотки (HyClone, USA) и 2-х мл глутамина (Пан-Эко, Россия). Культивирование клеток проводили в условиях CO2 инкубатора при Т=37°C с содержанием углекислоты 5% и относительной влажности 85%.
На вторые сутки роста образцы культур МСКч подвергли воздействию ИМП. Далее, используя метод визуализации в проходящем свете (CarlZeiss, Observer, и системы фото-видеодокументации AxioVision, Германия), оценивали плотность культуры в 3-х полях зрения и морфологию клеток относительно необлученного контроля. Оценку проводили до воздействия ИМП, сразу после воздействия ИМП и далее каждые 24 часа роста, до достижения одним из образцов 100% плотности. Через 7 суток при достижении одним из образцов 100% плотности (образование монослоя) клетки дезагрегировали с пластика раствором 0,025% трипсина в буфере Версена с последующей отмывкой в буфере ПБС.Далее осуществляли оценку общего кол-ва клеток в образце, а так же жизнеспособности культуры (%) на автоматическом анализаторе ViCellXR (BecmanCoulter, USA).
Параметры МИУ представлены в таблице 2.
W - энергоемкость МИУ; U - напряжение заряда накопителя энергии МИУ; С - емкость МИУ; L0 - собственная индуктивность; ƒ0 - собственная частота.
Индукция магнитного поля для одновиткового индуктора достигает 1 Тл при W=250 Дж. При той же энергии индукция поля многовитковой катушки достигает 0,35 Тл.
Варьируемые в эксперименте параметры: энергия воздействия W=250, 500 и 1000 Дж, что обеспечивает соответствующее изменение напряженности магнитного поля Н=H(W). Использование двух индукторов с различным числом витков обеспечило два конечных значения диапазона частоты облучения f1=70 кГц и f2=10 кГц. Кроме того, на исследуемые культуры воздействовали сериями с разными количествами импульсов n=3, 5, 9.
Таким образом при индукции магнитного поля В=(0,35÷4) Тл, частоте f=(10÷70) кГц, числом импульсов n=(3÷9) и скважностью t=(1÷3) с. можно добиться повышения интенсивности подавления функций и последующее разрушение клеточных культур.
По результатам эксперимента было установлено, что непосредственно (спустя 1 час) после обработки клеточной культуры ИМП количество живых клеток резко уменьшилось (например, для некоторых режимов обработки с 90% до 20%). А спустя некоторое время количество нормальных клеток увеличивается (за счет регенеративного потенциала культуры), но не полностью. Так, через 5 суток количество морфологически корректных клеток в популяции может восстановиться до 80-85% по отношению к общему количеству клеток в поле зрения.
Оценка результатов экспериментов позволила определить влияние параметров магнитно-импульсного воздействия на морфологию и скорость деления клеток в образцах. Скорость восстановления жизнеспособности клеток на различных временных интервалах различна. Повышение жизнеспособности можно объяснить как размножением оставшихся клеток, так и регенерацией поврежденных.
Установлено также, что на жизнеспособность влияют как энергия воздействия, так и количество импульсов и частота разрядного контура. После воздействия, спустя, например, 24 часа, для большей части клеток характерны неправильная форма, увеличение размера в проекции на плоскость и формирование стресс-волокон. Это говорит о том, что клетки находятся в стрессовом состоянии. Через 48 часов наблюдалось частичное восстановление морфологии клеток до нормы, иногда с несколько более крупными размерами. Их количество почти полностью восстанавливается, что говорит о возобновлении цикла деления клеток.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОДАВЛЕНИЯ ФУНКЦИЙ И РАЗРУШЕНИЯ КЛЕТОК ЗЛОКАЧЕСТВЕННЫХ ОПУХОЛЕЙ | 2008 |
|
RU2376043C1 |
СПОСОБ ЛЕЧЕНИЯ ЗЛОКАЧЕСТВЕННЫХ ОПУХОЛЕЙ У СОБАК | 2006 |
