Изобретение относится к сварке, конкретно к электродуговой механизированной сварке под флюсом, в частности, к флюсам, предназначенным для сварки и наплавки сталей.
Известен флюс для механизированной сварки и наплавки сталей, содержащий шлак производства силикомарганца, включающий мас. %: SiO2 25-49, Al2O3 4-28, CaO 15-32, CaF2 0,1-1,5, MgO 1,7-9,8, MnO 3-17, FeO 0,1-3,5, S≤0,20 и P≤0,05, при этом он дополнительно содержит жидкое стекло в качестве связующего и выполнен в виде гранул размером 0,45-2,5 мм при следующем соотношении компонентов, мас. %: шлак производства силикомарганца 60-85, жидкое стекло 15-40, при этом шлак производства силикомарганца имеет фракцию менее 0,45 мм (RU 2643027 РФ, МПК В23К 35/362, опубл. 29.01.2018).
Существенными недостатками данного флюса для сварки являются:
- повышенная стоимость флюса в связи с использованием оборудования для дробления и измельчения шлака производства силикомарганца;
- повышенный угар легирующих элементов при наплавке;
- низкий уровень износостойкости наплавляемого слоя металла.
Известен также, выбранный в качестве прототипа, флюс для механизированной сварки сталей, содержащий диоксид кремния, оксид алюминия, оксид кальция, фторид кальция, оксид магния, оксид марганца, оксид железа, в котором в качестве составляющего используют шлак производства силикомарганца при следующем соотношении компонентов, масс. %: диоксид кремния 25-49, оксид алюминия 4-28, оксид кальция 15-32, фторид кальция 0,1-1,5, оксид магния 1,7-9,8, оксид марганца 3-17, оксид железа 0,1-3,5,при этом в качестве примесей флюс может содержать серы не более 0,12%, фосфора не более 0,02% (RU 2579412 МПК В23К 35/362, опубл. 10.12.2015)
Существенными недостатками данного флюса для сварки являются:
- высокий уровень загрязненности стали неметаллическими включениями,
- повышенный угар легирующих элементов при наплавке;
- пониженные показатели твердости наплавляемого слоя,
- низкий уровень износостойкости наплавляемого слоя металла.
Техническая проблема, решаемая предлагаемым изобретением, заключается в повышении качественных показателей наплавляемого металла, в частности твердости и износостойкости, а также утилизация отходов металлургического производства.
Для решения существующей технической проблемы предложен флюс для механизированной сварки и наплавки сталей, включающий шлак производства силикомарганца, содержащий диоксид кремния, оксид алюминия, оксид кальция, оксид магния, оксид марганца, оксид железа, согласно изобретению, он дополнительно содержит флюс-добавку, состоящую из пыли газоочистки производства силикомарганца и жидкого стекла при их соотношении, мас %:
а компоненты взяты в следующем соотношении, мас. %:
Техническими результатами, получаемыми при использовании изобретения, являются:
- уменьшение стоимости производства флюса и сварочного процесса за счет эффективной утилизации мелкодисперсной пыли газоочистки производства силикомарганца;
- снижение загрязненности стали неметаллическими включениями;
- снижение угара легирующих элементов при сварке и наплавке;
- повышение твердости и износостойкости наплавляемого изделия.
Заявляемые пределы подобраны эмпирическим путем исходя из качества получаемых при сварке швов, стабильности процесса сварки и требуемых сварочно-технологических свойств флюса.
Введение в заявляемых пределах в состав флюса шлака производства силикомарганца и флюс - добавки обеспечивает хорошее формирование шлака и высокие рафинирующие и укрывные свойства формирующихся шлаков в процессе сварки и наплавки.
Для изготовления флюса и флюс - добавки использовали следующие компоненты.
