СПОСОБ ИЗГОТОВЛЕНИЯ ОБЪЕМНО АРМИРОВАННОГО КОМПОЗИЦИОННОГО МАТЕРИАЛА Российский патент 2019 года по МПК B29C70/24 B29C70/36 B29B11/16 

Описание патента на изобретение RU2678020C1

Изобретение относится к области получения композиционных материалов с низкой объемной плотностью, в частности углерод-полиэфирэфиркетоном (ПЭЭК) композитам на основе многомерно-армированного углеволокнистого каркаса и ПЭЭК матрицы. Такие композиционные материалы могут быть использованы в медицине, авиационной, аэрокосмической, автомобильной, военной, и других отраслях промышленности.

Известен способ [1] изготовления объемно армированного композиционного материала углерод-углерод марки 4КМС-Л на основе стержневого каркаса. Каркас материала 4КМС-Л представляет собой объемную четырехнаправленную структуру, собранную из углепластиковых стержней на основе углеродного волокна и поливинилового спирта в виде гексагональной трансверсально-изотропной укладки. В данном случае термин «изотропная» характеризует только осесимметричность структуры каркаса, в которой стержни каждого из трех трансверсальных направлений расположены под одинаковым друг к другу углом 120. Структура получила название 4D-л. Известны армирующие структуры 3D, 4D и другие (см. Пространственно-армированные композиционные материалы: Справочник / Ю.М. Тарнопольский, И.Г. Жигун, В.А. Поляков. - М.: Машиностроение, 1987, с. 20-21), отличающиеся пространственным расположением стержней.

Объемно армированный композиционный материал марки 4КМС-Л имеет матрицу из углеродного материала, получаемую дорогостоящими и длительными процессами насыщения, материал с углеродной матрицей обладает высокой стоимостью и низкой трещиностойкостью матрицы.

Известен способ получения углерод-углеродного композита, стойкого к окислению [2]. Сущность изобретения состоит в том, что изготавливают каркас путем набора стержней из углеродного волокна в пучок цилиндрической формы, армируют его углеродным волокном и осуществляют нагрев до 900-950°С прямым пропусканием электрического тока в среде природного газа с выдержкой при этой температуре не более 24 часов. Испытания стойкости полученного этим способом материала к окислению на воздухе при 1200°С показали значительное повышение жаростойкости изделия.

Углеродные стержни диаметром 2 мм получали из углеродного волокна УКН-5000 на стержневой машине. Связующим был выбран водный раствор поливинилового спирта (ПВС), соотношение ПВС:вода - 1:2; температура отверждения была равна 200°С, длина готовых стержней составляла 0,5 м. Из готовых углеродных стержней набирали пучки цилиндрической формы диаметром 6-12 мм и закрепляли липкой лентой. Полученную заготовку устанавливали в патрон намоточной машины и плотно обматывали углеродным волокном, которое также закрепляли липкой лентой.

Предлагаемая аналогом заготовка имеет явный недостаток - анизотропия свойств, а также материал дорогостоящий, трудоемкий и энергоемкий, его не рационально применять в конструкциях, не требующих высокой стойкости к окислению.

Наиболее близким к предлагаемому техническому решению является способ [3] изготовления объемно армированного композиционного материала (прототип), включающий изготовление армирующего каркаса путем набора стержней из углеродного волокна, помещение армирующего каркаса в форму, пропитку его под давлением термореактивной смолой с известными требованиями, а затем полимеризацию смолы, армирующий каркас выполнен трехмерным и составлен из стержней диаметром 0,8-0,9 мм, а пропитка термореактивной смолой осуществляется методом инфузии в три этапа: вакуумирование до подачи связующего от 20 до 30 мин, подача связующего под вакуумом от 30 до 40 мин со скоростью 0,35 л/мин, промежуточная выдержка под вакуумом от 20 до 40 мин.

Недостатком данного способа является отсутствие биосовместимости материала с телом человека, низкая теплостойкость термореактивной смолы и материала соответственно.

