Изобретение относится к применению определенных полимеров в качестве присадок к топливам или смазочным материалам, к способу получения подобных присадок, а также к топливам и смазочным материалам, содержащим подобные присадки, в частности в качестве моющих присадок, к применению этих полимеров для уменьшения или предотвращения образования отложений в системах питания, в частности, в системах непосредственного впрыскивания топлива дизельных двигателей, прежде всего в системах впрыскивания Коммон Рэйл, для сокращения расхода топлива дизельными двигателями с непосредственным впрыскиванием, прежде всего дизельными двигателями с системами впрыскивания Коммон Рэйл, и для минимизации потерь мощности в дизельных двигателях с непосредственным впрыскиванием топлива, прежде всего в дизельных двигателях с системами впрыскивания Коммон Рэйл, а также в качестве присадок к бензинам, в частности, для эксплуатации двигателей с непосредственным впрыскиванием и искровым зажиганием (DISI).
В дизельных двигателях с непосредственным впрыскиванием топливо впрыскивают и распределяют (распыляют) в виде мельчайших капелек многоструйной форсункой, подведенной непосредственно к камере сгорания двигателя, в то время как в классическом (камерном) дизельном двигателе топливо подают в предкамеру или вихревую камеру. Преимуществом дизельных двигателей с непосредственным впрыскиванием топлива является сравнительно высокая для двигателей данного типа мощность и, несмотря на это, низкий расход топлива. Кроме того, подобные двигатели создают чрезвычайно высокий крутящий момент уже при низких частотах вращения.
В настоящее время непосредственное впрыскивание топлива в камеру сгорания дизельного двигателя осуществляют главным образом тремя следующими методами: обычным распределительным насосом высокого давления, посредством системы типа «насос-форсунка» (анг. Unit-Injector-System или Unit-Pump-System) и посредством системы Коммон Рэйл.
В случае использования системы Коммон Рэйл дизельное топливо перемещается насосом, рабочее давление которого достигает 2000 бар, по трубопроводу высокого давления (общей топливной магистрали). Из общей топливной магистрали топливо по каналам поступает к разным форсункам, впрыскивающим его непосредственно в камеру сгорания. При этом общая топливная магистраль всегда находится под полным давлением, что допускает возможность многоканального впрыскивания или особых форм впрыскивания топлива. В отличие от этого в случае иных систем впрыскивания возможно лишь ограниченное варьирование форм впрыскивания топлива. Существует три следующих варианта впрыскивания топлива посредством системы Коммон Рэйл: (1.) предварительное впрыскивание, позволяющее обеспечивать в основном более «мягкое» сгорание топлива, то есть уменьшение шумов (стуков двигателя), обусловленных «жестким» сгоранием топлива, и работу двигателя в более спокойном режиме, (2.) основное впрыскивание топлива, которое, в частности, определяет оптимальный характер изменения крутящего момента, и (3.) дополнительное впрыскивание топлива, которое, в частности, способствует снижению показателя NOx. Топливо при дополнительном впрыскивании как правило не сгорает, а испаряется в цилиндре под действием остаточного тепла. Образующаяся при этом смесь отработавшего газа с топливом перемещается к системе выпуска отработавших газов, в которой топливо в присутствии пригодных катализаторов выполняет функцию восстановителя оксидов азота NOx.
В случае использования системы Коммон Рэйл благодаря варьируемому индивидуальному регулированию впрыскивания топлива в цилиндры можно оказывать позитивное воздействие на эмиссию вредных веществ, например, оксидов азота (NOx), монооксида углерода (СО) и, в частности, частиц (сажи). Благодаря этому двигатели, оснащенные системой впрыскивания Коммон Рэйл, теоретически могут удовлетворять требованиям стандарта Евро-4, например, и без использования дополнительных фильтров твердых частиц.
В современных дизельных двигателях с системой впрыскивания Коммон Рэйл в определенных условиях, например, в случае использования топлив, содержащих биодизель, или топлив, содержащих металлические примеси, например, соединения цинка, меди, свинца и других металлов, в каналах форсунок может происходить образование отложений, что оказывает негативное воздействие на способность топлива к впрыскиванию, соответственно на технические характеристики двигателя, в частности, обусловливает снижение его мощности и частичное ухудшение сгорания топлива. Образование отложений дополнительно усиливается из-за усовершенствования конструкции форсунок, в частности, изменения их геометрических параметров (более узкие конические каналы с округленным выпускным отверстием). Для длительного оптимального функционирования двигателя и форсунок необходимо предотвращать или уменьшать образование подобных отложений в каналах форсунок посредством пригодных топливных присадок.
Образование отложений в системах впрыскивания современных дизельных двигателей приводит к возникновению серьезных технических проблем. Известно, что подобные отложения в распыляющих каналах могут обусловливать снижение интенсивности потока топлива, а, следовательно, потерю мощности. Отложения на концах форсунок негативно влияют на оптимальное формирование распыленного топливного тумана, а, следовательно, обусловливают неудовлетворительное сгорание топлива, что, в свою очередь, приводит к повышенному загрязнению окружающей среды и увеличению расхода топлива. Все более серьезные технические проблемы возникают не только вследствие образования указанных выше обычных «внешних» отложений, но и из-за образования «внутренних» отложений в определенных частях форсунок, например, на иглах, распределительном поршне, золотнике, седле клапана, управляющем устройстве и направляющих этих элементов (совокупность подобных отложений называют внутренними отложениями в дизельных форсунках (IDID, нем. innere Diesel-lnjektor-Ablagerungen)). Обычные присадки характеризуются недостаточной эффективностью по отношению к указанным внутренним отложениям.
При этом под «системой впрыскивания» понимают часть системы питания автомобиля от топливного насоса до выхода топлива из форсунок. При этом под «системой питания» подразумевают конструктивные элементы автомобиля, которые контактируют с соответствующим топливом, предпочтительно участок от топливного бака до выхода топлива из форсунок.
В одном варианте осуществления изобретения предлагаемые в изобретении соединения противодействуют образованию отложений не только в системе впрыскивания топлива, но и в остальной системе питания, в данном случае прежде всего в топливных фильтрах и топливных насосах.
Из патента США US 4,248,719 известны кватернизированные соли аммония, которые получают путем превращения алкенилсукцинимида со сложным моноэфиром карбоновой кислоты и используют в качестве диспергатора в смазочных маслах для предотвращения образования шлама. В частности, например, описано превращение ангидрида полиизобутилянтарной кислоты (PIBSA) с N,N-диметиламинопропиламином (DMAPA) и кватернизирование посредством метилсалицилата. Однако о применении указанных солей в топливах, в частности, дизельных топливах, в цитируемой публикации не сообщается. О применении PIBSA с низкой степенью бисмалеинизации (менее 20%) также не сообщается.
Из патента США US 4,171,959 известны кватернизированные аммониевые соли замещенных гидрокарбилом сукцинимидов, пригодные для использования в качестве моющих присадок к топливным смесям для карбюраторных двигателей. Для кватернизирования предпочтительно используют алкилгалогениды. В цитируемой публикации упоминаются также органические гидрокарбилкарбоксилаты и гидрокарбилсульфонаты с 2-8 атомами углерода. Таким образом, кватернизированные аммониевые соли, предлагаемые согласно цитируемому изобретению, в качестве противоиона содержат либо галогенид, либо группу гидрокарбилкарбоксилата или гидрокарбилсульфоната соответственно с 2-8 атомами углерода. При этом о применении PIBSA с низкой степенью бисмалеинизации (менее 20%) в публикации не сообщается.
Из европейской заявки на патент ЕР-А-2033945 известны присадки для улучшения хладотекучести, которые получают путем кватернизирования особых третичных моноаминов, содержащих по меньшей мере один алкильный остаток с 8-40 атомами углерода, сложными алкиловыми эфирами особых карбоновых кислот с 1-4 атомами углерода в алкиле. Примерами подобных сложных эфиров карбоновых кислот являются диметил-оксалат, диметилмалеат, диметилфталат и диметилфумарат. Другие сферы применения указанных присадок, кроме оптимизации предельной температуры холодной фильтруемости средних дистиллятов, в цитируемой публикации не упоминаются.
В международной заявке WO 2006/135881 описаны кватернизированные соли аммония, получаемые путем конденсации замещенного гидрокарбилом ацилирующего агента и содержащего атом кислорода или азота соединения с третичной аминогруппой и последующего кватернизирования посредством гидрокарбилэпоксида в комбинации со стехиометрическими количествами кислоты, в частности, уксусной кислоты. Другими средствами кватернизирования, используемыми в соответствии с цитируемой публикацией, являются диалкил сульфаты, бензил галоген иды и замещенные гидрокарбилом карбонаты, причем экспериментальному исследованию были подвергнуты диметилсульфат, бензилхлорид и диметилкарбонат.
В международной заявке WO 2011/146289 описаны не содержащие азота присадки из замещенного углеводорода, который содержит по меньшей мере две карбоксильные группы в свободной или ангидридной форме, используемые для усиления моющего эффекта в системах питания, причем в качестве примера, в частности, указаны гидрокарбилзамещенные ангидриды янтарной кислоты и их гидролизованные формы.
В основу настоящего изобретения была положена задача предложить новый класс основанных на полимерах присадок, пригодных для использования в современных дизельных топливах и бензинах.
Указанную задачу неожиданно удалось решить благодаря полимерам, которые имеют в среднем:
- по меньшей мере четыре кислотные группы на полимерную цепь,
- соотношение атомов углерода на кислотную группу от 7 до 35, и
- кислотное число от 80 до 320 мг КОН/г, определенное потенциографическим титрованием 0,5-молярной водной соляной кислотой после трехчасового нагревания в 0,5-молярном этанольном растворе гидро-ксида калия.
Согласно настоящему изобретению под полимерами понимают гомополимеры или сополимеры, предпочтительно сополимеры.
Полимеры можно получать любыми методами, предпочтительно методами полиприсоединения или поликонденсации, предпочтительно методами полиприсоединения. Полиприсоединение предпочтительно можно осуществлять по радикальному или ионному механизму, предпочтительно по радикальному механизму.
Подобные полимеры прежде всего отличаются тем, что они оказывают противодействие образованию самых разных отложений, негативно влияющих на работоспособность современных дизельных двигателей. Предлагаемые в изобретении соединения, например, предотвращают потерю мощности, обусловленную попаданием в дизельное топливо как цинка, так и натрия. При этом в основном устраняются отложения, образующиеся в каналах форсунок и на их концах, или соответственно исключается образование подобных отложений. В то же время предлагаемые в изобретении соединения противодействуют также образованию внутренних отложений в дизельных форсунках (IDID), обусловленных ионами натрия, кальция и/или калия (так называемых внутренних отложений натриевых, кальциевых или калиевых мыл), и/или полимерных отложений. При этом под внутренними отложениями, образуемыми натриевыми, кальциевыми или калиевыми мылами, имеются в виду отложения, которые содержат ионы упомянутых металлов в сочетании с любыми противоионами. В отличие от этих отложений полимерные отложения не содержат ионов металлов и обусловлены присутствием в топливе высокомолекулярного и малорастворимого или нерастворимого в нем органического материала.
На фиг. 1 показан одночасовой цикл испытания двигателя согласно СЕС F-098-08.
А1) Особые варианты осуществления изобретения
Ниже приведены особые варианты осуществления настоящего изобретения.
1. Применение полимеров, которые имеют в среднем:
- по меньшей мере четыре кислотные группы на полимерную цепь,
- соотношение атомов углерода на кислотную группу от 7 до 35, и
- кислотное число от 80 до 320 мг КОН/г, определенное потенцио-графическим титрованием 0,5-молярной водной соляной кислотой после трехчасового нагревания в 0,5-молярном этанольном растворе гидроксида калия.
в качестве присадки к топливам или смазочным материалам, в частности, к дизельным топливам.
2. Применение согласно варианту осуществления изобретения 1 в качестве присадки для сокращения расхода топлива дизельными двигателями с непосредственным впрыскиванием, в частности, дизельными двигателями с системами впрыскивания Коммон Рэйл.
3. Применение согласно одному из вариантов осуществления изобретения в качестве присадки для минимизации потери мощности в дизельных двигателях с непосредственным впрыскиванием топлива, в частности, в дизельных двигателях с системами впрыскивания Коммон Рэйл.
4. Применение согласно одному из вариантов осуществления изобретения в качестве присадки для минимизации потери мощности (power loss), обусловленной ионами калия, цинка, кальция и/или натрия (так называемой калиевой, цинковой, кальциевой или натриевой power loss).
5. Применение согласно одному из вариантов осуществления изобретения в качестве присадки к бензину для уменьшения образования отложений в системе впуска бензинового двигателя, в частности, двигателя с непосредственным впрыскиванием и искровым зажиганием (DISI) и двигателя с форсунками для распределительного впрыскивания (PFI).
6. Применение согласно одному из вариантов осуществления изобретения в качестве присадки к дизельным топливам для уменьшения и/или предотвращения отложений в системах питания, прежде всего в системах впрыскивания, в частности, внутренних отложений в дизельных форсунках, и/или для уменьшения и/или предотвращения залипания клапанов в дизельных двигателях с непосредственным впрыскиванием топлива, в частности, в системах впрыскивания Коммон Рэйл.
7. Применение согласно одному из вариантов осуществления изобретения в качестве присадки к дизельным топливам для уменьшения и/или предотвращения внутренних отложений в дизельных форсунках (IDID), обусловленных ионами натрия, кальция и/или калия (так называемых натриевых, кальциевых или соответственно калиевых мыл IDID).
8. Применение согласно одному из вариантов осуществления изобретения в качестве присадки к дизельным топливам для уменьшения и/или предотвращения внутренних отложений в дизельных форсунках (IDID), обусловленных полимерными отложениями.
9. Применение согласно одному из предыдущих вариантов осуществления изобретения, причем топливо выбрано из группы, включающей дизельные топлива, биодизельные топлива, бензины и содержащие алканол бензины.