В качестве флюса использовался шлак силикомарганца фракции 0,45-2,5 мм производства Западно-Сибирского электрометаллургического завода с химическим составом: Al2O3 - 6,91-9,62%; CaO - 22,85-31,70%; SiO2 - 46,46-48,16%; FeO - 0,27-0,81%; MgO - 6,48-7,92%; MnO - 8,01-8,43%; F - 0,28-0,76%; Na2O - 0,26-0,36%; О - <0,62%; S - 0,15-0,17%; P - 0,01%.
Для изготовления флюс - добавки использовали пыль газоочистки производства силикомарганца с содержанием, мас. %: Al2O3=1,17-3,52; Na2O=0,3-0,93; K2O=0,2-5,6; СаО=5,2-7,6; SiO2=15,7-45,1; ВаО=0,04-0,21; MgO=5,31-10,73; S=0,08-0,47; Р=0,02-0,05; Feобщ=0,5-1,8; Mnобщ=5,7-35,6; Zn=0,1-3,2; Pb=0,1-3,8.
В качестве жидкого стекла использовали калиево-натриевое жидкое стекло с плотностью при 15-25°C - (1,30-1,55) г/см3 и силикатным модулем [SiO2:(K2O+Na2O)⋅1,0323]=2,6-3,0.
Флюс - добавку изготавливали следующим образом: пыль газоочистки производства силикомарганца фракции менее 0,45 мм смешивали с жидким стеклом в различных соотношениях.
При содержании жидкого стекла менее 33% наблюдался недостаток количества жидкого стекла, не удавалось провести связывание частиц пыли с жидким стеклом, причем некоторое количество частиц пыли не соприкасалось с жидким стеклом и находилось в «сухом» состоянии.
При содержании жидкого стекла более 41%, частицы пыли силикомарганца не полностью «впитывали» жидкое стекло и наблюдался избыток жидкого стекла.
Оптимальным с точки зрения внешнего вида состава смеси было выбрано соотношение компонентов: 59-67% пыли газоочистки производства силикомарганца и 33-41% жидкого стекла.
После смешивания компонентов смесь выдерживали при комнатной температуре в течение 24 часов, осуществляли сушку в печи при температуре 300°C, затем охлаждение, дробление и просев с выделением фракции 0,45-2,5 мм.
После изготовления флюс - добавки ее примешивали к основному флюсу (шлак силикомарганца) в различном соотношении (таблица 1).
Наплавку образцов производили на образцах размером 300×150 мм толщиной 40 мм из листовой стали марки 09Г2С. Процесс проводили проволокой Св-08ГА диаметром 4 мм с использованием сварочного трактора ASAW-1250 на различных режимах наплавки. Из наплавленных пластин осуществляли вырезку образцов для проведения исследований: измерение твердости, износостойкости, исследование на наличие неметаллических включений (таблица 2).
Химический состав наплавленного металла определяли рентгенофлюоресцентным методом на спектрометре XRF-1800 и атомно-эмиссионным методом на спектрометре ДФС-71. Металлографическое исследование микрошлифов проводилось без травления с помощью оптического микроскопа OLYMPUS GX-51 при увеличении ×100 методом сравнения с эталонными шкалами в соответствие с ГОСТ 1778-70. Замеры твердости проводили ультразвуковым твердомером - УЗИТ-3. Наличие трещин в процессе наплавки оценивали визуально, а также на металлографических шлифах. Испытания на износ по схеме «ДИСК-КОЛОДКА» проводили на машине 2070 СМТ-1.
Для сравнения результатов наплавки так же был использован флюс, выбранный в качестве прототипа на основе шлака силикомарганца (RU 2579412 МПК В23К 35/362)
Исследовались 8 различных составов флюса (таблица 1): 1 - прототип; 2 - нижний заграничный состав флюса; 3 - нижний граничный состав флюса; 4-6, - среднее содержание состава флюса; 7 - верхний предел состава флюса; 8 - верхний заграничный состав флюса. Взаимосвязь некоторых исследуемых параметров в зависимости от состава приведена в таблице 2.