Предлагаемый способ по сравнению с известными позволяет в сравнительно простых технологических условиях (доступное оборудование, низкие температуры и давление, небольшая продолжительность процесса и другие) получать углепластиковый конструкционный материал с высокими удельными характеристиками и температурой эксплуатации до 250°С, имеющий биосовместимость с телом человека.

Техническим результатом является, обеспечение биосовместимости материала с телом человека, сохранение высоких удельных характеристик, повышение температуры эксплуатации до 250°С.

Технический результат достигается тем, что в способе изготовления объемно армированного композиционного материала, включающем изготовление многомерного армирующего каркаса путем набора стержней из углеродного волокна, помещение армирующего каркаса в форму, пропитку его под давлением связующим с формированием матрицы, используют стержни изготовленные из пропитанного полиэфирэфиркетоном (ПЭЭК) углеродного волокна, в качестве связующего используют ПЭЭК, а пропитку осуществляют ПЭЭК в следующей последовательности: разогрев до температуры плавления ПЭЭК и вакуумирование, промежуточная выдержка в вакууме, создание избыточного давления, промежуточная выдержка под давлением, охлаждение, снятие избыточного давления.

Армирующий каркас выполняют со структурой армирования 3D, 4D или 4D-л. Для изготовления армирующих каркасов могут быть применены стержни круглого сечения или заданной формы. При применении стержней заданной формы, для структуры армирования 3D используют стержни с прямоугольным сечением, для 4D - с сечением в виде шестигранника, для 4D-л - с сечением в виде шестигранника для стержней, устанавливаемых в осевом направлении и с прямоугольным сечением для стержней, устанавливаемых в трансверсальном направлении.

Матрица может быть сформирована путем размещения каркаса в форме, заполненной ПЭЭК или из ПЭЭК, содержащегося в стержнях.

Достижение биосовместимости материала с телом человека получают за счет применения биосовместимых компонентов углеродное волокно и ПЭЭК разрешенной марки, а также технологического процесса изготовления при котором не происходит изменение химического состава связующего. Сохранение высоких удельных характеристик, повышение температуры эксплуатации до 250°С достигается применением высокотемпературного термопластичного связующего - ПЭЭК и многомерной схемой армирования. Дополнительное повышение характеристик получают при увеличении наполнения материала волокном за счет применения стержней заданной формы (для 3D - прямоугольная, для 4D - шестигранная, для 4D-л - шестигранная в осевом, а в трансверсальном направлении прямоугольная).

Изготовление стержней выполняется пултрузией углеродного волокна через расплав ПЭЭК. ПЭЭК в реакторе доводят до температуры плавления. Через реактор пропускают углеродный жгут. На выходе из реактора устанавливают фильеру соответствующую сечению стержня. После фильеры стержень охлаждается. Движение с заданной скоростью обеспечивает тянущее устройство, которое контактирует с отвержденным стержнем и не повреждает его.

Сборку армирующего каркаса выполняют с применением оснастки, задающей пространственное расположение стержней в процессе сборки, и зависит от собираемой структуры 3D, 4D или 4D-л. Сборка может выполняться вручную или автоматизированным способом.

Пропитку собранного каркаса осуществляют ПЭЭК в следующей последовательности: помещение собранного каркаса в жесткую оснастку, заполнение камеры оснастки ПЭЭК для пропитки, разогрев до температуры плавления ПЭЭК и вакуумирование, промежуточная выдержка в вакууме, подача ПЭЭК, создание избыточного давления, промежуточная выдержка под давлением, охлаждение, снятие избыточного давления.

Описанным способом были изготовлены стержни круглого сечения диаметром 0,7 мм из углеродного волокна УКН-М-6К. Собрана армирующая структура 4D-л. Армирующий каркас помещали в форму, с формой разогревали до температуры плавления ПЭЭК 370°С и вакуумировали, скорость нагрева составляла, при достижении температуры 370°С выдержка 10 мин, создание избыточного давления 130 атм, охлаждение со скоростью 6°С под давлением до температуры 140°С, снятие избыточного давления.

Анализ полученного материала показал отсутствие деструкции ПЭЭК и изменение его химического состава, что показывает сохранение биосовместимости исходных компонентов.