10. Концентрат присадок, содержащий в комбинации с дополнительными присадками к дизельным топливам, бензинам или смазочным материалам по меньшей мере один полимер, который имеет в среднем:
- по меньшей мере четыре кислотные группы на полимерную цепь,
- соотношение атомов углерода на кислотную группу от 7 до 35, и
- кислотное число от 80 до 320 мг КОН/г, определенное потенцио-графическим титрованием 0,5-молярной водной соляной кислотой после трехчасового нагревания в 0,5-молярном этанольном растворе гидроксида калия.
11. Топливная композиция, смазочная композиция или керосиновая композиция, в частности, композиция дизельного топлива, содержащая полимер, который имеет в среднем:
- по меньшей мере четыре кислотные группы на полимерную цепь,
- соотношение атомов углерода на кислотную группу от 7 до 35, и
- кислотное число от 80 до 320 мг КОН/г, определенное потенцио-графическим титрованием 0,5-молярной водной соляной кислотой после трехчасового нагревания в 0,5-молярном этанольном растворе гидроксида калия.
Описание полимера
Полимерами, предназначенными для предлагаемого в изобретении применения, являются регулярные, статистические или блокполимеры, которые имеют в среднем:
- по меньшей мере четыре кислотные группы на полимерную цепь,
- соотношение атомов углерода на кислотную группу от 7 до 35, и
- кислотное число от 80 до 320 мг КОН/г, определенное потенциографическим титрованием 0,5-молярной водной соляной кислотой после трехчасового нагревания в 0,5-молярном этанольном растворе гидроксида калия.
Подобные полимеры эффективно блокируют и/или устраняют образующиеся в двигателях отложения.
Предлагаемые в изобретении полимеры предпочтительно обладают растворимостью в толуоле при 20°С, составляющей по меньшей мере 5 г/100 мл, особенно предпочтительно по меньшей мере 7,5 г/100 мл, еще более предпочтительно по меньшей мере 10 г/100 мл.
В случае если полимеры являются гомополимерами, они содержат более четырех, предпочтительно более пяти, особенно предпочтительно более восьми, еще более предпочтительно более десяти повторяющихся единиц исходных мономеров, а в случае если они являются сополимерами, они содержат более двух, предпочтительно более трех, особенно предпочтительно более четырех, еще более предпочтительно более пяти повторяющихся единиц каждого из исходных мономеров.
Кислотными группами являются, например, карбоксильные группы, сульфокислотные группы или фосфонокислотные группы, предпочтительно карбоксильные группы.
Среднестатистическое число кислотных групп в расчете на полимерную цепь предпочтительно равно по меньшей мере пяти, особенно предпочтительно по меньшей мере шести, еще более предпочтительно по меньшей мере семи, в частности, по меньшей мере восьми.
Верхнее предельное значение среднестатистического числа кислотных групп в расчете на полимерную цепь предпочтительно составляет 50, особенно предпочтительно 40, еще более предпочтительно 30, в частности, 26.
Помимо углеводородных структурных единиц и кислотных групп полимер может содержать другие функциональные группы, например, кислородсодержащие функциональные группы (предпочтительно карбонатные, простые эфирные или сложноэфирные группы) или азотсодержащие функциональные группы (предпочтительно карбамидные, уретановые, аминные или амидные группы).
При этом под кислородсодержащими функциональными группами понимают функциональные группы, которые не содержат других гетероатомов, кроме атомов кислорода.
При этом под азотсодержащими функциональными группами имеют в виду функциональные группы, которые не содержат других гетероатомов, кроме атомов азота и при необходимости атомов кислорода.
Полимеры предпочтительно содержат не более пяти, особенно предпочтительно не более четырех, еще более предпочтительно не более трех, прежде всего не более двух, в частности, не более одной функциональной группы, отличающейся от кислородсодержащих функциональных групп или азотсодержащих функциональных групп, в расчете на полимерную цепь.
Полимеры предпочтительно содержат не более пяти, особенно предпочтительно не более четырех, еще более предпочтительно не более трех, прежде всего не более двух, в частности, не более одной азотсодержащей функциональной группы, отличающейся от аминогрупп, карбамидных групп, уретановых групп или амидных групп, в расчете на полимерную цепь.
В особенно предпочтительном варианте полимеры содержат не более двух, еще более предпочтительно не более одной аминогруппы в расчете на полимерную цепь и, в частности, вовсе не содержат аминогрупп.
В другом особенно предпочтительном варианте полимеры содержат не более десяти, еще более предпочтительно не более восьми, прежде всего не более шести, в частности, не более четырех карбамидных, уретановых или амидных групп в расчете на полимерную цепь.
Полимеры предпочтительно содержат не более четырех, особенно предпочтительно не более трех, еще более предпочтительно не более двух, прежде всего не более одной кислородсодержащей функциональной группы, отличающейся от карбонатных групп, простых эфирных групп или сложноэфирных групп, в расчете на полимерную цепь и, в частности, вовсе не содержат подобных кислородсодержащих функциональных групп.
Согласно изобретению число карбонатных, простых эфирных и/или сложноэфирных групп в расчете на полимерную цепь, в особенности число сложноэфирных групп в расчете на полимерную цепь, менее важно, если одновременно соблюдено требуемое число атомов углерода в расчете на кислотную группу.
В одном предпочтительном варианте полимеры содержат не более 20, особенно предпочтительно не более 15, еще более предпочтительно не более 10, прежде всего не более пяти простых эфирных групп в расчете на полимерную цепь.
В другом предпочтительном варианте полимеры содержат не более 50, особенно предпочтительно не более 40, еще более предпочтительно не более 30, прежде всего не более 26 карбонатных или сложноэфирных групп в расчете на полимерную цепь.
В другом предпочтительном варианте полимеры содержат не более четырех, особенно предпочтительно не более трех, еще более предпочтительно не более двух, прежде всего не более одной сложноэфирной группы в расчете на полимерную цепь и, в частности, вовсе не содержат сложноэфирных групп.
Среднестатистическое число содержащихся в полимере атомов углерода в расчете на кислотную группу является частным от деления общего числа атомов углерода в расчете на полимерную цепь на число кислотных групп в расчете на полимерную цепь. Оба последних показателя могут быть определены по исходным мономерам и измеренной методом гельпроникающей хроматографии (с тетрагидрофураном и полистиролом в качестве стандарта) молекулярной массе, а также по используемым при полимеризации мономерам.
Нижнее предельное значение числа содержащихся в полимере атомов углерода в расчете на кислотную группу предпочтительно составляет по меньшей мере 8, особенно предпочтительно по меньшей мере 9, еще более предпочтительно по меньшей мере 10, прежде всего по меньшей мере 11 и, в частности, по меньшей мере 12.
Верхнее предельное значение числа содержащихся в полимере атомов углерода в расчете на кислотную группу предпочтительно составляет 33, особенно предпочтительно 31, еще более предпочтительно 29, прежде всего 27, в частности, 25.
Указанное выше число содержащихся в полимере атомов углерода в расчете на кислотную группу, с одной стороны, способствует хорошей растворимости полимера в топливах.
Кроме того, полимеры характеризуются кислотным числом, находящимся в диапазоне от 80 до 320 мг КОН/г, предпочтительно от 90 до 300 мг КОН/г, особенно предпочтительно от 95 до 290 мг КОН/г, и определяемым путем потенциографического титрования 0,5-молярной водной соляной кислотой после трехчасового нагревания в 0,5-молярном этанольном растворе гидроксида калия.
Полимеры предпочтительно характеризуются также растворимостью в толуоле при 20°С, предпочтительно составляющей по меньшей мере 5 г/100 мл, особенно предпочтительно по меньшей мере 7,5 г/100 мл, еще более предпочтительно по меньшей мере 10 г/100 мл.
Полимер как правило обладает средневесовой молекулярной массой Mw в диапазоне от 0,5 до 20 кДа, предпочтительно от 0,6 до 15 кДа, особенно предпочтительно от 0,7 до 7 кДа, еще более предпочтительно от 1 до 7 кДа, в частности, от 1,5 до 5 кДа (Mw определяют методом гель-проникающей хроматографии с тетрагидрофураном и полистиролом в качестве стандарта).
Среднечисловая молекулярная масса Mn полимера чаще всего составляет от 0,5 до 10 кДа, предпочтительно 0,6 до 5 кДа, особенно предпочтительно 0,7 до 4 кДа, еще более предпочтительно 0,8 до 3 кДа, в частности, от 1 до 2 кДа (Mn определяют методом гель-проникающей хроматографии с тетра-гидрофураном и полистиролом в качестве стандарта).
В предпочтительном варианте осуществления изобретения сополимеры характеризуются высоким содержанием вицинальных групп карбоновой кислоты, которое определяют путем измерения показателя вицинальности. Для этого образец сополимера в течение 30 минут подвергают термической обработке между двумя тефлоновыми пленками при температуре 290°С и в месте образца, не содержащем газовых пузырей, снимают инфракрасный спектр Фурье. Из полученных спектральных данных вычитают ИК-спектр политетрафторэтилена, определяют толщину слоя и вычисляют содержание циклического ангидрида.
В предпочтительном варианте показатель вицинальности составляет по меньшей мере 10%, предпочтительно по меньшей мере 15%, особенно предпочтительно по меньшей мере 20%, еще более предпочтительно по меньшей мере 25%, в частности, по меньшей мере 30%.
Применение
Топливом, которое снабжают предлагаемой в изобретении полимерной присадкой, является бензин или, в частности, среднедистиллятное топливо, прежде всего дизельное топливо.
Топливо может содержать другие присадки, обычно используемые для повышения эффективности и/или предотвращения износа.
Описываемые сополимеры чаще всего используют в виде смесей с обычными топливными присадками.
В случае дизельных топлив к подобным присадкам в первую очередь относятся обычные моющие присадки, масляные основы, присадки для улучшения хладотекучести, присадки для повышения смазочной способности, отличающиеся от описываемых полимеров ингибиторы коррозии, деэмульгаторы, присадки для устранения мутности, антивспениватели, присадки для повышения цетанового числа, присадки для улучшения сгорания, антиоксиданты или стабилизаторы, антистатические присадки, металлоцены, деактиваторы металлов, красители и/или растворители.
Таким образом, другим объектом настоящего изобретения является применение полимеров, которые имеют в среднем:
- по меньшей мере четыре кислотные группы на полимерную цепь,
- соотношение атомов углерода на кислотную группу от 7 до 35, и
- кислотное число от 80 до 320 мг КОН/г, определенное потенциографическим титрованием 0,5-молярной водной соляной кислотой после трехчасового нагревания в 0,5-молярном этанольном растворе гидроксида калия,
в присадочных наборах, содержащих по меньшей мере одну присадку, выбранную из группы, включающей моющие присадки, масляные основы, присадки для улучшения хладотекучести, присадки для повышения смазочной способности, отличающиеся от описываемых полимеров ингибиторы коррозии, деэмульгаторы, присадки для устранения мутности, анти-вспениватели, присадки для повышения цетанового числа, присадки для улучшения сгорания, антиоксиданты, стабилизаторы, антистатические средства, металлоцены, деактиваторы металлов, красители и растворители,
для сокращения расхода топлива дизельными двигателями с непосредственным впрыскиванием, в частности, дизельными двигателями с системами впрыскивания Коммон Рэйл, и/или для минимизации потерь мощности в дизельных двигателях с непосредственным впрыскиванием топлива, в частности, в дизельных двигателях с системами впрыскивания Коммон Рэйл.
В случае бензинов другими присадками прежде всего являются присадки для повышения смазочной способности (антифрикционные присадки), отличающиеся от описываемых полимеров ингибиторы коррозии, деэмульгаторы, присадки для устранения мутности, антивспениватели, присадки для улучшения сгорания, антиоксиданты или стабилизаторы, антистатические средства, металлоцены, деактиваторы металлов, красители и/или растворители.
В соответствии с этим другим объектом настоящего изобретения является применение полимеров, которые имеют в среднем:
- по меньшей мере четыре кислотные группы на полимерную цепь,
- соотношение атомов углерода на кислотную группу от 7 до 35, и
- кислотное число от 80 до 320 мг КОН/г, определенное потенциографическим титрованием 0,5-молярной водной соляной кислотой после трехчасового нагревания в 0,5-молярном этанольном растворе гидроксида калия,
в присадочных наборах, содержащих по меньшей мере одну присадку, выбранную из группы, включающей присадки для повышения смазочной способности (антифрикционные присадки), отличающиеся от описываемых полимеров ингибиторы коррозии, деэмульгаторы, присадки для устранения мутности, антивспениватели, присадки для улучшения сгорания, антиоксиданты, стабилизаторы, антистатические средства, металлоцены, деактиваторы металлов, красители и растворители,
для уменьшения образования отложений в системе впуска бензинового двигателя, в частности, двигателя с непосредственным впрыскиванием и искровым зажиганием (DISI) и двигателя с форсунками для распределительного впрыскивания (PFI).
Ниже приведены примеры типичных пригодных совместно используемых присадок.
В1) Моющие присадки
Под обычными моющими присадками предпочтительно подразумевают амфифильные вещества, содержащие по меньшей мере один гидрофобный углеводородный остаток со среднечисловой молекулярной массой (Mn) в интервале от 85 до 20000 и по меньшей мере одной полярной группировкой, выбранной из следующих группировок:
(Da) моноаминогруппы или полиаминогруппы, содержащие до шести атомов азота, по меньшей мере один из которых обладает щелочным характером,
(Db) нитрогруппы при необходимости в комбинации с гидроксильными группами,
(Dc) гидроксильные группы в комбинации с моноаминогруппами или полиаминогруппами, по меньшей мере один атом азота которых обладает щелочным характером,
(Dd) карбоксильные группы или их соли со щелочными или щелочноземельными металлами,
(De) сульфокислотные группы или их соли со щелочными или щелочноземельными металлами,
(Df) полиоксиалкиленовые группировки с 2-4 атомами углерода в алки-лене и концевыми гидроксильными группами, моноаминогруппами или полиаминогруппами, по меньшей мере один атом азота которых обладает щелочным характером, или с концевыми карбаматными группами,
(Dg) группы сложных эфиров карбоновой кислоты,
(Dh) группировки, которые являются производными ангидрида янтарной кислоты и содержат гидроксильные группы, аминогруппы, амидные группы и/или имидные группы, и/или
(Di) группировки, образующиеся в результате превращения замещенных фенолов с альдегидами и моно- или полиаминами по Манниху.