Использование заявляемого флюса для сварки и наплавки по сравнению с прототипом позволяет:
1. - снизить загрязненность наплавки оксидными неметаллическими включениями с баллов 1-36 до баллов 1-26;
2. - снизить угар легирующих элементов при наплавке с 11% до 5-8%;
3. - увеличить твердость наплавляемого слоя от ПОИВ до 130 НВ,
4. - повысить уровень износостойкости наплавляемого слоя металла с 0,19 г/об*10*4 до 0,13-0,15 г/об*10-4.
название | год | авторы | номер документа |
---|---|---|---|
ФЛЮС ДЛЯ МЕХАНИЗИРОВАННОЙ СВАРКИ И НАПЛАВКИ СТАЛЕЙ | 2018 |
|
RU2683164C1 |
ФЛЮС ДЛЯ МЕХАНИЗИРОВАННОЙ СВАРКИ И НАПЛАВКИ СТАЛЕЙ | 2018 |
|
RU2683166C1 |
ФЛЮС ДЛЯ МЕХАНИЗИРОВАННОЙ СВАРКИ И НАПЛАВКИ СТАЛЕЙ | 2018 |
|
RU2682515C1 |
Флюс для механизированной сварки и наплавки сталей | 2020 |
|
RU2753346C1 |
ФЛЮС ДЛЯ МЕХАНИЗИРОВАННОЙ СВАРКИ И НАПЛАВКИ СТАЛЕЙ | 2019 |
|
RU2718031C1 |
Флюс для механизированной сварки и наплавки сталей | 2020 |
|
RU2749735C1 |
ФЛЮС ДЛЯ МЕХАНИЗИРОВАННОЙ СВАРКИ И НАПЛАВКИ СТАЛЕЙ | 2021 |
|
RU2772824C1 |
ФЛЮС ДЛЯ МЕХАНИЗИРОВАННОЙ СВАРКИ И НАПЛАВКИ СТАЛЕЙ | 2021 |
|
RU2772822C1 |
ШИХТА ДЛЯ ПОРОШКОВОЙ ПРОВОЛОКИ | 2017 |
|
RU2681052C1 |
ФЛЮС ДЛЯ СВАРКИ И НАПЛАВКИ | 2014 |
|
RU2566236C1 |
Изобретение может быть использовано для электродуговой механизированной сварки под флюсом. Флюс содержит шлак производства силикомарганца, включающий диоксид кремния, оксид алюминия, оксид кальция, оксид магния, оксид марганца, оксид железа, и флюс-добавку при следующем соотношении компонентов, мас. %: шлак производства силикомарганца 10-90, флюс-добавка 10-90. Флюс-добавка состоит из пыли газоочистки производства силикомарганца в количестве 59-67 мас. % и жидкого стекла в количестве 33-41 мас. %. Флюс обеспечивает снижение загрязненности стали неметаллическими включениями и угара легирующих элементов при сварке и наплавке, а также уменьшение стоимости производства флюса и сварочного процесса за счет эффективной утилизации мелкодисперсной пыли газоочистки производства силикомарганца. 2 табл.
Флюс для механизированной сварки и наплавки сталей, включающий шлак производства силикомарганца, содержащий диоксид кремния, оксид алюминия, оксид кальция, оксид магния, оксид марганца и оксид железа, отличающийся тем, что он дополнительно содержит флюс-добавку при следующем соотношении компонентов, мас. %:
при этом флюс-добавка состоит из пыли газоочистки производства силикомарганца и жидкого стекла при их соотношении, мас %:
ФЛЮС ДЛЯ МЕХАНИЗИРОВАННОЙ СВАРКИ И НАПЛАВКИ СТАЛЕЙ | 2014 |
|
RU2579412C2 |
Вяжущее | 1989 |
|
SU1675251A1 |
Флюс для механизированной сварки и наплавки сталей | 2016 |
|
RU2643027C1 |
SU 12776470 А, 15.12.1986 | |||
Шихта для получения плавленого сварочного флюса типа АН-47 | 1986 |
|
SU1447621A1 |
Авторы
Даты
2019-03-21—Публикация
2018-05-23—Подача