Плотность образцов 1,3-1,31 г/см3, прочность на растяжение в осевом направлении до 450 МПа. Температура длительной эксплуатации до 250°С.

Источники информации

1. Композиционные материалы: справ / В.В. Васильев, В.Д. Протасов, В.В. Болотин и др.; под общ. ред. В.В. Васильева, Ю.М. Тарнопольского. - М.: Машиностроение, 1990. - 512 с.

2. Патент РФ 2090497, опубл. 20.09.1997 г., 3. 95101863 от 20.02.1995 г.

3. Патент РФ 2568725, опубл. 20.11.2015 г., 3. 2014124851 от 18.06.2014 г.

Похожие патенты RU2678020C1

название год авторы номер документа
Способ формирования 4D каркаса многомерно армированного углеродного композиционного материала и устройство для его осуществления 2020
  • Алтуфьев Александр Васильевич
  • Бухнаева Юлия Николаевна
RU2770083C1
Способ формирования 3D каркаса многомерно армированного углеродного композиционного материала и устройство для его осуществления 2019
  • Алтуфьев Александр Васильевич
  • Бухнаева Юлия Николаевна
RU2712607C1
СПОСОБ ИЗГОТОВЛЕНИЯ ОБЪЕМНО АРМИРОВАННОГО КОМПОЗИЦИОННОГО МАТЕРИАЛА 2017
  • Чесноков Алексей Викторович
  • Тимофеев Иван Анатольевич
RU2678021C1
УГЛЕРОД-КАРБИДОКРЕМНИЕВЫЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ НА ОСНОВЕ МНОГОНАПРАВЛЕННОГО АРМИРУЮЩЕГО СТЕРЖНЕВОГО КАРКАСА 2015
  • Колесников Сергей Анатольевич
  • Ярцев Дмитрий Владимирович
  • Меламед Анна Леонидовна
  • Бубненков Игорь Анатольевич
  • Кошелев Юрий Иванович
  • Проценко Анатолий Константинович
RU2626501C2
Сборочный кондуктор для изготовления каркасов многомерно армированных углерод-углеродных композиционных материалов 2021
  • Алтуфьев Александр Васильевич
  • Бухнаева Юлия Николаевна
RU2780176C1
КОМПОЗИЦИОННЫЙ МАТЕРИАЛ 2000
  • Щурик А.Г.
  • Лапин Е.В.
  • Удинцев П.Г.
  • Чунаев В.Ю.
RU2201894C2
СПОСОБ ИЗГОТОВЛЕНИЯ ОБЪЕМНО АРМИРОВАННОГО КОМПОЗИЦИОННОГО МАТЕРИАЛА 2014
  • Гареев Артур Радикович
  • Колесников Сергей Анатольевич
  • Пылаев Александр Евгеньевич
  • Алтуфьев Александр Васильевич
  • Глухов Сергей Николаевич
  • Малинкин Денис Александрович
RU2568725C1
КОМПОЗИЦИОННЫЙ МАТЕРИАЛ 2000
  • Щурик А.Г.
  • Лапин Е.В.
  • Удинцев П.Г.
  • Чунаев В.Ю.
RU2201893C2
Способ получения углерод-углеродного композиционного материала на основе многонаправленного армирующего каркаса из углеродного волокна 2022
  • Ярцев Дмитрий Владимирович
  • Максимова Дарья Сергеевна
RU2791456C1
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОД - УГЛЕРОДНОГО КОМПОЗИЦИОННОГО МАТЕРИАЛА 2013
  • Дегтярь Владимир Григорьевич
  • Максимов Василий Филиппович
  • Панов Юрий Петрович
  • Мятишкин Иван Александрович
  • Чернов Сергей Сергеевич
  • Савельев Виктор Никитич
RU2533135C2

Реферат патента 2019 года СПОСОБ ИЗГОТОВЛЕНИЯ ОБЪЕМНО АРМИРОВАННОГО КОМПОЗИЦИОННОГО МАТЕРИАЛА