Гидрофобный углеводородный остаток, присутствие которого в указанных выше моющих присадках придает им достаточную растворимость в топливе, обладает среднечисловой молекулярной массой (Mn) в интервале от 85 до 20000, предпочтительно от 113 до 10000, особенно предпочтительно от 300 до 5000, более предпочтительно от 300 до 3000, еще более предпочтительно от 500 до 2500, в частности, от 700 до 2500, прежде всего от 800 до 1500. В качестве типичных гидрофобных углеводородных остатков, в особенности в сочетании с полярными остатками, пригодны, в частности, полипропенильные, полибутенильные и полиизобутиленильные остатки со среднемисловой молекулярной массой Mn, соответственно предпочтительно находящейся в интервале от 300 до 5000, особенно предпочтительно от 300 до 3000, более предпочтительно от 500 до 2500, еще более предпочтительно от 700 до 2500, в частности, от 800 до 1500.
Ниже приведены примеры моющих присадок, содержащих указанные выше группы.
Присадками, содержащими моноаминогруппы или полиаминогруппы (Da), предпочтительно являются полиалкенмоноамины или полиалкенполиамины на основе полипропилена или высокореакционноспособного (то есть содержащего преимущественно концевые двойные связи) или обычного (то есть преимущественно со средним положением двойных связей) полибутилена или полиизобутилена с молекулярной массой Mn в интервале от 300 до 5000, особенно предпочтительно от 500 до 2500, в частности, от 700 до 2500. Подобные присадки на основе высокореакционноспособного полиизобутилена, которые могут быть получены путем гидроформилирования и восстановительного аминирования полиизобутилена, который может содержать до 20% масс. мономерных звеньев н-бутена, аммиаком, моноаминами или полиаминами (например, диметиламинопропиламином, этилендиамином, диэтилентриамином, триэтилентетрамином или тетра-этиленпентамином), известны, в частности, из европейской заявки на патент ЕР-А 244616. В случае если исходным компонентом для синтеза присадок является полибутилен или полиизобутилен преимущественно со средним положением двойных связей (чаще всего находящихся в β- и γ- положениях), присадки получают путем хлорирования и последующего аминирования или путем окисления двойных связей воздухом или озоном до карбонильного или карбоксильного соединения и последующего аминирования в восстановительных (гидрирующих) условиях. При этом для аминирования можно использовать амины, например, такие как аммиак, моноамины или указанные выше полиамины. Соответствующие присадки на основе полипропилена, в частности, описаны в международной заявке на патент WO-A 94/24231.
Другими особыми присадками, содержащими моноаминогруппы (Da), являются продукты, образующиеся в результате гидрирования продуктов взаимодействия полиизобутиленов со средней степенью полимеризации (Р) от 5 до 100 с оксидами азота или смесями, состоящими из оксидов азота и кислорода (подобные присадки описаны, в частности, в международной заявке на патент WO-A 97/03946).
Другими особыми присадками, содержащими моноаминогруппы (Da), являются соединения, которые могут быть получены из полиизобутилен-эпоксидов путем взаимодействия с аминами и последующей дегидратации и восстановление аминоспиртов (подобные присадки описаны, в частности, в немецкой заявке на патент DE-A 19620262).
Присадками, содержащими нитрогруппы при необходимости в комбинации с гидроксильными группами (Db), предпочтительно являются продукты взаимодействия полиизобутиленов со средней степенью полимеризации (Р) от 5 до 100 или от 10 до 100 с оксидами азота или смесями, состоящими из оксидов азота и кислорода (подобные присадки описаны, в частности, в международных заявках на патент WO-A 96/03367 и WO-A 96/03479). Подобные продукты взаимодействия как правило представляют собой смеси, состоящие из чистых нитрополиизобутиленов (например, α,β-динитро-полиизобутилена) и смешанных гидроксинитрополиизобутиленов (например, α-нитро-β-гидроксиполиизобутилена).
Присадками, содержащими гидроксильные группы в комбинации с моноаминогруппами или полиаминогруппами (Dc), являются, в частности, продукты взаимодействия полиизобутиленэпоксидов, которые могут быть получены из полиизобутиленов с молекулярной массой Mn от 300 до 5000, предпочтительно содержащих преимущественно концевые двойные связи, с аммиаком, моноаминами или полиаминами (подобные присадки описаны, в частности, в европейской заявке на патент ЕР-А 476485).
Присадками, содержащими карбоксильные группы или их соли со щелочными или щелочно-земельными металлами (Dd), предпочтительно являются сополимеры на основе олефинов с 2-40 атомами углеродородов и малеинового ангидрида с общей молекулярной массой от 500 до 20000, карбоксильные группы которых полностью или частично преобразованы в соли щелочных или щелочно-земельных металлов, а остаточные карбоксильные группы подвергли взаимодействию со спиртами или аминами. Подобные присадки известны, в частности, из европейской заявки на патент ЕР-А 307815. Они предназначены главным образом для предотвращения износа седел клапанов, причем, как сообщается в международной заявке на патент WO-A 87/01126, их предпочтительно можно использовать в комбинации с обычными моющими топливными присадками, например, поли-(изо)бутиленаминами или полиэфираминами.
Присадками, содержащими сульфокислотные группы или их соли со щелочными или щелочно-земельными металлами (De), предпочтительно являются соли щелочных или щелочно-земельных металлов со сложными алкиловыми эфирами сульфоянатарной кислоты, описанными, в частности, в европейской заявке на патент ЕР-А 639632. Подобные присадки предназначены главным образом для предотвращения износа седел клапанов, причем их предпочтительно можно использовать в комбинации с обычными моющими топливными присадками, в частности, поли(изо)бутиленаминами или полиэфираминами.
Присадками, содержащими полиоксиалкиленовые группировки с 2-4 атомами углерода в алкилене (Df), предпочтительно являются простые полиэфиры или полиэфирамины, которые могут быть получены путем взаимодействия алканолов с 2-60 атомами углерода, алкандиолов с 6-30 атомами углерода, моноалкиламинов или диалкиламинов с 2-30 атомами углерода в ал киле, алкилциклогексанолов с 1-30 атомами углерода или алкилфенолов с 1-30 атомами углерода с этиленоксидом, пропиленоксидом и/или бутиленоксидом, используемым в количестве от 1 до 30 молей в расчете на гидроксильную или аминогруппу, и, в случае полиэфираминов, последующего восстановительного аминирования аммиаком, моноаминами или полиаминами. Подобные продукты описаны, в частности, в европейских заявках на патент ЕР-А 310875, ЕР-А 356725 и ЕР-А 700985, а также в заявке США на патент US-A 4877416. В случае простых полиэфиров подобные продукты одновременно выполняют функцию масляной основы. Типичными примерами подобных присадок являются тридеканолбутоксилаты, изотридеканолбутоксилаты, изононилфенолбутоксилаты, полиизобутенолбутоксилаты и полиизобутенолпропоксилаты, а также соответствующие продукты превращения с аммиаком.
Присадками, содержащими группы сложных эфиров карбоновой кислоты (Dg), предпочтительно являются сложные эфиры на основе монокарбоновых, дикарбоновых или трикарбоновых кислот и длинноцепных алканолов или полиолов, прежде всего продукты с минимальной вязкостью 2 мм2/с при 100°С, описанные, в частности, в немецкой заявке на патент DE-A 3838918. В качестве монокарбоновых, дикарбоновых или трикарбоновых кислот можно использовать алифатические или ароматические кислоты, тогда как пригодными спиртами, или соответственно полиолами, прежде всего являются длинноцепные представители, например, с 6-24 атомами углерода. Типичными представителями сложных эфиров являются ад и паты, фталаты, изофталаты, терефталаты и тримеллитаты изооктанола, изононанола, изодеканола и изотридеканола. Подобные продукты одновременно выполняют функцию масляной основы.
Присадками, содержащими группировки, производные ангидрида янтарной кислоты, с гидроксильными группами, аминогруппами, амидными группами и/или, в частности, имидными группами (Dh), предпочтительно являются соответствующие производные алкилзамещенного или алкенилзамещенного ангидрида янтарной кислоты, в частности, соответствующие производные ангидрида полиизобутиленилянтарной кислоты, которые могут быть получены путем взаимодействия обычного или высокореакционноспособного полиизобутилена с Mn предпочтительно в интервале от 300 до 5000, особенно предпочтительно от 300 до 3000, более предпочтительно от 500 до 2500, еще более предпочтительно от 700 до 2500, в частности, от 800 до 1500, с малеиновым ангидридом термическим методом в соответствии с еновой реакцией, или через хлорированный полиизобутилен. Под группировками с гидроксильными группами, аминогруппами, амидными группами и/или имидными группами подразумевают, например, группы карбоновой кислоты, кислотные амиды моноаминов, кислотные амиды диаминов или полиаминов, которые помимо амидной функциональной группы содержат свободные аминогруппы, производные янтарной кислоты с кислотной и амидной функциональной группой, имиды карбоновых кислот с моноаминами, имиды карбоновых кислот с диаминами или полиаминами, которые помимо имидной функциональной группы содержат свободные аминогруппы, или диимиды, которые образуются в результате взаимодействия диаминов или полиаминов с двумя производными янтарной кислоты. Подобные топливные присадки общеизвестны и описаны, например, в документах (1) и (2). Речь предпочтительно идет о продуктах превращения алкилзамещенной янтарной кислоты, алкенилзамещенной янтарной кислоты или производных этих кислот с аминами, особенно предпочтительно о продуктах превращения замещенной полиизобутиленолом янтарной кислоты или ее производных с аминами. При этом особый интерес представляют продукты превращения с алифатическими полиаминами (поли-алкилениминами), в частности, этилендиамином, диэтилентриамином, триэтилентетрамином, тетраэтиленпентамином, пентаэтиленгексамином и гексаэтиленгептамином, которые обладают структурой имида.
В предпочтительном варианте предлагаемые в изобретении соединения можно комбинировать с кватернированными соединениями, описанными в международной заявке WO 2012/004300 (предпочтительно в тексте со строки 18 на странице 5 по строку 5 на странице 33, особенно предпочтительно в примере получения 1), которую следует считать неотъемлемой частью настоящей публикации.
В другом предпочтительном варианте предлагаемые в изобретении соединения можно комбинировать с кватернизированными соединениями, описанными в неопубликованной международной заявке с регистрационным номером РСТ/ЕР 2014/061834 и датой подачи 6 июня 2014 (предпочтительно в тексте со строки 21 на странице 5 по строку 34 на странице 47, особенно предпочтительно в примерах получения 1-17).
В другом предпочтительном варианте предлагаемые в изобретении соединения можно комбинировать с кватернизированными соединениями, описанными в международной заявке WO 11/95819 А1 (предпочтительно в тесте со строки 5 на странице 4 по строку 26 на странице 13, особенно предпочтительно в примере получения 2).
В другом предпочтительном варианте предлагаемые в изобретении соединения можно комбинировать с кватернизированными соединениями, описанными в международной заявке WO 11/110860 А1 (предпочтительно в тексте со строки 7 на странице 4 по строку 26 на странице 16, особенно предпочтительно в примерах получения 8, 9, 11 и 13).
В другом предпочтительном варианте осуществления изобретения предлагаемые в изобретении соединения можно комбинировать с кватернизированными соединениями, описанными в международной заявке WO 06/135881 А2 (предпочтительно в тексте со строки 14 на странице 5 по строку 14 на странице 12, особенно предпочтительно в примерах 1-4).
В другом предпочтительном варианте предлагаемые в изобретении соединения можно комбинировать с кватернизированными соединениями, описанными в международной заявке WO 10/132259 А1 (предпочтительно в тексте со строки 29 на странице 3 по строку 21 на странице 10, особенно предпочтительно в примере 3).
В другом предпочтительном варианте предлагаемые в изобретении соединения можно комбинировать с кватернизированными соединениями, описанными в международной заявке WO 08/060888 А2 (предпочтительно в тексте со строки 15 на странице 6 по строку 29 на странице 14, особенно предпочтительно в примерах 1-4).
В другом предпочтительном варианте предлагаемые в изобретении соединения можно комбинировать с кватернизированными соединениями, описанными в патенте Великобритании GB 2496514 А (предпочтительно абзацах с [00012] по [00039], особенно предпочтительно в примерах 1-3).
В другом предпочтительном варианте предлагаемые в изобретении соединения можно комбинировать с кватернизированными соединениями, описанными в международной заявке WO 2013 070503 А1 (предпочтительно абзацах с [00011] по [00039], особенно предпочтительно в примерах 1-5).
Присадками, содержащими группировки (Di), полученные путем взаимодействия замещенных фенолов с альдегидами и моноаминами или полиаминами по Манниху, предпочтительно являются продукты взаимодействия замещенных полиизобутиленом фенолов с формальдегидом и моноаминами или полиаминами, такими как этилендиамин, диэтилентриамин, триэтилентетрамин, тетраэтиленпентамин или диметиламинопропиламин. Замещенные полиизобутиленилом фенолы могут быть основаны на обычном или высокореакционноспособном полиизобутилене со среднечисловой молекулярной массой Mn в интервале от 300 до 5000. Подобные поли-изобутиленовые основания Манниха описаны, в частности, в европейской заявке на патент ЕР-А 831141.
Одну или несколько указанных выше моющих присадок можно добавлять к топливу в таком количестве, чтобы скорость их дозирования предпочтительно составляла от 25 до 2500 ч.н.м. масс., в частности, от 75 до 1500 ч.н.м. масс., прежде всего от 150 до 1000 ч.н.м. масс.
