СПОСОБ ПОЛУЧЕНИЯ ПЛЕНКИ СВЕТОПОГЛОЩАЮЩЕГО МАТЕРИАЛА С ПЕРОВСКИТОПОДОБНОЙ СТРУКТУРОЙ Российский патент 2019 года по МПК C23C26/02 C23C14/06 C23C4/04 

Описание патента на изобретение RU2685296C1

Область техники

Изобретение относится к способам получения светопоглощающего материала с перовскитоподобной структурой, и может быть использовано для формирования светопоглощающего слоя при производстве фотоэлектрических преобразователей.

Уровень техники

Из уровня техники известны различные способы получения светопоглощающих материалов с перовскитоподобной структурой.

Так в статье [Burschka J. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells // Nature. - 2013. - T. 499. - №. 7458. - C. 316.] описывается формирование тонкого слоя перовскита CH3NH3PDI3 в две стадии посредством нанесения раствора PbI2 на подложку слоем необходимой толщины посредством приведения ее во вращение на высокой скорости вокруг оси перпендикулярной ее плоскости (метод вращающейся подложки, spin-coating) с последующим погружением полученного тонкого слоя PbI2 в раствор MAI в изопропаноле.

В статье [Saliba М. et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance // Science (80-.). 2016. Vol. 354, No 6309. P. 206-209.] описывается формирование тонкого слоя перовскита CH3NH3PDI3 в одну стадию посредством нанесения раствора перовскита в смеси органических растворителей на подложку тонким слоем посредством приведения ее во вращение на высокой скорости вокруг оси перпендикулярной ее плоскости.

Недостатком вышеуказанных методов является сложность получения слоя исходного компонента (PbI2) или перовскита из раствора на подложках большой площади и, соответственно, невозможность получения перовскитных солнечных ячеек большой площади.

Известен патент CN 104250723, 09/09/2014, Zhi Zheng, Cheng Camry, Lei Yan, Jia Huimin, Ho Wei Wei, He Yingying "Chemical method for in-situ large-area controlled synthesis of perovskite type CH3NH3PbI3 membrane material based on lead simple-substance membrane", в котором описан способ изготовления перовскита CH3NH3PbI3 в результате погружения пленок металлического свинца, легко наносимых равномерно с контролируемой толщиной на большие площади, в раствор йода и йодида метиламмония в органическом растворителе, например, этаноле. Металлический свинец в виде ровного слоя напыляют магнетронным напылением на непористую поверхность электрон-проводящего слоя после чего приводят во взаимодействие с органическим растворителем, содержащим молекулярный иод и метиламмоний иодид, в результате сплошной непористый слой свинца превращается в сплошной непористый слой перовскита

В патенте CN 105369232, 16/02/2015, Zhi Zheng, Не Yingying, Lei Yan, Cheng Camry, Jia Huimin, Ho Wei Wei, "Lead-based perovskite-type composite elemental thin-film in-situ wide area control CH3NH3PbBr3 film material chemical method" описывается способ изготовления перовскита CH3NH3PbBr3 в результате погружения пленок металлического свинца, легко наносимых равномерно с контролируемой толщиной на большие площади в раствор бромида метиламмония в органическом растворителе, например, изопропаноле.

Недостатком вышеуказанных методов является плохой контроль морфологии получаемого слоя перовскита, а также необходимость погружения подложек в раствор реагентов, что усложняет, а также замедляет технологический процесс формирования органо-неорганического перовскита, осложняет производство пленок большой площади и приводит к производственным рискам, рискам для здоровья и экологической обстановки.

В статье Mater. Horiz., 2017,4, 625-632, Petrov Andrey A., Belich Nikolai A., Grishko Aleksei Y., Stepanov Nikita M., Dorofeev Sergey G., Maksimov Eugene G., Shevelkov Andrei V., Zakeeruddin Shaik M., Michael Graetzel, Tarasov Alexey В., Goodilin Eugene A., «A new formation strategy of hybrid perovskites via room temperature reactive polyiodide melts» описывается способ формирования слоя перовскита без растворителей в результате реакции слоя металлического свинца и нанесенного на него реагента с общим составом MAI3+x.

