СПОСОБ ПОЛУЧЕНИЯ МАКРОПОРИСТОГО ПОЛИМЕРНОГО КОМПОЗИЦИОННОГО МАТЕРИАЛА С МАГНИТНЫМИ НАНОЧАСТИЦАМИ ДЛЯ УСТРАНЕНИЯ РАЗЛИВОВ НЕФТЕПРОДУКТОВ С ПОВЕРХНОСТИ ВОДЫ Российский патент 2019 года по МПК C08J9/00 B82B3/00 C08F2/32 

Описание патента на изобретение RU2680044C1

Изобретение относится к области химии полимеров, а именно к получению макропористых полимерных композиционных материалов с магнитными частицами, и может быть использовано при устранении разливов нефтепродуктов с водной поверхности и почвы.

Известен полимерный микропористый сорбент, обладающий магнитными свойствами (патент № 2241537 RU), предназначенный для удаления нефти, масел, мазута, топлива с поверхности воды и почвы. Недостатком сорбента является малый размер пор, вследствие чего, он обладает низкой скоростью поглощения вязких жидкостей. Также, магнитные частицы в данном материале находятся в каналах пор, что снижает его пористость и уменьшает сорбционную емкость.

Известен материал (патент № 102675516 CN), представляющий собой макропористые полимерные сферы, содержащие гидрофобные частицы диоксида кремния и гидрофильные магнитные частицы. Недостатком материала является то, что гидрофильные магнитные частицы вводятся через водную фазу, вследствие чего осаждаются на внешней поверхности пористых сфер, что может привести к их смыванию при контакте с жидкостью.

Известен способ получения макропористого полимерного материала, содержащего предварительно поверхностно-модифицированные магнитные частицы (патент № 106749830 CN). Данный материал может быть использован для очистки воды от молекул лямбда-цигалотрина. Недостатком данного метода является необходимость предварительной поверхностной модификации магнитных частиц, а также необходимость использования вакуумной сушки, что усложняет процесс получения материала.

Наиболее близким к заявленному изобретению по технической сущности и достигаемому результату является полимерный макропористый материал (Zhang N., Zhong S., Zhou X., Jiang W., Wang T., Fu J. Superhydrophobic P (St-DVB) foam prepared by the high internal phase emulsion technique for oil spill recovery // Chemical Engineering Journal. 298. 2016. P. 117–124, прототип). Данный материал имеет открытые поры и обладает высокой сорбционной емкостью. Недостатком прототипа является то, что используемые магнитные частицы имеют размер более 300 нм, вследствие чего, частицы располагаются на внутренней поверхности пор, что может привести к их вымыванию в процессе поглощения органических загрязнителей.

Технической задачей предлагаемого изобретения является получение макропористого полимерного композиционного материал с магнитными наночастицами, расположенными внутри полимерной матрицы, что препятствует их вымыванию при поглощении жидкости.

Для решения поставленной задачи в качестве наполнителя для макропористого полимерного композиционного материала используются магнитные наночастицы маггемита (γ-Fe2O3) размером 10 – 100 нм.

Для синтеза макропористого полимерного композиционного материала с магнитными наночастицами 0,1 – 0,5 г наночастиц маггемита (γ-Fe2O3) смешивают с 0,1 – 0,3 мл сорбитанмоноолеата. К полученному золю добавляют 2 мл смеси стирола и дивинилбензола в объемном соотношении 9:1. При постоянном перемешивании на верхнеприводной мешалке со скоростью 1200 об/мин, с помощью перистальтического насоса добавляют 40 мл водного раствора персульфата аммония с концентрацией 1 – 6 мМ. Полученную эмульсию типа «вода в масле», содержащую ~ 95 об.% водной фазы, нагревают при 65°С в течение 3 часов, после чего твердый материал выдерживают в печи при той же температуре в течение 24 часов.

Микроизображение структуры материала со сканирующего электронного микроскопа приведено на фиг. 1 и показывает, что материал имеет макропористую структуру с открытыми порами. Микроизображение структуры материала с просвечивающего электронного микроскопа приведено на фиг. 2 и показывает, что магнитные наночастицы расположены внутри полимерной матрицы материала.

При использовании объемного соотношения стирола к дивинилбензолу менее 9:1 получаемый материал обладает низкими прочностными характеристиками. Увеличение соотношения выше 9:1 не оказывает значительного влияния на свойства материала.