В2) Масляные основы
Совместно используемые масляные основы могут обладать минеральным или синтетическим происхождением. Пригодными минеральными масляными основами являются образующиеся в процессе нефтепереработки фракции, например, брайтсток, или базовые масла, вязкость которых, например, соответствует классам от SN 500 до SN 2000, а также ароматические углеводороды, углеводороды парафинового ряда и алкоксиалканолы. Пригодной является также фракция, называемая маслом гидрокрекинговой очистки и образующаяся при рафинировании минерального масла (фракция с примерным диапазоном кипения от 360 до 500°С, которая может выделена при вакуумной перегонке природного минерального масла, подвергнутого каталитическому гидрированию при высоком давлении, изомеризации и депарафинированию). Пригодными являются также смеси указанных минеральных масляных основ.
Примерами пригодных синтетических масляных основ являются полиолефины (полиальфаолефины или полиолефины с внутренней двойной связью), сложные (поли)эфиры, (поли)алкоксилаты, простые полиэфиры, алифатические полиэфирамины, простые полиэфиры, полученные при инициировании ал кил фенолами, полиэфирамины, полученные при инициировании алкилфенолами, а также сложные эфиры на основе карбоновых кислот и длинноцепных алканолов.
Примерами пригодных полиолефинов являются олефиновые полимеры со среднечисловой молекулярной массой Mn от 400 до 1800, в частности полимеры на основе бутилена или изобутилена (гидрированные или негидрированные).
Примерами пригодных простых полиэфиров или полиэфираминов предпочтительно являются соединения, содержащие полиоксиалкиленовые группировки с 2-4 атомами углерода в алкилене, которые могут быть получены путем превращения алканолов с 2-60 атомами углерода, алкандиолов с 6-30 атомами углерода, моноакиламинов или диалкиламинов с 2-30 атомами углерода в алкиле, алкилциклогексанолов с 1-30 атомами углерода в алкиле или алкилфенолов с 1-30 атомами углерода в алкиле с этиленоксидом, пропиленоксидом и/или бутиленоксидом, используемыми в количестве от 1 до 30 молей на моль гидроксильных или аминогрупп, и, в случае синтеза полиэфираминов, последующего восстановительного аминирования аммиаком, моноаминами или полиаминами. Подобные продукты описаны, в частности, в европейских заявках на патент ЕР-А 310875, ЕР-А 356725 и ЕР-А 700985, а также в заявке США на патент US-A 4,877,416. В качестве полиэфираминов можно использовать, например, полиалкиленоксидамины с 2-6 атомами углерода в алкилене или их функциональные производные. Типичными примерами являются тридека-нолбутоксилаты, изотридеканолбутоксилаты, изононилфенолбутоксилаты, полиизобутиленолбутоксилаты и полиизобутиленолпропоксилаты, а также соответствующие продукты превращения с аммиаком.
Примерами сложных эфиров на основе карбоновых кислот и длинноцепных алканолов являются, в частности, сложные эфиры монокарбоновых, дикарбоновых или трикарбоновых кислот с длинноцепными алканолами или полиолами, в частности, описанные в немецкой заявке на патент DE-A 3838918. В качестве монокарбоновых, дикарбоновых или трикарбоновых кислот можно использовать алифатические или ароматические кислоты, тогда как в качестве спиртов, или соответственно полиолов, прежде всего пригодны длинноцепные представители, например, с 6-24 атомами углерода. Типичными представителями сложных эфиров являются адипаты, фталаты, изофталаты, терефталаты и тримеллитаты изооктанола, изононанола, изодеканола и изотридеканола, например, ди-н-тридецилфталат или изотридецилфталат.
Другие пригодные системы масляных основ описаны, например, в немецких заявках на патент DE-A 3826608, DE-A 4142241 и DE-A 4309074, а также в европейских заявках на патент ЕР-А 452328 и ЕР-А 548617.
Примерами особенно пригодных синтетических масляных основ являются инициированные спиртами простые полиэфиры с числом звеньев алкилен-оксида с 3-6 атомами углерода (например, пропиленоксида, н-бутилен-оксида, изобутиленоксида или их смесей) в расчете на молекулу спирта примерно от 5 до 35, предпочтительно примерно от 5 до 30, особенно предпочтительно от 10 до 30, в частности, от 15 до 30. Неограничивающими объем изобретения примерами пригодных инициирующих спиртов являются длинноцепные алканолы или замещенные длинноцепным алкилом фенолы, причем длинноцепной алкильный остаток является, в частности, неразветвленным или разветвленным алкилом с 6-18 атомами углерода. Особыми примерами спиртов являются тридеканол и нонилфенол. Особенно предпочтительными простыми полиэфирами, инициированными спиртами, являются продукты превращения (продукты полиэтерификации) одноатомных алифатических спиртов с 6-18 атомами углерода с алкиленоксидами с 3-6 атомами углерода. Примерами одноатомных алифатических спиртов с 6-18 атомами углерода являются гексанол, гептанол, октанол, 2-этилгексанол, нониловый спирт, деканол, 3-пропил-гептанол, унде-канол, додеканол, тридеканол, тетрадеканол, пентадеканол, гексадеканол, октадеканол, а также их структурные изомеры и изомеры положения. Спирты можно использовать как в виде чистых изомеров, так и в виде технических смесей. Особенно предпочтительным спиртом является тридеканол. Примерами алкиленоксидов с 3-6 атомами углерода являются пропи-леноксид (в частности, 1,2-пропиленоксид), бутиленоксид (в частности, 1,2-бутиленоксид и 2,3-бутиленоксид и изобутиленоксид) или тетрагидрофуран, пентиленоксид и гексиленоксид. При этом особенно предпочтительными являются алкиленоксиды с тремя или четырьмя атомами углерода, то есть пропиленоксид (например, 1,2-пропиленоксид) и бутиленоксид (например, 1,2-бутиленоксид, 2,3-бутиленоксид и изобутиленоксид). В частности, в качестве алкиленоксида используют бутиленоксид.
Другими пригодными синтетическими масляными основами являются алкоксилированные алкилфенолы, например, описанные в немецкой заявке на патент DE-A 10102913.
Особенно пригодными масляными основами являются синтетические масляные основы, причем особенно предпочтительными являются указанные выше простые полиэфиры, инициированные спиртами.
Масляную основу, соответственно смесь разных масляных основ, добавляют к топливу в количестве, предпочтительно составляющем от 1 до 1000 ч.н.м. масс., особенно предпочтительно от 10 до 500 ч.н.м. масс., в частности, от 20 до 100 ч.н.м. масс.
В3) Присадки для улучшения хладотекучести
Пригодными присадками для улучшения хладотекучести в принципе являются любые органические соединения, способные улучшать текучие свойства среднедистиллятных топлив, или соответственно дизельных топлив, на холоду. В более целесообразном варианте подобные органические соединения должны обладать достаточной маслорастворимостью. Для указанной цели, в частности, пригодны присадки для улучшения хладотекучести, обычно используемые для улучшения текучих свойств средних дистиллятов ископаемого происхождения, то есть обычных минеральных дизельных топлив. Однако пригодными являются также органические соединения, которые при использовании в обычных дизельных топливах обладают частичной или преобладающей способностью предотвращать осаждение восков, то есть свойствами присадок для предотвращения осаждения восков. Кроме того, подобные соединения могут обладать частичным или преобладающим действием центров кристаллизации. Можно использовать также смеси органических соединений, обладающие комбинированным действием присадок для улучшения текучих свойств средних дистиллятов, присадок для предотвращения осаждения восков и/или центров кристаллизации.
В типичных случаях присадку для улучшения хладотекучести выбирают из группы, включающей:
(К1) сополимеры олефина с 2-40 атомами углерода по меньшей мере с одним другим этиленненасыщенным мономером,
(К2) гребневидные полимеры,
(К3) полиоксиалкилены,
(К4) полярные соединения азота,
(К5) сульфокарбоновые кислоты, сульфокислоты или их производные, и
(К6) сложные эфиры поли(мет)акриловой кислоты.
Можно использовать как смеси разных представителей одного из соответствующих классов (К1)-(К6), так и смеси представителей разных классов (К1)-(К6).
Олефиновыми мономерами с 2-40 атомами углерода, пригодными для сополимеров класса (К1), являются, например, мономеры с 2-20 атомами углерода, в частности, с 2-10 атомами углерода, содержащие от одной до трех, предпочтительно одну или две, в частности, одну углерод-углеродную двойную связь. В последнем случае двойная углерод-углеродная связь может быть как концевой (α-олефины), так и внутренней. Предпочтительными являются α-олефины, причем особенно предпочтительными являются α-олефины с 2-6 атомами углерода, например, пропилен, 1-бутен, 1-пентен, 1-гексен и прежде всего этилен.
В случае сополимеров класса (К1) по меньшей мере один другой этилен-ненасыщенный мономер предпочтительно выбирают из группы, включающей сложные алкениловые эфиры карбоновой кислоты, сложные эфиры (мет)акриловой кислоты и другие олефины.
В случае сополимеризации указанных выше базовых олефиновых мономеров с 2-40 атомами углерода с другими олефинами, последние предпочтительно обладают более высокой молекулярной массой. Так, например, если в качестве базового олефинового мономера используют этилен или пропилен, пригодными другими олефинами являются, в частности, α-олефины с 10-40 атомами углерода. Сополимеризацию с другими олефинами в большинстве случаев выполняют лишь в том случае, если используют также мономеры с функциональными группами сложных эфиров карбоновой кислоты.
Пригодными сложными эфирами (мет)акриловой кислоты являются, например, сложные эфиры на основе (мет)акриловой кислоты и алканолов с 1-20 атомами углерода, в частности, с 1-10 атомами углерода, прежде всего метанола, этанола, пропанола, изопропанола, н-бутанола, втор-бутанола, изобутанола, трет-бутанола, пентанола, гексанола, гептанола, октанола, 2-этилгексанола, нонанола и деканола, включая соответствующие структурные изомеры.
Пригодными сложными алкениловыми эфирами карбоновой кислоты являются, например, сложные алкениловые эфиры с 2-14 атомами углерода в алкениле, например, виниловые и пропениловые сложные эфиры карбоновых кислот с 2-21 атомами углерода, углеводородный остаток которых может быть неразветвленным или разветвленным. При этом предпочтительными являются сложные виниловые эфиры. Предпочтительными карбоновыми кислотами с разветвленным углеводородным остатком являются те из них, разветвление которых находится в α-положении относительно карбоксильной группы, причем α-атом углерода особенно предпочтительно является третичным атомом, то есть карбоновая кислота является так называемой неокарбоновой кислотой. Однако углеводородный остаток карбоновой кислоты предпочтительно является неразветвленным.
Примерами пригодных сложных алкениловых эфиров карбоновой кислоты являются винилацетат, винилпропионат, винилбутират, винил-2-этилгексаноат, сложный виниловый эфир неопентановой кислоты, сложный виниловый эфир гексановой кислоты, сложный виниловый эфир неононановой кислоты, сложный виниловый эфир неодекановой кислоты и соответствующие пропениловые эфиры, причем предпочтительными являются сложные виниловые эфиры. Особенно предпочтительным сложным алкениловым эфиром карбоновой кислоты является винилацетат, причем типичными сополимерами группы (К1), получаемыми с использованием этого мономера, являются чаще всего используемые сополимеры этилена с винилацетатом.
Особенно предпочтительно используемые сополимеры этилена с винил-ацетатом и их получение описаны в международной заявке WO 99/29748.
Пригодными являются также сополимеры класса (К1), которые содержат мономерные звенья двух или более сложных алкениловых эфиров карбоновой кислоты, отличающихся друг от друга алкенилами и/или группами карбоновой кислоты. Пригодными являются также сополимеры, которые помимо мономерных звеньев сложного(-ых) алкенилового(-ых) эфира(-ов) карбоновой кислоты содержат мономерные звенья по меньшей мере одного олефина и/или по меньшей мере одного сложного эфира (мет)акриловой кислоты.
К пригодным сополимерам класса (К1) относятся также тройные сополимеры на основе α-олефина с 2-40 атомами углерода, сложного С1-С20-алкилового эфира этиленненасыщенной монокарбоновой кислоты с 3-15 атомами углерода и сложного С2-С14-алкенилового эфира насыщенной монокарбоновой кислоты с 2-21 атомами углерода. Подобные тройные сополимеры описаны в международной заявке WO 2005/054314. Типичный подобный тройной сополимер состоит из мономерных звеньев этилена, сложного 2-этилгексилового эфира акриловой кислоты и винилацетата.
Количество звеньев по меньшей мере одного другого этиленненасыщенного мономера или звеньев других этиленненасыщенных мономеров в сополимерах класса (К1) предпочтительно составляет от 1 до 50% масс., в частности, от 10 до 45% масс., прежде всего от 20 до 40% масс. в пересчете на общий сополимер. Таким образом, базовые олефины с 2-40 атомами углерода как правило составляют основную массовую часть содержащихся в сополимерах класса (К1) мономерных звеньев.
Сополимеры класса (К1) предпочтительно обладают среднечисловой молекулярной массой Mn в интервале от 1000 до 20000, особенно предпочтительно от 1000 до 10000, в частности, от 1000 до 8000.
Типичные гребневидные полимеры, пригодные в качестве компонента класса (К2), могут быть получены, например, путем сополимеризации малеинового ангидрида или фумаровой кислоты с другим этиленненасыщенным мономером, например, α-олефином или ненасыщенным сложным эфиром, например, винилацетатом, и последующей этерификации ангидридных, соответственно кислотных остатков спиртом по меньшей мере с десятью атомами углерода. Другими пригодными гребневидными полимерами являются сополимеры α-олефинов и этерифицированных сомономеров, например, этерифицированные сополимеры стирола с малеиновым ангидридом или этерифицированные сополимеры стирола с фумаровой кислотой. Пригодными гребневидными полимерами могут быть также полифумараты или полималеинаты. Кроме того, пригодными гребневидными полимерами являются гомополимеры и сополимеры простых виниловых эфиров. Гребневидные полимеры, пригодные для использования в качестве компонента класса (К2), описаны также, например, в международной заявке WO 2004/035715 и статье "Comb-Like Polymers. Structure and Properties", N.A. Plate und V.P. Shibaev, J. Poly. Sci. Macromolecular Revs. 8, cc. 117-253 (1974). Пригодными являются также смеси гребневидных полимеров.
