СПОСОБ ИЗГОТОВЛЕНИЯ ОБЪЕМНО АРМИРОВАННОГО КОМПОЗИЦИОННОГО МАТЕРИАЛА Российский патент 2019 года по МПК B29C70/24 

Описание патента на изобретение RU2678021C1

Изобретение относится к области получения композиционных материалов, в частности углерод-углеродным, углерод-керамическим, угле-пластиковым композиционным материалам на основе многомерно-армированного углеволокнистого каркаса и углеродной, керамической или полимерной матрицы. Такие композиционные материалы могут быть использованы в авиационной, аэрокосмической, автомобильной, военной, медицинской, и других отраслях промышленности.

Известен способ получения углерод-углеродного композита, стойкого к окислению [1]. Сущность изобретения состоит в том, что изготавливают каркас путем набора стержней из углеродного волокна в пучок цилиндрической формы, армируют его углеродным волокном и осуществляют нагрев до 900-950°С прямым пропусканием электрического тока в среде природного газа с выдержкой при этой температуре не более 24 часов.

Недостатком данного способа является получение дорогостоящего, трудоемкого и энергоемкого материала с анизотропией свойств, который не рационально применять в конструкциях, не требующих высокой стойкости к окислению.

Известен способ [2] изготовления объемно армированного композиционного материала, включающий изготовление армирующего каркаса путем набора стержней из углеродного волокна, помещение армирующего каркаса в форму, пропитку его под давлением термореактивной смолой с известными требованиями, а затем полимеризацию смолы.

Недостаток данного способа - ограничение по технологиям получения матрицы, а также получение дорогостоящего, трудоемкого и энергоемкого материала с ограниченным применением.

Наиболее близким к предлагаемому техническому решению является способ [3] изготовления объемно армированного композиционного материала углерод-углерод марки 4КМС-Л на основе стержневого каркаса (прототип). Каркас материала 4КМС-Л представляет собой объемную четырехнаправленную структуру, собранную из углепластиковых стержней на основе углеродного волокна и поливинилового спирта в виде гексагональной трансверсально-изотропной укладки. В данном случае термин «изотропная» характеризует только осесимметричность структуры каркаса, в которой стержни каждого из трех трансверсальных направлений расположены под одинаковым друг к другу углом 120. Структура получила название 4D-Л (см. Пространственно-армированные композиционные материалы: Справочник / Ю.М. Тарнопольский, И.Г. Жигун, В.А. Поляков - М: Машиностроение, 1987, с. 20-21).

Объемно армированный композиционный материал марки 4КМС-Л имеет длительный процесс сборки армирующего каркаса, обладает низкой трещиностойкостью матрицы и является дорогостоящим, трудоемким и энергоемким.

Предлагаемый способ по сравнению с известными позволяет в сравнительно простых технологических условиях (доступное оборудование, небольшая продолжительность процесса и другие) получать аналог материала 4КМС-Л сократив процесс изготовления и повысив свойства материала.

Техническим результатом является увеличение содержания армирующего волокна в материале, уменьшение пористости и повышение эксплуатационных характеристик материала.

Технический результат достигается тем, что в способе изготовления объемно армированного композиционного материала, включающем изготовление армирующего каркаса в виде четырехнаправленной пространственной структуры путем набора стержней на основе углеродного волокна и формирование матрицы, армирующий каркас изготавливают путем установки вертикальных стержней из пропитанного связующим углеродного волокна, на стержни нанизывают триаксиальную ткань, сотканную из углеродных волокон с образованием просветов с размером ячеек, равным размеру сечений стержней, при этом стержни устанавливают с шагом равным шагу просветов в триаксиальной ткани, а матрицу формируют из углеродного, керамического или полимерного материала.

Предлагаемое техническое решение поясняется графическими материалами,

где:

на фиг. 1 - Установленные вертикальные стержни

на фиг. 2 - Триаксиальная углеродная ткань

на фиг. 3 - Триаксиальная ткань надетая на круглые стержни

на фиг. 4 - Триаксиальная ткань надетая на шестигранные стержни

Степень наполнения материала волокном является основным показателем при определении свойств и эксплуатационных характеристик материала. Повышение степени наполнения материала волокном и равномерное распределение его в объеме материала повышает трещиностойкость материала.

Предельная степень наполнения волокном структуры 4Б-Л (прототип) - 0,589. Наполнение триаксиальной ткани углеродом 0,439 с образованием ячеек шестигранной формы. При нанизывании триаксиальной ткани на круглые стержни, расставленные в соответствии с шагом ячеек, удается повысить степень наполнения материала волокном до 0,605. Так как процесс нанизывания слоев ткани более производительный по сравнению со сборкой стержневых структур, снижается трудоемкость изготовления армирующих каркасов и материала в целом, повышаются эксплуатационные характеристики материала.