Изменение концентрации раствора персульфата аммония в указанном диапазоне не оказывает значительного влияния на скорость полимеризации и свойства материала. При использовании концентрации меньше 1 мМ скорость полимеризации низкая, эмульсия частично расслаивается. Использование концентрации больше 6 мМ нецелесообразно, так как скорость полимеризации увеличивается незначительно.

Изменение объема сорбитанмоноолеата в заявленном диапазоне слабо влияет на устойчивость эмульсии и структуру получаемого материала. При использовании объема сорбитанмоноолеата меньше 0,1 мл эмульсия расслаивается. При использовании объема сорбитанмоноолеата больше 0,3 мл получаемый материал имеет участки с разрушенными стенками между пор.

Рассматриваемое изобретение иллюстрируется нижеприведенными примерами.

Пример 1

0,5 г наночастиц маггемита (γ-Fe2O3) смешивают с 0,3 мл сорбитанмоноолеата. К полученному золю добавляют 2 мл смеси стирола и дивинилбензола, в объемном соотношении 9:1. При постоянном перемешивании на верхнеприводной мешалке со скорость 1200 об/мин с помощью перистальтического насоса добавляют 40 мл водного раствора персульфата аммония с концентрацией 6 мМ. Полученную эмульсию типа «вода в масле», содержащую ~ 95 об.% водной фазы, нагревают при 65°С в течение 3 часов, после чего твердый материал выдерживают в печи при той же температуре в течение 24 часов. Получаемый материал имеет пористость не менее 95% и обладает сорбционной емкостью 20 г/г относительно трансмиссионного масла.

Пример 2

0,1 г наночастиц маггемита (γ-Fe2O3) смешивают с 0,1 мл сорбитанмоноолеата. К полученному золю добавляют 2 мл смеси стирола и дивинилбензола в объемном соотношении 9:1. При постоянном перемешивании на верхнеприводной мешалке со скоростью 1200 об/мин с помощью перистальтического насоса добавляют 40 мл водного раствора персульфата аммония с концентрацией 1 мМ. Полученную эмульсию типа «вода в масле», содержащую ~ 95 об.% водной фазы, нагревают при 65°С в течение 3 часов, после чего твердый материал выдерживают в печи при той же температуре в течение 24 часов. Получаемый материал имеет пористость не менее 95% и обладает сорбционной емкостью 20 г/г относительно трансмиссионного масла.

Похожие патенты RU2680044C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОГО ПОЛИМЕРНОГО МАТЕРИАЛА НА ОСНОВЕ КОЛЛАГЕНСОДЕРЖАЩЕГО СЫРЬЯ С МАГНИТНЫМИ НАНОЧАСТИЦАМИ ОКСИДА Fe (II, III) ДЛЯ УСТРАНЕНИЯ РАЗЛИВОВ НЕФТЕПРОДУКТОВ 2022
  • Минаков Глеб Сергеевич
  • Широких Сергей Александрович
  • Королёва Марина Юрьевна
RU2808571C2
СПОСОБ ПОЛУЧЕНИЯ МАГНИТОВОСПРИИМЧИВЫХ ВОДОРАСТВОРИМЫХ ГИДРОФОБНО МОДИФИЦИРОВАННЫХ ПОЛИАКРИЛАМИДОВ И МАГНИТНАЯ ЖИДКОСТЬ НА ИХ ОСНОВЕ 2013
  • Барабанова Анна Ивановна
  • Филиппова Ольга Евгеньевна
  • Хохлов Алексей Ремович
RU2533824C1
Способ сорбционной очистки водных сред от растворенного урана 2017
  • Авраменко Валентин Александрович
  • Папынов Евгений Константинович
  • Драньков Артур Николаевич
  • Красицкая Светлана Георгиевна
RU2669853C1
СПОСОБ ПОЛУЧЕНИЯ ПОЛИМЕР-НЕОРГАНИЧЕСКИХ КОМПОЗИТНЫХ СОРБЕНТОВ 2012
  • Пастухов Александр Валерианович
  • Никитин Никита Викторович
  • Даванков Вадим Александрович
RU2527217C1
ПОРИСТЫЙ МАГНИТНЫЙ СОРБЕНТ 2003
  • Тишин А.М.
  • Сидоров С.Н.
  • Спичкин Ю.И.
RU2241537C1
ИСПОЛЬЗОВАНИЕ МАГНИТНОГО ВЕЩЕСТВА ПРИ УДАЛЕНИИ КАМНЕЙ 2016
  • Сунь, Инхао
RU2727236C1
СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОГО ПОПЕРЕЧНО-СШИТОГО ПОЛИМЕРНОГО МАТЕРИАЛА 1993
  • Шэрон Мэри Бешаури
RU2120946C1
Керамический проппант 2016
  • Плинер Сергей Юрьевич
  • Пейчев Виктор Георгиевич
  • Шмотьев Сергей Фёдорович
  • Плотников Василий Александрович
  • Рожков Евгений Васильевич
  • Сычев Вячеслав Михайлович
RU2644359C1
МЕТАЛЛО-ИОНОМЕРНЫЕ ПОЛИМЕРЫ 2016
  • Фарруджиа Валери М
  • Чи Вэнди
  • Гарднер Сандра Дж.
RU2701874C2
СПОСОБ РЕНТГЕНОФЛУОРЕСЦЕНТНОГО ОПРЕДЕЛЕНИЯ МИКРОЭЛЕМЕНТОВ С КОНЦЕНТРИРОВАНИЕМ МЕТОДОМ СООСАЖДЕНИЯ 2016
  • Кузнецов Владимир Витальевич
  • Шалимова Елизавета Георгиевна
  • Агудин Павел Сергеевич
  • Беспалов Ефим Леонидович
RU2623194C1