Полиоксиалкиленами, пригодными для использования в качестве компонента класса (К3), являются, например, сложные полиоксиалкиленовые эфиры, простые полиоксиалкиленовые эфиры, смешанные сложные/простые полиоксиалкиленовые эфиры и смеси указанных эфиров. Подобные полиоксиалкиловые соединения предпочтительно содержат по меньшей мере одну, предпочтительно по меньшей мере две неразветвленные алкильные группы соответственно с 10-30 атомами углерода и одну полиоксиалкиленовую группу со среднечисловой молекулярной массой до 5000. Подобные полиоксиалкиленовые соединения описаны, например, в европейской заявке на патент ЕР-А 061895 и патенте США US 4491455. Особые полиоксиалкиленовые соединения основаны на полиэтиленгликолях и полипропиленгликолях со среднечисловой молекулярной массой в интервале от 100 до 5000. Кроме того, пригодными являются сложные полиоксиалкиленовые моноэфиры и полиоксиалкиленовые диэфиры жирных кислот с 10-30 атомами углерода, например, стеариновой или бегеновой кислоты.
Полярные соединения азота, пригодные для использования в качестве компонента класса (К4), могут обладать как ионной, так и неионной природой, и предпочтительно содержат по меньшей мере один заместитель, в частности, по меньшей мере два заместителя в виде третичного атома азота общей формулы >NR7, в которой R7 означает углеводородный остаток с 8-40 атомами углерода. Азотные заместители могут находиться также в кватернизированной, то есть катионной форме. Примерами подобных соединений азота являются соли аммония и/или амиды, которые могут быть получены путем взаимодействия по меньшей мере одного амина, замещенного по меньшей мере одним углеводородным остатком, с карбоновой кислотой с 1-4 карбоксильными группами, или соответственно с ее пригодным производным. Амины предпочтительно содержат по меньшей мере один неразветвленный алкильный остаток с 8-40 атомами углерода. К первичным аминам, пригодным для получения указанных полярных соединений азота, относятся, например, октиламин, нониламин, дециламин, ундециламин, додециламин, тетрадециламин и более высокомолекулярные линейные гомологи, а к пригодным вторичными аминами, например, диоктадециламин и метилбегениламин. Пригодными являются также смеси аминов, в частности, промышленно доступные смеси, например, алифатических аминов или гидрированных талловых аминов, описанные, например, в главе "Amines, aliphatic" Ullmanns Encyclopedia of Industrial Chemistry, 6-е издание. Кислотами, пригодными для осуществления взаимодействия, являются, например, циклогексан-1,2-дикарбоновая кислота, циклогексен-1,2-дикарбоновая кислота, циклопентан-1,2-дикарбоновая кислота, нафталиндикарбоновая кислота, фталевая кислота, изофталевая кислота, терефталевая кислота и янтарная кислота, замещенная длинно-цепными углеводородными остатками.
Компонентом класса (К4) является, в частности, маслорастворимый продукт взаимодействия поликарбоновых кислот с 2-20 атомами углерода, содержащих по меньшей мере одну третичную аминогруппу, с первичными или вторичными аминами. Используемые для получения подобного продукта взаимодействия поликарбоновые кислоты с 2-20 атомами углерода по меньшей мере с одной третичной аминогруппой предпочтительно содержат по меньшей мере три карбоксильные группы, в частности, от 3 до 12, прежде всего от 3 до 5 карбоксильных групп. Структурные единицы карбоновой кислоты, образующие указанные поликарбоновые кислоты, предпочтительно содержат от 2 до 10 атомов углерода и, в частности, являются структурными единицами уксусной кислоты. Структурные единицы карбоновой кислоты соединены в поликарбоновые кислоты пригодным образом, чаще всего посредством одного или нескольких атомов углерода и/или азота. Указанные структурные единицы предпочтительно присоединены к третичным атомам азота, причем в случае нескольких подобных атомов азота последние соединены друг с другом углеводородными цепочками.
Компонентом класса (К4) предпочтительно является маслорастворимый продукт взаимодействия, основанный на содержащих по меньшей мере одну третичную аминогруппу поликарбоновых кислотах с 2-20 атомами углерода общей формулы (IIa) или (IIb):
в которых переменная А означает неразветвленную или разветвленную алкиленовую группу с 2-6 атомами углерода или группировку формулы (III):
и переменная В означает алкиленовую группу с 1-19 атомами углерода. Соединения общих формул (IIa) и (IIb), в частности, обладают свойствами присадок для предотвращения осаждения восков.
Кроме того, предпочтительным маслорастворимым продуктом взаимодействия компонента (К4), в частности продуктом общей формулы (IIa) или (IIb), является амид, амидная соль аммония или соль аммония, ни одна из групп карбоновой кислоты в которой не преобразована в амидные группы, или в амидные группы преобразована одна или несколько групп карбоновой кислоты.
Неразветвленными или разветвленными алкиленовыми группами с 2-6 атомами углерода в качестве переменных А являются, например, 1,1-этилен, 1,2-пропилен, 1,3-пропилен, 1,2-бутилен, 1,3-бутилен, 1,4-бутилен, 2-метил-1,3-пропилен, 1,5-пентилен, 2-метил-1,4-бутилен, 2,2-диметил-1,3-пропилен, 1,6-гексилен (гексаметилен) и, в частности, 1,2-этилен. Переменная А предпочтительно содержит 2-4 атома углерода, в частности, два или три атома углерода.
Алкиленовыми группами с 1-19 атомами углерода в качестве переменных В являются, например 1,2-этилен, 1,3-пропилен, 1,4-бутилен, гексаметилен, октаметилен, декаметилен, додекаметилен, тетрадекаметилен, гекса-декаметилен, октадекаметилен, нонадекаметилен и, в частности, метилен. Переменная В предпочтительно содержит 1-10 атомов углерода, в частности, 1-4 атома углерода.
Первичными и вторичными аминами, используемыми в качестве реагентов, взаимодействующих с поликарбоновыми кислотами с образованием компонента (К4), обычно являются моноамины, в частности, алифатические моноамины. Подобные первичные и вторичные амины могут быть выбраны из группы, включающей множество аминов, которые при необходимости соединены друг с другом и содержат углеводородные остатки.
Подобные амины, лежащие в основе маслорастворимых продуктов взаимодействия компонента (К4), чаще всего являются вторичными аминами общей формулы HN(R8)2, в которой обе переменные R8 независимо друг от друга соответственно означают неразветвленные или разветвленные алкильные остатки с 10-30 атомами углерода, в частности, с 14-24 атомами углерода. Подобные длинноцепные алкильные остатки предпочтительно являются неразветвленными или незначительно разветвленными остатками. Длинноцепные алкильные остатки указанных вторичных аминов как правило являются остатками жирных кислот природного происхождения, или соответственно производными последних. Остатки R8 предпочтительно являются одинаковыми.
Указанные вторичные амины могут быть соединены с поликарбоновыми кислотами посредством амидных структур или могут находиться в форме солей аммония, причем в форме амидных структур может находиться только часть вторичных аминов, а другая часть может находиться в форме солей аммония. Свободные кислотные группы предпочтительно присутствуют лишь в незначительном количестве или отсутствуют вовсе. Масло-растворимые продукты превращения компонента (К4) предпочтительно полностью находятся в форме амидных структур.
Типичными примерами подобных компонентов (К4) являются продукты взаимодействия нитрилотриуксусной кислоты, этилендиаминтетрауксусной кислоты или пропилен-1,2-диаминтетрауксусной кислоты с диолеиламином, дипальмитинамином, диамином кокосового масла, дистеариламином, дибегениламином или, в частности, диамином животного жира, используемых соответственно в количествах от 0,5 до 1,5 молей, в частности, от 0,8 до 1,2 молей на моль карбоксильных групп. Особенно предпочтительным компонентом (К4) является продукт превращения одного моля этилендиаминтетрауксусной кислоты с четырьмя молями гидрированного диамина животного жира.
Другими типичными примерами компонента (К4) являются N,N-диалкил-аммониевые соли 2-N,N'-диалкиламидобензоатов, например, продукт взаимодействия одного моля фталевого ангидрида с двумя молями диамина животного жира, который может быть гидрированным или негидрированным, а также продукт взаимодействия одного моля алкенилспиробислактона с двумя молями диалкиламина, например, диамина животного жира и/или амина животного жира, причем оба эти амина могут быть гидрированными или негидрированными.
Другими типичными структурными формами компонента класса (К4) являются циклические соединения с третичными аминогруппами или продукты конденсации длинноцепных первичных или вторичных аминов с содержащими карбоновые кислоты полимерами, описанные в международной заявке WO 93/18115.
Компонентом класса (К5), пригодным в качестве присадки для улучшения хладотекучести, то есть сульфокарбоновыми кислотами, сульфокислотами или их производными, являются, например, маслорастворимые амиды карбоновых кислот и сложные эфиры орто-сульфобензойной кислоты, в которых сульфокислотная функция присутствует в виде сульфоната с алкилзамещенными катионами аммония (смотри европейскую заявку на патент ЕР-А 261957).
Компонентом класса (К6), пригодным для использования в качестве присадки для улучшения хладотекучести, то есть сложными эфирами поли(мет)акриловой кислоты, являются как гомополимеры, так и сополимеры сложных эфиров акриловой и метакриловой кислоты. Предпочтительными являются сополимеры на основе по меньшей мере двух отличающихся друг от друга сложных эфиров (мет)акриловой кислоты с разными конденсированными спиртовыми фрагментами. При необходимости сополимер дополнительно содержит звенья другого олефинненасыщенного мономера, отличающегося от указанных выше мономеров. Средневесовая молекулярная масса полимера предпочтительно составляет от 50000 до 500000. Особенно предпочтительным полимером является сополимер метакриловой кислоты со сложными эфирами на основе метакриловой кислоты и насыщенных спиртов с 14 или 15 атомами углерода, причем кислотные группы нейтрализованы гидрированным амином животного жира. Пригодные сложные эфиры поли(мет)акриловой кислоты описаны, например, в международной заявке WO 00/44857.
Присадку для улучшения хладотекучести, соответственно смесь разных присадок для улучшения хладотекучести, добавляют к среднедистиллятному топливу, или соответственно дизельному топливу, в общем количестве предпочтительно от 10 до 5000 ч.н.м. масс., особенно предпочтительно от 20 до 2000 ч.н.м. масс., более предпочтительно от 50 до 1000 ч.н.м. масс., в частности, от 100 до 700 ч.н.м. масс., например, от 200 до 500 ч.н.м. масс.
В4) Присадки для повышения смазочной способности
Пригодные присадки для повышения смазочной способности (антифрикционные присадки) обычно основаны на жирных кислотах или сложных эфирах жирных кислот. Типичными примерами подобных присадок являются талловые жирные кислоты, например, описанные в международной заявке WO 98/004656, а также моноолеат глицерина. Кроме того, пригодными присадками для повышения смазочной способности являются описанные в патенте США US 6743266 В2 продукты взаимодействия природных или синтетических масел, например, триглицеридов, с алканоламинами.
B5) Ингибиторы коррозии, отличающиеся от описываемого полимера
Пригодными ингибиторами коррозии являются, например, сложные эфиры янтарной кислоты прежде всего с полиолами, производные жирных кислот, например, сложные эфиры олеиновой кислоты, олигомеризованные жирные кислоты, замещенные этаноламины, а также продукты, поставляемые фирмой Rhein Chemie (Мангейм, Германия) под торговым названием RC 4801, фирмой BASF SE под торговым названием Irgacor® L12 или фирмой Afton Corporation под торговым названием HITEC 536.
B6) Деэмульгаторы
Пригодными деэмульгаторами являются, например, соли алкилзамещенных фенолсульфонатов и нафталинсульфонатов со щелочными или щелочно-земельными металлами и соли жирных кислот со щелочными или щелочно-земельными металлами, а также нейтральные соединения, в частности, алкоксилированные спирты, например, этоксилаты спиртов, алкоксилаты фенола, например, трет-бутилфенолэтоксилат или трет-пентилфенолэтоксилат, жирные кислоты, алкилфенолы, продукты конденсации этиленоксида и пропиленоксида, включая блоксополимеры этилен-оксид/пропиленоксид, полиэтиленимины и полисилоксаны.
B7) Присадки для уменьшения мутности
Пригодными присадками для уменьшения мутности являются, например, алкоксилированные фенолформальдегидные конденсаты, например, продукты, поставляемые под торговым названием Nalco 7D07 (фирма Nalco) и Tolad 2683 (фирма Petrolite).
B8) Антивспениватели
Примерами пригодных антивспенивателей являются модифицированные полиэфирами полисилоксаны, например, продукты, поставляемые под торговым названием Tegopren 5851 (фирма Goldschmidt), Q 25907 (фирма Dow Corning) и Rhodosil (фирма Rhone Poulenc).
B9) Присадки для повышения цетанового числа
Пригодными присадками для повышения цетанового числа являются, например, алифатические нитраты, в частности, 2-этилгексилнитрат и цикло-гексилнитрат, а также пероксиды, в частности, пероксид ди-трет-бутила.
В10) Антиоксиданты
Пригодными антиоксидантами являются, например, замещенные фенолы, в частности, 2,6-ди-трет-бутилфенол и 6-ди-трет-бутил-3-метилфенол, а также фенилендиамины, например, N,N'-ди-втор-бутил-п-фенилен-диамин.
В11) Деактиваторы металлов
Пригодными деактиваторами металлов являются, например, производные салициловой кислоты, в частности, N,N'-дисалицилиден-1,2-пропанди-амин.