Стержни изготавливают методом пултрузии круглого сечения или шестигранной формы сечения из углеродного волокна пропитанного связующим. Диаметр стержня зависит от применяемого углеродного волокна и количества его сложений. Уменьшение диаметра применяемых стержней уменьшает зернистость структуры, но экспоненциально повышается трудоемкость изготовления армирующих каркасов.

Стержни вертикальные устанавливают в оснастку, которая задает их расположение (фиг. 1). Установка стержней может выполняться вручную или автоматизированным способом.

Триаксиальная ткань изготавливается переплетением углеродных волокон в трех направлениях под углом 120 градусов с образованием просветов в виде шестигранников (фиг. 2). Ширина жгутов формируется в процессе подачи материала в зону переплетения. Ширина жгутов должна быть равной половине диаметра стержня для образования ячеек, равных диаметру применяемых стержней. Изготовление триаксиальной ткани выполняется на автоматизированном оборудовании.

Триаксиальную ткань послойно автоматизированным методом одевают на вертикальные стержни. Приведен пример получаемой структуры в сечении плоскостью перпендикулярной вертикальным стержням при использовании стержней круглой формы (фиг. 3), и при использовании стержней шестигранной формы (фиг. 4).

Создание углеродной, керамической или полимерной матрицы производят по известным технологиям.

Для изготовления армирующего каркаса описанным способом была применена ткань триаксиальная базового полотняного переплетения из нити M46JB 223 ТЕХ. Количество нитей на 100 мм (плотность) - 35 шт. Соответственно, образованная ширина жгута 0,95 и образованная ячейка для стержней диаметром 1,9 мм. Поверхностная плотность - 253 г/м3. Толщина ткани 0,32 мм. Плотность армирующего каркаса при применении круглых стержней и указанной триаксиальной ткани 1090 кг/м3, степень наполнения материала волокном 0,605. Формирование матрицы из углеродного, керамического или полимерного материала выполняется по известным технологиям.

Источники информации

1. Патент РФ 2090497, оп. 20.09.1997 г. З. 95101863 от 20.02.1995 г.

2. Патент РФ 2568725, оп. 20.11.2015 г. З 2014124851 от 18.06.2014 г.

3. Композиционные материалы: справ. / В.В. Васильев, В.Д. Протасов, В.В. Болотин и др.; под общ. ред. В.В. Васильева, Ю.М. Тарнопольского. - М.: Машиностроение, 1990. - 512 с.

Похожие патенты RU2678021C1

название год авторы номер документа
ОБЪЁМНО-АРМИРОВАННЫЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2020
  • Гизатуллин Руслан Талгатович
  • Вараксин Андрей Сергеевич
  • Токарев Андрей Леонидович
  • Бердникова Наталья Ивановна
  • Бушуев Вячеслав Максимович
RU2778523C2
СПОСОБ ИЗГОТОВЛЕНИЯ ОБЪЕМНО АРМИРОВАННОГО КОМПОЗИЦИОННОГО МАТЕРИАЛА 2017
  • Чесноков Алексей Викторович
  • Тимофеев Иван Анатольевич
  • Старцев Вячеслав Александрович
RU2678020C1
АРМИРУЮЩИЙ КАРКАС УГЛЕРОД-УГЛЕРОДНОГО КОМПОЗИЦИОННОГО МАТЕРИАЛА 2011
  • Кречка Галина Алексеевна
  • Савельев Виктор Никитич
  • Клейменов Валерий Дмитриевич
RU2498962C2
Способ формирования 4D каркаса многомерно армированного углеродного композиционного материала и устройство для его осуществления 2020
  • Алтуфьев Александр Васильевич
  • Бухнаева Юлия Николаевна
RU2770083C1
КОМПОЗИЦИОННЫЙ МАТЕРИАЛ НА ОСНОВЕ КАРКАСА ОБЪЁМНОЙ СТРУКТУРЫ И ДИСПЕРСНО-УПРОЧНЁННОЙ НАНО- И/ИЛИ УЛЬТРАДИСПЕРСНЫМИ ЧАСТИЦАМИ ТУГОПЛАВКИХ СОЕДИНЕНИЙ УГЛЕРОДНОЙ ИЛИ УГЛЕРОД-КЕРАМИЧЕСКОЙ МАТРИЦЫ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2021
  • Гизатуллин Руслан Талгатович
  • Вараксин Андрей Сергеевич
  • Токарев Андрей Леонидович
  • Бердникова Наталья Ивановна
  • Бушуев Вячеслав Максимович
  • Бушуев Максим Вячеславович
RU2779626C1
Способ формирования 3D каркаса многомерно армированного углеродного композиционного материала и устройство для его осуществления 2019
  • Алтуфьев Александр Васильевич
  • Бухнаева Юлия Николаевна
RU2712607C1
УГЛЕРОДНЫЙ КОМПОЗИТНЫЙ РЕЗЬБОВОЙ СОЕДИНИТЕЛЬНЫЙ ЭЛЕМЕНТ НА БАЗЕ ЦЕЛЬНОТКАНОЙ 3D ПРЕФОРМЫ 2023
  • Лукьяненко Юрий Владимирович
  • Белинис Петр Георгиевич
  • Рогожников Вячеслав Николаевич
  • Цыкун Роман Георгиевич
RU2801427C1
КОМПОЗИЦИОННЫЙ МАТЕРИАЛ 2000
  • Щурик А.Г.
  • Лапин Е.В.
  • Удинцев П.Г.
  • Чунаев В.Ю.
RU2201894C2
УГЛЕРОД-КАРБИДОКРЕМНИЕВЫЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ НА ОСНОВЕ МНОГОНАПРАВЛЕННОГО АРМИРУЮЩЕГО СТЕРЖНЕВОГО КАРКАСА 2015
  • Колесников Сергей Анатольевич
  • Ярцев Дмитрий Владимирович
  • Меламед Анна Леонидовна
  • Бубненков Игорь Анатольевич
  • Кошелев Юрий Иванович
  • Проценко Анатолий Константинович
RU2626501C2
КОМПОЗИЦИОННЫЙ МАТЕРИАЛ 2000
  • Щурик А.Г.
  • Лапин Е.В.
  • Удинцев П.Г.
  • Чунаев В.Ю.
RU2201893C2