Недостатком известного метода является сложность достижения однородного распределения вязкого высококонцентрированного полииодидного (полигалогенидного) реагента по большой площади подложки, а также отсутствие контроля и невозможность нанесения данного расплава в количестве, стехиометрическом по отношению к компоненту В, что, в частности, может привести к неполной конверсии компонента В в перовскит или формированию фаз, содержащих избыток компонентов исходного расплава. Таким образом, в результате снижается качество (в частности, однородность толщины и фазовый состав) получаемой пленки, что негативно сказывается на эффективности конечного продукта на основе полученных пленок, например, солнечной ячейки.

В патенте CN 104051629A, 2014/09/17 "Preparation method for perovskite type solar cell based on spraying technology" описан технологичный способ производства перовскитных солнечных ячеек и, в частности, светопоглощающего слоя перовскита состава АВХ3 методом одно- или двухстадийного распыления растворов компонентов АВ и ВХ2 в органических растворителях. Недостатком данного метода является сложность контроля толщины, однородности и морфологии слоя перовскита, полученного данным методом обусловленное существенно неравновесным процессом кристаллизации, контроль за которым не может быть осуществлен на больших площадях. Кроме того, в данном методе производится распыление раствора, содержащего компонент В, что сопряжено с производственными рисками, рисками для здоровья и экологической обстановки.

Общими недостатками перечисленных выше способов являются принципиальные технологические ограничения возможности для формирования тонкого слоя перовскита с требуемыми свойствами (толщина, морфология, оптические, электрические свойства) на подложках большой площади, что ограничивает предельно возможные размеры отдельных перовскитных солнечных ячеек и, соответственно, ограничивает возможности для снижения удельных затрат на производство батарей установленной мощности.

Раскрытие сущности изобретения

Под перовскитоподобной структурой в рамках настоящей заявки понимается как непосредственно кристаллическая структура минерала перовскита, так и кристаллические структуры, имеющие определенные структурные отклонения (искаженная структура перовскита), например, с более низкой симметрией кристаллической решетки (например, тетрагональная сингония) или кристаллические структуры, содержащие перовскитные слои чередующиеся с какими-либо другими слоями (например, фазы Ауривиллиуса, фазы Раддлесдена-Поппера, фазы Диона-Якобсона). Под перовскитоподобными соединениями понимаются соединения с перовскитоподобной структурой.

Технической проблемой, решаемой посредством заявляемого изобретения, является создание технологичного способа получения однородных пленок светопоглощающих материалов с перовскитоподобной структурой состава АВХ3 (А=CH3NH3+ или (NH2)2СН+ или С(NH2)3+ или Cs+ или Rb+ или их смесь; В=Sn2+ или Pb2+, или их смесь, в том числе, с добавками Bi и Cu; X=Cl- или Br- или I- или их смесь) на подложках большой площади технологичным методом без использования растворов, содержащих компонент В.

Технический результат, достигаемый при использовании изобретения, заключается в возможности формирования слоя перовскита с заданными микроструктурой и функциональными свойствами на поверхностях любого размера.

Дополнительный технический результат, достигаемый при использовании заявляемого изобретения, заключается в обеспечении возможности получения однофазной пленки без разрывов с высокой степенью равномерности, что позволит использовать полученный материал в солнечных ячейках большой площади. Способ также характеризуется технологичностью, простотой и скоростью реализации, что делает его более доступным для применения в промышленном производстве. Другим дополнительным техническим результатом, достигаемым при реализации изобретения, является возможность дозированного нанесения прекурсоров, что исключает существенные потери реагентов в ходе синтеза и снижает стоимость производства. Дополнительным реализуемым техническим результатом также является возможность использования изобретения в осуществлении технологически релевантных подходов для получения пленок перовскитов на субстратах сложной формы и, в частности, на гибких подложках.

Дополнительный технический результат, достигаемый при использовании заявляемого изобретения, заключается в возможности дозирования и управления реакционной способностью реагента с целью контроля за процессом формирования полупроводникового материала.

Под реакционной смесью, в рамках настоящей заявки, понимается один и более реагентов, вступающих в реакцию с компонентом В, а также их смеси с ингибитором реакции.

Под ингибитором, в рамках настоящей заявки, в общем смысле понимается химическое соединение или смесь нескольких соединений, при добавлении которых к реакционной смеси происходит подавление химической реакции между двумя или более реагентами. В частном случае, в роли ингибитора выступает растворитель, понижающий химическую активность одного или более реагентов. В частном случае ингибитор подавляет химическую реакцию между некоторым компонентом реакционной смеси и компонентом В.