B12) Растворители
Пригодными являются, например, неполярные органические растворители, в частности, ароматические и алифатические углеводороды, например толуол, ксилолы, уайт-спирит и продукты, поставляемые под торговым названием Shellsol (фирма Royal Dutch/Shell Group) и Exxsol (фирма ExxonMobil), а также полярные органические растворители, например, спирты, в частности, 2-этилгексанол, деканол и изотридеканол. Подобные растворители попадают в дизельное топливо чаще всего вместе с указанными выше присадками и совместными присадками, которые для более удобного обращения подлежат растворению или разбавлению.
С) Топлива
Предлагаемые в изобретении присадки отлично пригодны для использования в качестве присадок, которые в принципе можно добавлять к любым топливам. Указанные присадки способствуют достижению целого ряда положительных эффектов при эксплуатации двигателей внутреннего сгорания. Их предпочтительно используют в среднедистиллятных топливах, в частности, в дизельных топливах.
Таким образом, объектом настоящего изобретения являются также топлива, в частности, среднедистиллятные топлива, с эффективным содержанием предлагаемой в изобретении кватернизированной присадки, используемой в качестве добавки для достижения благоприятных эффектов при эксплуатации двигателей внутреннего сгорания, например, дизельных двигателей, в частности, дизельных двигателей с непосредственным впрыскиванием топлива, прежде всего дизельных двигателей, оснащенных системой впрыскивания Коммон Рэйл. Эффективное содержание (скорость дозирования) указанных присадок как правило составляет от 10 до 5000 ч.н.м. масс., предпочтительно от 20 до 1500 ч.н.м. масс., в частности, от 25 до 1000 ч.н.м. масс., прежде всего от 30 до 750 ч.н.м. масс., соответственно в пересчете на общее количество топлива.
Под среднедистиллятными топливами, в частности, дизельными топливами или мазутами, предпочтительно подразумевают рафинированные нефтепродукты, пределам кипения которых обычно соответствует интервал от 100 до 400°С. В большинстве случаев подобными топливами являются дистилляты с точкой 95-процентного выкипания до 360°С или выше. Речь идет также о так называемом дизельном топливе с ультранизким содержание серы или городском дизельном топливе с максимальной точкой 95-процентного выкипания, например, 345°С и максимальным содержанием серы 0,005% масс. или максимальной точкой 95-процентного выкипания, например, 285°С и максимальным содержанием серы 0,001% масс. Помимо минеральных среднедистиллятных топлив, или соответственно дизельных топлив, получаемых путем рафинирования, пригодными являются также топлива, которые могут быть получены путем газификации угля, сжижения газа или методом получения жидких биотоплив из биомассы. Пригодными являются также смеси указанных выше среднедистиллятных топлив, или соответственно дизельных топлив, с регенеративными топливами, например, биодизелем или биоэтанолом.
Качественные показатели мазутов и дизельных топлив регламентированы, например, в стандартах DIN 51603 и EN 590 (смотри также Ullmann's Encyclopedia of Industrial Chemistry, 5-е издание, том A12, с. 617 и следующие).
Предлагаемые в изобретении кватернизированные присадки можно использовать не только в указанных выше среднедистиллятных топливах ископаемого, растительного или животного происхождения, которые представляют собой главным образом смеси углеводородов, но и в смесях подобных средних дистиллятов с жидкими биотопливами (биодизельными топливами). Подобные смеси в соответствии с настоящим изобретением также относятся к среднедистиллятным топливам. Они являются рыночными продуктами, которые содержат жидкие биотоплива чаще всего во второстепенных количествах, в типичных случаях составляющих от 1 до 30% масс., в частности, от 3 до 10% масс., или соответственно в пересчете на общее количество среднего дистиллята ископаемого, растительного или животного происхождения и жидкого биотоплива.
Жидкие биотоплива как правило основаны на сложных эфирах жирной кислоты, предпочтительно главным образом на сложных алкиловых эфирах жирных кислот, производных растительных и/или животных масел и/или жиров. Под сложными алкиловыми эфирами обычно подразумевают низшие сложные алкиловые эфиры, в частности, алкиловые эфиры с 1-4 атомами углерода, которые могут быть получены путем переэтерификации содержащихся в растительных и/или животных маслах и/или жирах глицеридов, в частности, триглицеридов, посредством низших спиртов, например, этанола или прежде всего метанола (сложные метиловые эфиры жирных кислот). К типичным низшим сложным алкиловым эфирам на основе растительных и/или животных масел и/или жиров, находящим применение в качестве жидкого биотоплива или его компонентов, относятся, например, сложный метиловый эфир подсолнечного масла, сложный метиловый эфир пальмового масла, сложный метиловый эфир соевого масла и в особенности сложный метиловый эфир рапсового масла.
Под среднедистиллятными топливами, соответственно дизельными топливами, особенно предпочтительно подразумевают топлива с низким содержанием серы, составляющим менее 0,05% масс., предпочтительно менее 0,02% масс., в частности, менее 0,005% масс., в особенности менее 0,001% масс.
В качестве карбюраторных топлив пригодны любые рыночные топливные композиции данного типа. Типичным представителем карбюраторных топлив является рыночное базовое топливо Eurosuper согласно стандарту EN 228. Кроме того, возможной сферой применения настоящего изобретения являются также композиции карбюраторных топлив, спецификация которых приведена в международной заявке WO 00/47698.
Предлагаемые в изобретении кватернизированные присадки, в частности, пригодны в качестве присадок к топливным композициям, в особенности к дизельным топливам, используемым для предотвращения указанных в начале настоящего описания проблем, возникающих при эксплуатации дизельных двигателей с непосредственным впрыскиванием топлива, прежде всего при эксплуатации дизельных двигателей с системой впрыскивания Коммон Рэйл.
Приведенные ниже примеры служат для более подробного пояснения настоящего изобретения. Приведенные ниже методы испытания являются частью общего описания изобретения и не ограничиваются конкретными примерами его осуществления.
Экспериментальная часть
А. Общие методы испытания
1. Определение потери мощности дизельного двигателя DW10 вследствие образования отложений в форсунках системы впрыскивания Коммон Рэйл
Данное испытание выполняют в соответствии с пунктом 5 регламентированной СЕС (Европейским координационным советом по испытаниям и сертификации) процедуры F-098-08. При этом порядок испытания и тип двигателя (Peugeot DW10) могут быть аналогичны процедуре CEC-F-098-08.
Отличия и особенности указаны в приведенных ниже примерах применения.
2. Определение противодействия присадок образованию внутренних отложений в форсунках (IDID-тест)
Характеристикой образования отложений внутри форсунок являются отклонения температуры отработавшего газа, выходящего из цилиндров при пуске холодного двигателя DW10.
Для стимулирования образования отложений к топливу добавляют 1 мг/л натриевой соли органической кислоты, 20 мг/л додеценилянтарной кислоты и 10 мг/л воды.
Используемую додеценилянтарную кислоту получают посредством гидролиза ангидрида додеценилянтарной кислоты (смеси изомеров фирмы Aldrich, регистрационный номер в Chemical Abstracts 26544-38-7).
IDID-тест осуществляют в виде описанного выше испытания DU-CU.
Испытание DU-CU выполняют в соответствии с пунктом 5 методики СЕС-F-098-08.
Испытание DU-CU состоит из двух последовательно реализуемых отдельных стадий. На первой стадии (DU) формируют отложения, на второй стадии (CU) их устраняют.
После реализации DU-стадии и последующего по меньшей мере восьмичасового останова выполняют пуск холодного двигателя с последующей десятиминутной работой на холостом ходу.
Затем без демонтирования и очистки форсунок приступают к реализации CU-стадии с использованием CU-топлива. По завершении восьмичасового CU-испытания и последующего по меньшей мере восьмичасового останова выполняют пуск холодного двигателя с последующей десятиминутной работой на холостом ходу. Результаты испытания оценивают путем сравнения температурных режимов отдельных цилиндров после пуска холодного двигателя соответственно при DU-испытании и CU-испытании.
IDID-тест позволяет обнаружить образование внутренних отложений в форсунке. Соответствующим характеристическим параметром является температура отработавшего газа на выходе из отдельного цилиндра. Для систем с форсунками без внутренних отложений наблюдается равномерное повышение температуры выходящих из цилиндров отработавших газов. При наличии внутренних отложений в форсунках наблюдается неравномерное повышение температуры выходящих из отдельных цилиндров отработавших газов (соответствующие температуры отличаются друг от друга).
Температурные датчики находятся в выпускном коллекторе, расположенном позади выхода отработавшего газа из головки цилиндров. Значительное отклонение температуры для отдельных цилиндров (например, превышающее 20°С) свидетельствует о наличии внутренних отложений в соответствующих форсунках.
Длительность периодов DU- и CU-испытания соответственно составляет восемь часов. При этом одночасовой цикл испытания согласно СЕС F-098-08 (смотри фиг. 1) реализуют соответственно восемь раз. При отклонении характерных для отдельных цилиндров температур от среднего значения для всех четырех цилиндров, превышающем 45°С, испытание подлежит досрочному прекращению.
Изменения и особенности
Перед каждым DU-испытанием в двигатель устанавливают очищенные форсунки. Длительность очистки форсунок при 60°С в ультразвуковой ванне с водой, содержащей 10% ультраочистителя фирмы Intersciences (Брюссель), составляет четыре часа.
3. Определение кислотного числа
Определение активной составляющей
50 мл 0,5-молярного этанольного раствора гидроксида калия в течение трех часов нагревают до температуры 95°С в снабженном воздушным холодильником ХПК-стакане емкостью 150 мл. Воздушный холодильник промывают 30 мл этанола, после чего раствор потенциографически титруют 0,5-молярной водной соляной кислотой.
Анализ образца
В ХПК-стакане емкостью 150 мл взвешивают около 1 г образца, который затем растворяют в 50 мл 0,5-молярного этанольного раствора гидроксида калия. Стакан снабжают воздушным холодильником и помещают в нагретый до 95°С блочный термостат с мешалкой. Через три часа стакан извлекают из термостата, промывают 30 мл этанола, и раствор потенциографически титруют 0,5-молярной водной соляной кислотой.
В. Примеры синтеза
Пример синтеза 1 (из малеинового ангидрида и олефинов с 20-24 атомами углерода, в Wibarcan®)
В снабженный якорной мешалкой стеклянный реактор объемом 4 литра загружают смесь олефинов с 20-24 атомами углерода (901,4 г, средняя молекулярная масса 296 г/моль) и Wibarcan® (1113,0 г, фирма Wibarco). Смесь в токе азота при перемешивании нагревают до 150°С. В течение пяти часов к смеси добавляют раствор ди-трет-бутилпероксида (12,2 г, фирма Akzo Nobel) в Wibarcan® (107,7 г) и расплавленный малеиновый ангидрид (298,6 г). Реакционную смесь в течение часа перемешивают при 150°С, а затем охлаждают до 95°С. При этой температуре в течение трех часов добавляют воду (43,4 г) и перемешивание продолжают в течение 11 часов.
Согласно данным гель-проникащей хроматографии (тетрагидрофуран + 1% трифторуксусной кислоты в качестве элюента, полистирольный стандарт) полимер обладает Mn=619 г/моль, Mw=2780 г/моль и полидисперсностью 4,5.
Сополимер характеризуется числом атомов углерода в расчете на кислотную группу, равным 13; кислотное число составляет 210,8 мг КОН/г.
Пример синтеза 2 (из малеинового ангидрида и олефинов с 20-24 атомами углерода, в Solvesso™ 150)
В снабженный якорной мешалкой стеклянный реактор объемом 2 литра загружают смесь олефинов с 20-24 атомами углерода (363,2 г, средняя молекулярная масса 296 г/моль) и Solvesso™ 150 (270,2 г, фирма DHC Solvent Chemie GmbH). Смесь в токе азота при перемешивании нагревают до 150°С. В течение пяти часов к смеси добавляют раствор ди-трет-бутилпероксида (24,67 г, фирма Akzo Nobel) в Solvesso™ 150 (217,0 г) и расплавленный малеиновый ангидрид (120,3 г). Реакционную смесь в течение часа перемешивают при 150°С, а затем охлаждают до 95°С. При этой температуре в течение трех часов добавляют воду (19,9 г) и перемешивание продолжают в течение 11 часов.
Согласно данным гель-проникащей хроматографии (тетрагидрофуран + 1% трифторуксусной кислоты в качестве элюента, полистирольный стандарт) полимер обладает Mn=1330 г/моль, Mw=2700 г/моль и полидисперсностью 2,0.
Сополимер характеризуется числом атомов углерода в расчете на кислотную группу, равным 13; кислотное число составляет 210,8 мг КОН/г.
Пример синтеза 3 (из малеинового ангидрида и олефинов с 20-24 атомами углерода, в Solvesso™ 150)
В снабженный якорной мешалкой стеклянный реактор объемом 2 литра загружают смесь олефинов с 20-24 атомами углерода (363,2 г, средняя молекулярная масса 296 г/моль) и Solvesso™ 150 (231,5 г, фирма DHC Solvent Chemie GmbH). Смесь в токе азота при перемешивании нагревают до 160°С. В течение пяти часов к смеси добавляют раствор ди-трет-бутилпероксида (29,6 г, фирма Akzo Nobel) в Solvesso™ 150 (260,5 г) и расплавленный малеиновый ангидрид (120,3 г). Реакционную смесь в течение часа перемешивают при 150°С, а затем охлаждают до 95°С. При этой температуре в течение трех часов добавляют воду (19,9 г) и перемешивание продолжают в течение 11 часов.
Согласно данным гель-проникащей хроматографии (тетрагидрофуран + 1% трифторуксусной кислоты в качестве элюента, полистирольный стандарт) полимер обладает Mn=1210 г/моль, Mw=2330 г/моль и полидисперсностью 1,9.
Сополимер характеризуется числом атомов углерода в расчете на кислотную группу, равным 13; кислотное число составляет 210,8 мг КОН/г.