Иллюстрации к изобретению RU 2 678 021 C1

Реферат патента 2019 года СПОСОБ ИЗГОТОВЛЕНИЯ ОБЪЕМНО АРМИРОВАННОГО КОМПОЗИЦИОННОГО МАТЕРИАЛА

Изобретение относится к способу изготовления объемно армированного композиционного материала. Техническим результатом является повышение физико-механических свойств изделий и снижение трудоемкости их изготовления. Технический результат достигается способом изготовления объемно армированного композиционного материала, который включает изготовление армирующего каркаса в виде четырехнаправленной пространственной структуры из углеродных волокон и формирование матрицы. При этом армирующий каркас изготавливают путем установки вертикальных стержней, с шагом, равным шагу просветов в триаксеальной ткани. Стержни изготавливаются из углеродного волокна, пропитанного связующим. На стержни нанизывают триаксиальную ткань, сотканную из углеродных волокон, с образованием просветов с размером ячеек, равным сечению стержней. Матрицу формируют из углеродного, керамического или полимерного материала. 4 ил.

Формула изобретения RU 2 678 021 C1

Способ изготовления объемно армированного композиционного материала, включающий изготовление армирующего каркаса в виде четырехнаправленной пространственной структуры, собранной из стержней на основе углеродного волокна, и формирование матрицы, отличающийся тем, что армирующий каркас изготавливают путем установки вертикальных стержней из пропитанного связующим углеродного волокна и нанизывания на вертикальные стрежни триаксиальной ткани, сотканной из углеродных волокон с образованием просветов с размером ячейки, равным размеру сечения стержней, при этом стержни устанавливают с шагом, равным шагу просветов в триаксиальной ткани, а матрицу формируют из углеродного, керамического или полимерного материала.

Документы, цитированные в отчете о поиске Патент 2019 года RU2678021C1

US 4997501 A, 05.03.1991
СПОСОБ ИЗГОТОВЛЕНИЯ ТЯГИ ИЗ КОМПОЗИТНОГО МАТЕРИАЛА 2006
  • Дёнлави Патрик
RU2379185C1
US 4137354 A, 30.01.1979
СТРУКТУРА СЕРДЕЧНИКА И СПОСОБ ИЗГОТОВЛЕНИЯ СТРУКТУРЫ СЕРДЕЧНИКА 2007
  • Вебер Ханс-Юрген
  • Эндрес Грегор Кристиан
RU2447993C2
СПОСОБ АРМИРОВАНИЯ МАТЕРИАЛА ОСНОВЫ ДЛЯ КОМПОЗИТНЫХ КОНСТРУКЦИЙ 2006
  • Рот Маттиас Александер
RU2419543C2

RU 2 678 021 C1

Авторы

Чесноков Алексей Викторович

Тимофеев Иван Анатольевич

Даты

2019-01-22Публикация

2017-09-11Подача