|
RU2348435C2 |
СПОСОБ ПОДАВЛЕНИЯ РОСТА КУЛЬТУРЫ КЛЕТОК ГЛИОБЛАСТОМЫ ЧЕЛОВЕКА - T98G В ЭКСПЕРИМЕНТЕ | 2019 |
|
RU2719646C1 |
НЕИНВАЗИВНЫЙ СПОСОБ ПОДАВЛЕНИЯ РОСТА ОПУХОЛЕВЫХ ТКАНЕЙ И ИХ ОМЕРТВЛЕНИЯ | 2016 |
|
RU2665621C2 |
СПОСОБ ЛОКАЛЬНОГО РАЗРУШЕНИЯ ОПУХОЛЕЙ С ПОМОЩЬЮ СВЧ-НАГРЕВА МАГНИТНЫХ НАНОЧАСТИЦ | 2008 |
|
RU2382659C1 |
СПОСОБ ЛЕЧЕНИЯ ЗЛОКАЧЕСТВЕННЫХ НОВООБРАЗОВАНИЙ С ПОМОЩЬЮ МАГНИТНОЙ ГИПЕРТЕРМИИ И КОМПОЗИЦИЯ ДЛЯ ПРИМЕНЕНИЯ В УКАЗАННОМ СПОСОБЕ | 2020 |
|
RU2792161C2 |
СПОСОБ ПОВЫШЕНИЯ РЕЗИСТЕНТНОСТИ ОРГАНИЗМА К ОПУХОЛЯМ | 1996 |
|
RU2071367C1 |
СПОСОБ УСИЛЕНИЯ ДЕЙСТВИЯ УЛЬТРАЗВУКА ПРИ ЛЕЧЕНИИ ГИПЕРТЕРМИЕЙ ОПУХОЛЕВЫХ ТКАНЕЙ ПУТЕМ ИСПОЛЬЗОВАНИЯ НАНОКЛАСТЕРОВ КРЕМНИЯ | 2010 |
|
RU2447915C1 |
Способ инициации гибели опухолевых клеток Хлорином-e, аскорбиновой кислотой и ВЧ- и СВЧ-энергией волнового излучения | 2018 |
|
RU2739252C2 |
Способ инициации гибели опухолевых клеток аскорбиновой кислотой и ВЧ и СВЧ энергией волнового излучения | 2018 |
|
RU2736356C2 |
Изобретение относится к медицине и может быть использовано для импульсного электромагнитного воздействия на клеточную культуру в медицинских и биологических целях. Действуют на клеточную культуру импульсным электромагнитным полем при индукции магнитного поля В=(0,35÷4) Тл, частоте f=(10÷70) кГц, числом импульсов n=(3÷9) и скважностью t=(1÷3) с. Способ обеспечивает повышение интенсивности подавления функций и последующее разрушение клеточных культур за счет локального воздействия импульсного электромагнитного поля. 2 ил., 2 табл.
Способ импульсного электромагнитного воздействия на клеточные культуры, заключающийся в облучении клеточной культуры электромагнитным полем, отличающийся тем, что на нее действуют импульсным электромагнитным полем при индукции магнитного поля В=(0,35÷4) Тл, частоте f=(10÷70) кГц, числом импульсов n=(3÷9) и скважностью t=(1÷3) с.
Caliskan S.G | |||
et al | |||
Разборный с внутренней печью кипятильник | 1922 |
|
SU9A1 |
// Asian | |||
Pac | |||
J | |||
Cancer Prev | |||
Устройство для закрепления лыж на раме мотоциклов и велосипедов взамен переднего колеса | 1924 |
|
SU2015A1 |
СПОСОБ ДИАГНОСТИКИ С ПОМОЩЬЮ УЛЬТРАЗВУКОВЫХ, ЗВУКОВЫХ И ЭЛЕКТРОМАГНИТНЫХ ВОЛН | 2007 |
|
RU2378989C2 |
Юсупов Р.Ю | |||
Универсальные и специальные магнитно-импульсные установки нового поколения | |||
// Вестник Самарского государственного аэрокосмического университета | |||
Изложница с суживающимся книзу сечением и с вертикально перемещающимся днищем | 1924 |
|
SU2012A1 |
Кипятильник для воды | 1921 |
|
SU5A1 |
Плуг с фрезерным барабаном для рыхления пласта | 1922 |
|
SU125A1 |
Золотухина Е.И | |||
и др | |||
Основы импульсной магнитотерапии | |||
Справочное пособие | |||
Минск; Витеб | |||
обл | |||
Станок для изготовления деревянных ниточных катушек из цилиндрических, снабженных осевым отверстием, заготовок | 1923 |
|
SU2008A1 |
Крутильная машина для веревок и проч. | 1922 |
|
SU143A1 |
Субботина Т.И | |||
и др | |||
Продуцирование и размножение стволовых клеток in vivo, стимулируемое воздействием на организм электромагнитного и магнитного полей | |||
// Вестник новых медицинских технологий [Электронный журнал] | |||
Многоступенчатая активно-реактивная турбина | 1924 |
|
SU2013A1 |
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Muramatsu Y | |||
et al | |||
Pulsed Electromagnetic Field Stimulation Promotes Anti-cell Proliferative Activity in Doxorubicin-treated Mouse Osteosarcoma Cells | |||
// In Vivo | |||
Автомобиль-сани, движущиеся на полозьях посредством устанавливающихся по высоте колес с шинами | 1924 |
|
SU2017A1 |
Авторы
Даты
2019-01-11—Публикация
2017-04-10—Подача