Пример синтеза 4 (из малеинового ангидрида и олефинов с 20-24 атомами углерода, в Solvesso™ 150)
В снабженный якорной мешалкой стеклянный реактор объемом 2 литра загружают смесь олефинов с 20-24 атомами углерода (371,8 г, средняя молекулярная масса 296 г/моль) и Solvesso™ 150 (420,7 г, фирма DHC Solvent Chemie GmbH). Смесь в токе азота при перемешивании нагревают до 150°С. В течение трех часов к смеси добавляют раствор ди-трет-бутилпероксида (5,71 г, фирма Akzo Nobel) в Solvesso™ 150 (50,2 г) и расплавленный малеиновый ангидрид (123,2 г). Реакционную смесь в течение часа перемешивают при 150°С, а затем охлаждают до комнатной температуры. 160 г полученного, как указано выше, сополимера загружают в снабженную обратным холодильником двухгорлую колбу объемом 250 мл и добавляют 3,63 г воды. Смесь в течение 16 часов перемешивают при 95°С.
Сополимер характеризуется числом атомов углерода в расчете на кислотную группу, равным 13; кислотное число составляет 210,8 мг КОН/г.
D. Примеры применения
Пример применения 1 Испытание двигателя DW10 с добавлением цинка (удаление отложений (clean-up))
Испытание выполняют на дизельном двигателе Peugeot DW10 в соответствии со стандартной процедурой СЕС F-98-08, однако DU-стадию реализуют в более жестких условиях.
I. Стадия образования отложений (Durtv-up (DU))
Более жесткие условия реализации DU-стадии способствуют гораздо более быстрому формированию отложений в форсунках, а, следовательно, более быстрому определению потери мощности, нежели в стандартных условиях СЕС F-98-08: двигатель в течение 4,28 ч эксплуатируют при полной нагрузке (4000 об/мин) на соответствующем стандарту EN590 топливе В7 фирмы Aral (без присадок), содержащем 3 мг/кг цинка. Результаты приведены в нижеследующей таблице.
II. Стадия удаления отложений (Clean-up (CU))
Результаты сокращенной до восьми часов CU-стадии испытания, реализуемой согласно процедуре СЕС F-98-08 с использованием соответствующего стандарту EN590 топлива В7 фирмы Aral (без присадок), содержащего 1 ч.н.млн цинка, а также предлагаемые в изобретении присадки, приведены в нижеследующей таблице.
Предлагаемые в изобретении соединения эффективно противодействуют образованию отложений в двигателях с непосредственным впрыскиванием топлива (в частности, Peugeot DW10) при испытании согласно СЕС F-98-08 и способны быстрее удалять образующиеся отложения.
Пример применения 2 Испытание двигателя DW10 с натриевым мылом (удаление отложений (clean-up))
Для исследования влияния присадок на технические характеристики дизельных двигателей с непосредственным впрыскиванием топлива в качестве другого метода испытания выполняют IDID-тест, согласно которому определяют температуру отработавших газов на выходе из цилиндров при пуске холодного дизельного двигателя DW10. Для выполняемого согласно методу СЕС F-098-08 испытания используют дизельный двигатель фирмы Peugeot с системой непосредственного впрыскивания Коммон Рэйл. В качестве топлива используют рыночное дизельное топливо В7 фирмы Aral, соответствующее стандарту EN590. Для стимулирования образования отложений к топливу добавляют 1 ч.н. млн масс. нафтената натрия и 20 ч.н.млн масс. додеценилянтарной кислоты.
В соответствии с методикой СЕС F-98-08 в процессе испытания измеряют мощность двигателя. Испытание включает две следующие стадии.
I. Стадия образования отложений
Данную стадию реализуют без добавления предлагаемых в изобретении соединений. Сокращенное до восьми часов испытание выполняют в соответствии с методикой СЕС F-98-08 без добавления цинка. В случае значительного отклонения температуры отработавших газов во избежание повреждения двигателя испытание прекращают, прежде чем будет выполнен восьмичасовой тест. По завершении пробега двигатель остывает, а затем его вновь пускают и в течение пяти минут эксплуатируют на холостом ходу. В течение этих пяти минут двигатель нагревается. Регистрируют температуру выходящих из соответствующих цилиндров отработавших газов. Чем меньше отличаются друг от друга температуры отработавших газов, тем меньше количество образующихся в форсунках внутренних отложений.
Измеряют температуру отработавших газов на выходе каждого из четырех цилиндров (Z1-Z4) соответственно через 0 минут (ϑ0) и 5 минут (ϑ5). Результаты измерения температуры для обоих испытательных пробегов, включая средние значения Δ и наибольшие отклонения от Δ в минус и плюс, приведены ниже.
II. Стадия удаления отложений
Сокращенное до восьми часов испытание выполняют в соответствии с методикой СЕС F-98-08 без добавления цинка. Однако добавляют 1 ч.н. млн масс. нафтената натрия и 20 ч.н. млн масс. додеценилянтарной кислоты, а также предлагаемое в изобретении соединение, и определяют мощность двигателя.
После испытания двигатель охлаждают и вновь пускают. Регистрируют температуру отработавших газов на выходе каждого из цилиндров. Чем меньше отличаются друг от друга температуры, тем меньше количество образовавшихся в форсунках внутренних отложений.
Измеряют температуру отработавших газов на выходе каждого из четырех цилиндров (Z1-Z4) соответственно через 0 минут (ϑ0) и 5 минут (ϑ5). Результаты измерения температуры, включая ее средние значения Δ и наибольшие отклонения от Δ в минус и плюс, приведены ниже.
Получают следующие результаты.
Стадия образования отложений - стадия удаления отложений (последовательность 1)
Стадия образования отложений
В процессе испытания наблюдаются значительные отклонения температуры отработавших газов, поэтому во избежание повреждения двигателя испытание через три часа приходится прекращать.
После стадии образования отложений:
ϑ0 Z1=34°С, Z2=31°С, Z3=28°С, Z4=27°С,
ϑ5 Z1=119°С, Z2=117°С, Z3=41°C, Z4=45°С,
Δ 80,5°С (+38,5°С / -39,5°С).
Значительные отклонения температур от среднего значения и значительные различия между отдельными цилиндрами обусловлены присутствием внутренних отложений в дизельных форсунках.
Стадия удаления отложений
После стадии удаления отложений с использованием присадки из примера синтеза 4 (168 ч.н.млн) в присутствии 1 ч.н.млн натрия + 20 ч.н.млн додеценилянтарной кислоты:
ϑ0 Z1=28°С, Z2=27°С, Z3=27°С, Z4=26°С,
ϑ5 Z1=74°C, Z2=77°C, Z3=60°C, Z4=66°C,
Δ 69,3°C (-9,3°C /+7,7°C).
Наблюдается незначительное отклонение температур отработавших газов от среднего значения, что свидельствует об удалении образовавшихся в форсунках внутренних отложений.
Стадия образования отложений - стадия удаления отложений (последовательность 2)
После восьмичасовой стадии образования отложений:
ϑ0 Z1=40°С, Z2=28°С, Z3=38°С, Z4=30°С,
ϑ5 Z1=274°С, Z2=293°С, Z3=112°С, Z4=57°С,
Δ 184°С (+109°С/-127°С).
Чрезвычайно большие отклонения температур от среднего значения и значительные различия между отдельными цилиндрами обусловлены присутствием внутренних отложений в дизельных форсунках.
Стадия удаления отложений
После стадии удаления отложений с использованием присадки из примера синтеза 4 (140 ч.н. млн) в присутствии 1 ч.н. млн натрия + 20 ч.н. млн додеценилянтарной кислоты:
ϑ0 Z1=44°C, Z2=43°C, Z3=44°C, Z4=45°C,
ϑ5 Z1=78°C, Z2=78°C, Z3=83°C, Z4=80°C,
Δ 80°C (-2X /+3°C).
Наблюдается весьма незначительное отклонение от среднего значения, что свидетельствует об удалении образовавшихся в форсунках внутренних отложений.
Таким образом, согласно результатам испытания, выполненного в соответствии с процедурой СЕС F-98-08 с использованием дизельного двигателя Peugeot DW10, предлагаемые в изобретении соединения чрезвычайно эффективно противодействуют образованию внутренних отложений в форсунках двигателя с непосредственным впрыскиванием топлива.
Сравнительный пример 1
После стадии образования отложений:
ϑ0 Z1=23°С, Z2=22°С, Z3=22°С, Z4=21°С,
ϑ5 Z1=84°С, Z2=72°С, Z3=80°С, Z4=63°С,
Δ 74,75°С (+9,25°С / -11,75°С).
Незначительные отклонения температур от среднего значения и небольшие различия между отдельными цилиндрами свидетельствуют о присутствии незначительных количеств внутренних отложений в дизельных форсунках.
После стадии удаления отложений с использованием 150 ч.н. млн додеценилянтарной кислоты в присутствии 1 ч.н. млн натрия + 20 ч.н. млн додеценилянтарной кислоты:
ϑ0 Z1=21°С, Z2=21°С, Z3=20°С, Z4=20°С,
ϑ5 Z1=79°С, Z2=77°С, Z3=81°С, Z4=63°С,
Δ 75°С (+6°С/-10°С).
По сравнению с показателями, измеренными после стадии образования отложений, наблюдается лишь незначительное улучшение.
Сравнительный пример 2
После стадии образования отложений:
ϑ0 Z1=10°С, Z2=24°С, Z3=29°С, Z4=41°С,
ϑ5 Z1=23°С, Z2=84°С, Z3=103°С, Z4=112°С,
Δ 80,5°С (+31,5°С/-57,5°С).
Значительные отклонения температур от среднего значения и существенные различия между отдельными цилиндрами свидетельствуют о присутствии внутренних отложений в дизельных форсунках.
Удаление отложений
После стадии удаления отложений с использованием 150 ч.н.млн поли-изобутиленянтарная кислота (полиизобутилен с молекулярной массой 1000) в присутствии 1 ч.н.млн натрия+20 ч.н.млн додеценилянтарной кислоты:
ϑ0 Z1=15°С, Z2=41°С, Z3=51°С, Z4=46°С,
ϑ5 Z1=24°С, Z2=70°С, Z3=102°С, Z4=100°С,
Δ 74°С (+28°С/-50°С).
Наблюдается лишь незначительное улучшение по сравнению с показателями, измеренными после стадии образования отложений, что свидетельствует об удалении незначительного количества имеющихся отложений.
Пример применения 3 Тест на обусловленную натрием потерю мощности двигателя DW10
Для исследования эффективности противодействия предлагаемых в изобретении соединений потере мощности, обусловленной металлами, например, натрием, калием, кальцием и другими (а не цинком, как описано выше), выполняют аналогичный указанному выше IDID-тест. Во время испытания измеряют мощность согласно СЕС F-098-08.
Приведенные выше результаты испытания показывают, что предлагаемые в изобретении соединения противодействуют образованию отложений в двигателях с непосредственным впрыскиванием топлива, обусловленных отличающимися от цинка металлами. Эти соединения эффективно противодействуют потере мощности, причем их можно использовать также для удаления отложений.
Пример применения 4 Тест IP 387 на фильтруемость
Образование осадков в системе питания и системе впрыскивания топлива обусловлено неудовлетворительной растворимостью осадков, их компонентов и исходных веществ.
Тест IP 387/97, который выполняют для установления склонности топлива к блокированию фильтров, позволяет определить количество содержащихся в топливе агломератов и мелких нерастворимых частиц. В соответствии с данным тестом топливо с постоянной скоростью (20 мл/мин) пропускают через определенную фильтрующую среду из стеклянных волокон. Контролируют перепад давления и измеряют объем топлива, пропущенного через фильтр до достижения определенного перепада давления. Испытание завершают, если будет отфильтровано 300 мл топлива или перепад давления превысит 105 кПа. Пониженный перепад давления после фильтрования 300 мл топлива свидетельствует о незначительной склонности топлива к блокированию фильтров.
В качестве базового топлива используют топливо согласно стандарту EN 590 без присадок для повышения мощности. Для исследования обусловленной солеообразованием склонности топлива к блокированию фильтра топливо смешивают с 3 мг/л ионов натрия (добавляют нафтенат натрия) и 20 мг/л додеценилянтарной кислоты.
a) В соответствии с тестом IP 387 перепад давления 105 кПа наблюдается уже после фильтрования 240 мл базового топлива, смешанного с 3 мг/л натрия и 20 мг/л додеценилянтарной кислоты.
b) Добавление к базовому топливу 250 мг/кг продукта, полученного в примере синтеза 4 (помимо 3 мг/л натрия и 20 мг/л додеценилянтарной кислоты), приводит к тому, что после фильтрования 300 мл топлива перепад давления не превышает 26 кПа.
Данное испытание показывает, что предлагаемый в изобретении продукт из примера синтеза 4 повышает фильтруемость топлива, а, следовательно, способен предотвращать образование осадков в системе питания и системе впрыскивания топлива.
Пример применения 5 Тест на образование отложений в топливах при повышенной температуре (JFTOT-тест согласно стандарту ASTM D3241)
В качестве базового топлива используют соответствующее стандарту EN 590 топливо без повышающих мощность присадок. Испытание выполняют согласно стандарту ASTM D3241 без использования фильтра грубой очистки. Устанавливаемая в нагревательной трубке температура составляет 260°С, скорость пропускания топлива 3 мл/мин, общая длительность испытания 150 минут.
Испытание завершают после снижения давления на величину, составляющую более 250 мм рт.ст. Динамическое давление в конце испытания, или соответственно время достижения падения давления до 25 мм рт.ст., применяют для определения скорости образования отложений. При меньшем падении давления в конце испытания или более длительном времени достижения падения давления до 25 мм рт.ст. наблюдается незначительная склонность к образованию отложений.