Технический результат достигается тем, что на подложке формируют равномерный слой компонента В в виде пленки элементарного свинца Pb2+ , или олова Sn2+ , или их смеси, готовят смесь из реагентов АХ и Х2, которые вступают в реакцию с компонентом В при заранее заданных условиях, и ингибитора реакции, который подавляет данную реакцию при упомянутых условиях, наносят приготовленную смесь в количестве стехиометрическом или большем, чем стехиометрическое, на слой компонента В и удаляют ингибитор реакции из упомянутой смеси с обеспечением активирования химической реакции между смесью из упомянутых реагентов и компонентом В с образованием пленки перовскитоподобного материала, при этом в качестве компонента А упомянутого реагента используют CH3NH3+ или (NH2)2CH+ , или С(NH2)3+ , или Cs+ , или Rb+ , или их смесь, и в качестве компонента Х используют Сl- или Вr- или I- или их смесь.

В частных случаях реализации изобретения, ингибитор реакции удаляют из реакционной смеси выпариванием из реакционной смеси или вымораживанием указанных реагентов из смеси или сублимацией ингибитора реакции.

В частном случае реализации изобретения, в качестве ингибитора реакции используют растворитель, обеспечивающий растворение в нем по крайней мере одного из реагентов или в качестве ингибитора реакции используют жидкость, не смешиваемую, по крайней мере с одним из реагентов.

В частном случае реализации изобретения, ингибитор реакции удаляют путем промывания подложки-носителя растворителем, в котором не растворимы компоненты конечного функционального слоя (пленки перовскитоподобного материала).

В частном случае реализации изобретения, при получении слоя (или пленки) светопоглощающего материала с перовскитоподобной структурой, имеющего структурную формулу АВХ3, согласно техническому решению, на подложку наносят слой реагента В, представляющий собой пленку элементарного Pb или Sn или их смеси, после чего на подложку наносится раствор смеси реагентов АХ и Х2 в органическом растворителе, обеспечивающим замедление реакции между АХ и Х2 с реагентом В, обеспечивают условия для удаления растворителя, что создает условия для протекания реакции В+АХ+Х2=АВХ3. При этом, в качестве компонента А используют CH3NH3+ или

(NH2)2CH+ или С(NH2)3+ или Cs+ или Rb+ или их смесь, в качестве компонента X используют Cl- или Br- или I- или их смесь.

В частном случае реализации изобретения, в качестве ингибитора используется органический растворитель, в котором растворяются реагенты АХ и Х2, но не растворяется компонент В. Компонент В наносят на единицу площади в количестве, обеспечивающем получение конечной пленки перовскитоподобного соединения АВХ3 заданной толщины. Компонент В может быть нанесен методом вакуумного напыления, электрохимического осаждения, контактом волны расплавленного металла с охлажденной подложкой, методом химического осаждения из газовой фазы или другими методами. Раствор смеси реагентов АХ и Х2 наносят методами распыления, или печати или накалывания. Избыток реагентов АХ и Х2 по завершении реакции при необходимости может быть удален промыванием в растворителе, не взаимодействующим со слоем перовскита, накалыванием растворителя на поверхность, прокаливанием при повышенной температуре, испарением при пониженном давлении. В качестве газа-носителя при напылении могут выступать такие газы как, например, сухой воздух, аргон и азот. В качестве растворителя для реагентов АХ и Х2, а также для промывания подложек после завершения реакции могут использоваться такие растворители как, например, изопропиловый спирт, этиловый спирт и другие органические растворители.

В частном случае реализации изобретения, нанесение реакционной смеси производится в условиях, при которых избыток ее компонентов удаляется естественным образом (происходит «автодозирование» компонентов реакционной смеси) за счет их испарения или сублимации в ходе нанесения.