Иллюстрации к изобретению RU 2 680 044 C1

Реферат патента 2019 года СПОСОБ ПОЛУЧЕНИЯ МАКРОПОРИСТОГО ПОЛИМЕРНОГО КОМПОЗИЦИОННОГО МАТЕРИАЛА С МАГНИТНЫМИ НАНОЧАСТИЦАМИ ДЛЯ УСТРАНЕНИЯ РАЗЛИВОВ НЕФТЕПРОДУКТОВ С ПОВЕРХНОСТИ ВОДЫ

Изобретение относится к области химии полимеров, а именно к получению макропористых полимерных материалов, которые могут быть использованы при устранении разливов нефтепродуктов с водной поверхности. Макропористый полимерный композиционный материал с магнитными наночастицами получают полимеризацией эмульсии типа «вода в масле», стабилизированной золем магнитных наночастиц маггемита размером 10 – 100 нм с содержанием частиц 0,1 – 0,5 г на 0,1 – 0,3 мл сорбитанмоноолеата. Изобретение обеспечивает получение макропористого полимерного композиционного материала с магнитными наночастицами, расположенными внутри полимерной матрицы, что препятствует их вымыванию при поглощении жидкости. 2 ил., 2 пр.

Формула изобретения RU 2 680 044 C1


Способ получения макропористого полимерного композиционного материала с магнитными наночастицами размером 10 – 100 нм полимеризацией эмульсии типа «вода в масле», стабилизированной золем магнитных наночастиц, отличающийся тем, что в качестве золя используют наночастицы маггемита (γ-Fe2O3) в сорбитанмоноолеате с содержанием частиц 0,1 – 0,5 г на 0,1 – 0,3 мл сорбитанмоноолеата.

Документы, цитированные в отчете о поиске Патент 2019 года RU2680044C1

Zhang N
и др., Superhydrophobic P (St-DVB) foam prepared by the high internal phase emulsion technique for oil spill recovery, Chemical Engineering Journal, 298, 2016, стр
Аппарат для испытания прессованных хлебопекарных дрожжей 1921
  • Хатеневер Л.С.
SU117A1
ПОРИСТЫЙ МАГНИТНЫЙ СОРБЕНТ 2003
  • Тишин А.М.
  • Сидоров С.Н.
  • Спичкин Ю.И.
RU2241537C1
CN 106749830 A, 31.05.2017
RU 2169155 C2, 20.06.2001
ГРАНУЛЫ ВСПЕНИВАЕМЫХ ВИНИЛАРОМАТИЧЕСКИХ ПОЛИМЕРОВ И СПОСОБ ИХ ПОЛУЧЕНИЯ 2003
  • Ланфреди Роберто
  • Гидони Дарио
RU2307845C2

RU 2 680 044 C1

Авторы

Щербаков Вячеслав Александрович

Королева Марина Юрьевна

Хасанова Лайсан Ханифовна

Широких Сергей Александрович

Ракитин Сергей Игоревич

Юртов Евгений Васильевич

Даты

2019-02-14Публикация

2017-12-26Подача