а) При испытании базового топлива, смешанного с 3 мг/л натрия и 20 мг/л додеценилянтарной кислоты, динамическое давление 250 мм рт.ст. достигается через 80 минут, а динамическое давление 25 мм рт.ст. через 12 минут.
b) Добавление к базовому топливу (помимо 3 мг/л натрия и 20 мг/л додеценилянтарной кислоты) 500 мг/кг продукта, полученного в примере синтеза 4, приводит к тому, что в конце испытания (по истечении 150 минут) динамическое давление равно нулю.
c) Добавление к базовому топливу (помимо 3 мг/л натрия и 20 мг/л додеценилянтарной кислоты) 500 мг/кг имида додеценилянтарной кислоты, полученного по реакции конденсации додеценилангидрида янтарной кислоты с тетраэтиленпентамином, в виде раствора в 2-этилгексаноле концентрацией 50% масс. приводит к тому, что динамическое давление 250 мм рт.ст. достигается уже через 28 минут, а динамическое давление 25 мм рт.ст. уже через 6 минут. Дополнительно в используемом для испытания устройстве появляются коричневые отложения.
d) Добавление 500 мг/кг полученного в примере синтеза 4 продукта к топливной смеси по пункту с) приводит к тому, что динамическое давление в конце испытания (по истечении 150 минут) не превышает 6 мм рт.ст.
Данное испытание показывает, что полученный согласно изобретению продукт способен предотвращать образование отложений в топливе при повышенных температурах.
Пример применения 6 Удаление полимерных внутренних отложений, образующихся в форсунках дизельного двигателя DW10
Для исследования влияния присадок на технические характеристики дизельных двигателей с непосредственным впрыскиванием топлива в качестве другого метода испытания выполняют IDID-тест на образование внутренних отложений в форсунках, согласно которому определяют температуру отработавших газов на выходе из цилиндров при пуске холодного дизельного двигателя DW10. Для выполняемого согласно СЕС F-098-008 испытания используют дизельный двигатель фирмы Peugeot, оснащенный системой непосредственного впрыскивания Коммон Рэйл.
При испытании используют топливо DF-79-07 BATCH 7 фирмы Haltermann.
К топливу добавляют 50 мг/кг продукта реакции конденсации смеси изомеров ангидрида додеценилянтарной кислоты (регистрационный номер 26544-38-7) с тетраэтиленпентамином (регистрационный номер 112-57-2), причем продукт получают следующим образом.
К раствору смеси изомеров ангидрида додеценилянтарной кислоты (1,0 экивалент, по числу омыления) в сольвент-нафта с удаленным нафталином при 100°С по каплям добавляют тетраэтиленпентамин (1,0 эквивалент, молекулярная масса 189,3 г/моль). Затем реагенты нагревают до 170°С и отгоняют образующуюся воду. После этого добавляют 2-этилгексанол, смесь охлаждают и выгружают.
Количество растворителей выбирают таким образом, чтобы концентрация продукта в смеси сольвент-нафта (без нафталина) с 2-этилгексанолом (в массовом отношении 4:1) составляла 50% масс.
I. Стадия образования отложений
Испытание выполняют без добавления предлагаемых в изобретении соединений в сокращенном до восьми часов варианте, процедуру СЕС F-98-08 реализуют без добавления цинка.
По завершении образования отложений двигатель охлаждают, вновь пускают и в течение пяти минут эксплуатируют на холостом ходу. В течение этих пяти минут двигатель нагревается. Регистрируют температуру выходящих из цилиндров отработавших газов. Чем меньше разница между результатами определения температуры, тем меньше количество образующихся в форсунках двигателя внутренних отложений.
Измеряют температуру отработавших газов на выходе каждого из четырех цилиндров (Z1-Z4) соответственно через 0 минут (ϑ0) и 5 минут (ϑ5). Результаты измерения температуры, включая ее средние значения А и наибольшие отклонения от Δ в минус и плюс, приведены ниже.
II. Стадия удаления отложений
Испытание сокращено до восьми часов, процедуру СЕС F-98-08 реализуют без добавления цинка.
Для искусственного стимулирования образования отложений добавляют 50 мг/кг полученного, как указано выше, продукта реакции конденсации ангидрида додеценилянтарной кислоты с тетраэтиленпентамином.
Кроме того, к топливной смеси добавляют 100 мг/кг продукта, полученного согласно примеру синтеза 4.
Ниже приведены результаты испытания.
После стадии образования отложений:
ϑ0 Z1=45°С, Z2=47°С, Z3=33°С, Z4=45°С,
ϑ5 Z1=82°С, Z2=104°С, Z3=47°С, Z4=113°С,
Δ 86,5°С (-39,5°С/+26,5°С).
Значительные отклонения температур от среднего значения и различия между отдельными цилиндрами обусловлены присутствием внутренних отложений в форсунках двигателя.
После стадии удаления отложений:
ϑ0 Z1=41°С, Z2=41°С, Z3=39°С, Z4=43°С,
ϑ5 Z1=82°С, Z2=81°С, Z3=80°С, Z4=82°С,
Δ 81,3°С (-1,3°С/+0,7°С).
Обнаружено незначительное отклонение температуры отработавших газов от среднего значения, что свидетельствует об удалении образовавшихся в форсунках дизельного двигателя внутренних отложений.
Приведенные выше результаты испытания показывают, что предлагаемые в изобретении соединения чрезвычайно эффективны в отношении предотвращения внутренних отложений в дизельных форсунках (IDID), обусловленных полимерными отложениями и их удаления.
Цитируемые в настоящем описании публикации следует считать относящимися к настоящему изобретению ссылками.
название | год | авторы | номер документа |
---|---|---|---|
ОСНОВАННЫЕ НА ПОЛИКАРБОНОВОЙ КИСЛОТЕ ПРИСАДКИ К ТОПЛИВАМ И СМАЗОЧНЫМ МАТЕРИАЛАМ | 2014 |
|
RU2695543C2 |
ПРИМЕНЕНИЕ СОЕДИНЕНИЙ АЗОТА, КВАТЕРНИЗИРОВАННЫХ АЛКИЛЕНОКСИДОМ И ЗАМЕЩЕННОЙ ГИДРОКАРБИЛОМ ПОЛИКАРБОНОВОЙ КИСЛОТОЙ, В КАЧЕСТВЕ ПРИСАДОК К ТОПЛИВАМ И СМАЗОЧНЫМ МАТЕРИАЛАМ | 2014 |
|
RU2690497C2 |
ПРИМЕНЕНИЕ ОСОБЫХ ПРОИЗВОДНЫХ КВАТЕРНИРОВАННЫХ СОЕДИНЕНИЙ АЗОТА В КАЧЕСТВЕ ПРИСАДОК К ТОПЛИВАМ И СМАЗОЧНЫМ МАТЕРИАЛАМ | 2014 |
|
RU2694529C2 |
ИНГИБИТОРЫ КОРРОЗИИ ДЛЯ ТОПЛИВА И СМАЗОЧНЫХ МАТЕРИАЛОВ | 2015 |
|
RU2684323C2 |
ИНГИБИТОРЫ КОРРОЗИИ ДЛЯ ТОПЛИВ И СМАЗОЧНЫХ МАТЕРИАЛОВ | 2015 |
|
RU2689799C2 |
КОМПОЗИЦИЯ ЖИДКОГО ТОПЛИВА | 1996 |
|
RU2158750C2 |
ТОПЛИВНЫЕ КОМПОЗИЦИИ, СОДЕРЖАЩИЕ СЫРЬЕВЫЕ МАТЕРИАЛЫ РАСТИТЕЛЬНОГО ПРОИСХОЖДЕНИЯ | 2007 |
|
RU2441902C2 |
ТОПЛИВНАЯ КОМПОЗИЦИЯ С УЛУЧШЕННЫМИ НИЗКОТЕМПЕРАТУРНЫМИ СВОЙСТВАМИ | 2009 |
|
RU2515238C2 |
ПРИСАДКА ДЛЯ СЫРОЙ НЕФТИ, СМАЗОЧНОГО МАСЛА ИЛИ ЖИДКОГО ТОПЛИВА, КОМПОЗИЦИЯ НА ОСНОВЕ СЫРОЙ НЕФТИ, СМАЗОЧНОГО МАСЛА ИЛИ ЖИДКОГО ТОПЛИВА, КОНЦЕНТРАТ ПРИСАДКИ | 1993 |
|
RU2107088C1 |
НЕФТЯНЫЕ ДИСТИЛЛЯТЫ С УЛУЧШЕННОЙ ЭЛЕКТРОПРОВОДНОСТЬЮ И НИЗКОТЕМПЕРАТУРНОЙ ТЕКУЧЕСТЬЮ | 2006 |
|
RU2419651C2 |
Применение сополимеров, которые имеют в статистически среднем значении: по меньшей мере четыре кислотные группы на полимерную цепь, причем кислотными группами являются карбоксильные группы, соотношение атомов углерода на кислотную группу от 7 до 35 и кислотное число от 80 до 320 мг КОН/г, определенное потенциографическим титрованием 0,5-молярной водной соляной кислотой после трехчасового нагревания в 0,5-молярном этанольном растворе гидроксида калия; в качестве топливной присадки для сокращения расхода топлива дизельными двигателями с непосредственным впрыскиванием и для минимизации потери мощности (power loss) в дизельных двигателях с непосредственным впрыскиванием, в качестве присадки к дизельным топливам для уменьшения и/или предотвращения отложений в системах питания и/или в качестве присадки к бензинам для уменьшения отложений в системе впуска бензинового двигателя с непосредственным впрыскиванием и искровым зажиганием (DISI) и бензинового двигателя с форсунками для распределительного впрыскивания (PFI), сополимеры обладают растворимостью в толуоле при 20°С по меньшей мере 5 г/100 мл. Технический результат заключается в применении указанных сополимеров в качестве топливных присадок для сокращения расхода топлива, для минимизации потери мощности и для уменьшения и/или предотвращения отложений. 12 з.п. ф-лы, 1 ил., 2 табл., 12 пр.
1. Применение сополимеров, которые имеют в статистически среднем значении:
- по меньшей мере четыре кислотные группы на полимерную цепь, причем кислотными группами являются карбоксильные группы,
- соотношение атомов углерода на кислотную группу от 7 до 35 и
- кислотное число от 80 до 320 мг КОН/г, определенное потенциографическим титрованием 0,5-молярной водной соляной кислотой после трехчасового нагревания в 0,5-молярном этанольном растворе гидроксида калия;
в качестве топливной присадки для сокращения расхода топлива дизельными двигателями с непосредственным впрыскиванием и для минимизации потери мощности (power loss) в дизельных двигателях с непосредственным впрыскиванием, в качестве присадки к дизельным топливам для уменьшения и/или предотвращения отложений в системах питания и/или в качестве присадки к бензинам для уменьшения отложений в системе впуска бензинового двигателя с непосредственным впрыскиванием и искровым зажиганием (DISI) и бензинового двигателя с форсунками для распределительного впрыскивания (PFI), сополимеры обладают растворимостью в толуоле при 20°С по меньшей мере 5 г/100 мл.
2. Применение по п. 1, отличающееся тем, что сополимер содержит до 50 кислотных групп на полимерную цепь.
3. Применение по п. 1, отличающееся тем, что сополимеры содержат не более пяти функциональных групп, отличающихся от кислородсодержащих функциональных групп и азотсодержащих функциональных групп, на полимерную цепь.
4. Применение по п. 1, отличающееся тем, что сополимеры содержат не более трех кислородсодержащих функциональных групп, отличающихся от карбонатных групп, простых эфирных групп или сложноэфирных групп, на полимерную цепь.
5. Применение по п. 4, отличающееся тем, что сополимеры содержат не более 20 простых эфирных групп на полимерную цепь.
6. Применение по п. 4, отличающееся тем, что сополимеры содержат не более 50 сложноэфирных групп или карбонатных групп на полимерную цепь.
7. Применение по п. 1, отличающееся тем, что сополимеры обладают средневесовой молекулярной массой Mw от 0,5 до 20 кДа (определяемой методом гельпроникающей хроматографии с тетрагидрофураном и полистиролом в качестве стандарта) и полидисперсностью от 1 до 10.
8. Применение по одному из пп. 1-7 в качестве присадки для сокращения расхода топлива дизельными двигателями с системами непосредственного впрыскивания Коммон Рэйл.
9. Применение по одному из пп. 1-7 в качестве присадки для минимизации потери мощности (power loss) в дизельных двигателях с системами непосредственного впрыскивания Коммон Рэйл.
10. Применение по п. 9 в качестве присадки для минимизации потери мощности (power loss), обусловленной ионами калия, цинка, кальция и/или натрия (так называемой калиевой, цинковой, кальциевой или соответственно натриевой power loss).
11. Применение по одному из пп. 1-7 в качестве присадки к дизельным топливам для уменьшения и/или предотвращения отложений в системах впрыскивания, в частности внутренних отложений в дизельных форсунках (IDID), и/или для уменьшения и/или предотвращения залипания клапанов в дизельных двигателях с непосредственным впрыскиванием топлива, в частности в системах впрыскивания Коммон Рэйл.
12. Применение по п. 11 для уменьшения и/или предотвращения внутренних отложений в дизельных форсунках (IDID), обусловленных ионами натрия, кальция и/или калия (так называемых натриевых, кальциевых или соответственно калиевых мыл IDID).
13. Применение по п. 12 для уменьшения и/или предотвращения внутренних отложений в дизельных форсунках (IDID), обусловленных полимерными отложениями.
US 5358651 A1, 25.10.1994 | |||
УСТРОЙСТВО для ИЗМЕНЕНИЯ СКОРОСТИв | 0 |
|
SU307815A1 |
WO 2013101256 A2, 04.07.2013 | |||
ЖИДКОЕ УГЛЕВОДОРОДНОЕ ТОПЛИВО | 0 |
|
SU349188A1 |
ДЕПРЕССОРНАЯ ПРИСАДКА ДЛЯ НЕФТИ И НЕФТЕПРОДУКТОВ | 1998 |
|
RU2137813C1 |
Авторы
Даты
2019-04-17—Публикация
2015-01-29—Подача