Изобретение относится к способу изготовления объемно армированного композиционного материала. Техническим результатом является улучшение биосовместимости, сохранение высоких удельных характеристик, повышение температуры эксплуатации до 250°С, снижение длительности и энергоемкости изготовления изделий. Технический результат достигается способом изготовления объемно армированного композиционного материала, который включает изготовление многомерного армирующего каркаса путем набора стержней из углеродного волокна, помещение армирующего каркаса в форму, пропитку его под давлением связующим. При этом стержни изготавливают из углеродного волокна пропитанного полиэфирэфиркетоном. В качестве связующего применяется полиэфирэфиркетон. Собранный каркас помещают в форму, а пропитка осуществляется полиэфирэфиркетоном в следующей последовательности: разогрев до температуры плавления ПЭЭК и вакуумирование, промежуточная выдержка в вакууме, создание избыточного давления, промежуточная выдержка под давлением, охлаждение, снятие избыточного давления. 4 з.п. ф-лы.

Формула изобретения RU 2 678 020 C1

1. Способ изготовления объемно армированного композиционного материала, включающий изготовление многомерного армирующего каркаса путем набора стержней из углеродного волокна, помещение армирующего каркаса в форму, пропитку его под давлением связующим с формированием матрицы, отличающийся тем, что используют стержни, изготовленные из пропитанного полиэфирэфиркетоном (ПЭЭК) углеродного волокна, в качестве связующего применяют ПЭЭК, а пропитку осуществляют в следующей последовательности: разогрев до температуры плавления ПЭЭК и вакуумирование, промежуточная выдержка в вакууме, создание избыточного давления, промежуточная выдержка под давлением, охлаждение, снятие избыточного давления.

2. Способ по п. 1, отличающийся тем, что армирующий каркас изготавливают со структурой армирования 3D, 4D или 4D-л.

3. Способ по п. 2, отличающийся тем, что для изготовления армирующего каркаса со структурой армирования 3D используют стержни с прямоугольным сечением, для 4D - с сечением в виде шестигранника, для 4D-л - с сечением в виде шестигранника для стержней, устанавливаемых в осевом направлении и с прямоугольным сечением для стержней, устанавливаемых в трансверсальном направлении.

4. Способ по п. 1, отличающийся тем, что каркас размещают в форме, заполненной ПЭЭК.

5. Способ по п. 1, отличающийся тем, что матрицу формируют из ПЭЭК, содержащегося в стержнях.

Документы, цитированные в отчете о поиске Патент 2019 года RU2678020C1

СПОСОБ ИЗГОТОВЛЕНИЯ ОБЪЕМНО АРМИРОВАННОГО КОМПОЗИЦИОННОГО МАТЕРИАЛА 2014
  • Гареев Артур Радикович
  • Колесников Сергей Анатольевич
  • Пылаев Александр Евгеньевич
  • Алтуфьев Александр Васильевич
  • Глухов Сергей Николаевич
  • Малинкин Денис Александрович
RU2568725C1
СПОСОБ ИЗГОТОВЛЕНИЯ ПОРИСТОГО КАРКАСА-ОСНОВЫ КОМПОЗИЦИОННОГО МАТЕРИАЛА 2016
  • Богачев Евгений Акимович
  • Елаков Александр Борисович
  • Белоглазов Александр Павлович
  • Денисов Юрий Анатольевич
  • Тимофеев Анатолий Николаевич
RU2620810C1
СПОСОБ ИЗГОТОВЛЕНИЯ ДЕТАЛЕЙ ИЗ ПОЛИМЕРНЫХ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ 2014
  • Каблов Евгений Николаевич
  • Коган Дмитрий Ильич
  • Твёрдая Оксана Николаевна
  • Вешкин Евгений Алексеевич
RU2574269C1
WO 1992011126 A1, 09.07.1992
US 20100173143 A1, 08.07.2010.

RU 2 678 020 C1

Авторы

Чесноков Алексей Викторович

Тимофеев Иван Анатольевич

Старцев Вячеслав Александрович

Даты

2019-01-22Публикация

2017-09-11Подача