В рамках заявляемого изобретения возможен контроль стехиометрии реакции формирования пленки светопоглощающего материала за счет предварительного контролируемого нанесения на подложку пленки компонента В, и дальнейшего контролируемого нанесения раствора реагентов АХ и Х2, осуществляемого методами струйной печати, распыления или другими методами, обеспечивающими равномерное нанесение смеси на подложки большой площади. После нанесения раствора реагентов АХ и Х2 на поверхность пленки компонента В орбеспечивается удаление растворителя и образование жидких полигалогенидных реакционных расплавов состоящих из смеси реагентов АХ и Х2 общего состава AXn (n≥2.5), которые равномерно распределяются по поверхности пленки компонента В и реагируют с данным компонентом с образованием перовскитоподобного соединения со структурой АВХ3, что позволяет достичь высокой однородности пленок на большой площади масштабируемыми и реализуемыми в условиях промышленного производства методами.

Под компонентом В понимают металлы, их смеси, сплавы, а также соединения, в элементном составе которых присутствует соответствующий металл.

Однородность распределения реакционного расплава по поверхности компонента В достигается т.н. «реакционным смачиванием» поверхности пленки компонента В полигалогенидными расплавами состава AXn, механизм которого заключается в изменении характера смачивания в результате протекания реакции на поверхности компонента В обусловленным их высокой реакционной способностью по отношению к компоненту В.

В рамках заявляемого метода достижение технического результата, а именно получение однофазных высокооднородных пленок светопоглощающего материала большой площади, достигается за счет равномерного распределения реакционных расплавов AXn (n≥2.5) по поверхности пленки компонента В, а также контроля стехиометрии реакции формировании пленки светопоглощающего материала. Основными параметрами, влияющими на достижение технического результата, являются толщина и однородность наносимой на подложку пленки В, равномерность распределения раствора смеси АХ и Х2 по поверхности пленки В, концентрация реагентов АХ и Х2, количество наносимого на пленку компонента В раствора, состав используемого растворителя, температура пленки компонента В, наличие модифицирующих добавок в растворе реагентов АХ и Х2 и/или в пленке компонента В.

Предложенный способ позволяет получать сплошные однофазные пленки соединений со структурой перовскита широкого диапазона составов (АВХ3, где в качестве А, как правило, выступают CH3NH3+(МА+), (NH2)2CH+(FA+), Cs+, Rb+ или их смесь, в качестве В-Pb2+, Sn2+ или их смесь, в качестве X-I-, Br-, Cl- или их смесь) применение которых возможно при создании солнечных ячеек, солнечных ячеек большой площади, фотодетекторов, светодиодов и других полупроводниковых устройств.

Кроме того, с использованием заявляемого метода возможно получение тонких пленок полупроводников, в т.ч. на основе материалов со структурой отличной от перовскитоподобной, в т.ч. из элементов или их источников отличных от Pb, Sn.

В иллюстративном варианте реализации, для получения гибридного органо-неорганического перовскита состава CH3NH3PDI3 (MAPbI3), был осуществлено распыление раствора йода (I2) и иодида метиламмония (MAI) в изопропаноле (i-PrOH) на нагретую до 120°С подложку с предварительно нанесенным на нее слоем металлического свинца (Pb). При контакте напыляемого аэрозоля с нагретой пленкой свинца изопропанол испарялся, с образованием на поверхности свинца полииодидной композициии MAI-nI2: (n≥1), которая реагировала со свинцом, в результате чего происходило формирование пленки CH3NH3PbI3. Реакция протекает с задержкой во времени, где этап удаления растворителя определяет задержку во времени и является принципиальным, поскольку при погружении пленки металлического свинца в раствор, используемый для распыления (в определенном диапазоне концентраций) реакция конверсии металлического свинца в перовскит заторможена. Образование перовскита в предлагаемом методе происходит в процессе высыхания капель, нанесенных на поверхность металлического свинца, в результате чего образуется полииодидная композиция, которая реагирует со свинцом. Поскольку реакция начинается до полного испарения изопропанола, а скорость реакции определяется, в том числе и концентрацией изопропанола в композиции, появляется возможность управлять скоростью протекания реакции, например, изменением температуры подложки или содержанием изопропанола в исходной композиции. Ниже указаны параметры синтеза, которые могут быть использованы при получении сплошных однофазных пленок предложенным способом с обеспечением достижения технического результата, а также влияние признаков на параметры синтеза.

Композиция используемых галогенидов, входящих в состав раствора, напрямую влияет на морфологию и состав получаемого перовскита Возможно использование любых комбинаций АХ. Были опробованы при реализации способа следующие комбинации: MAI, MAI/MABr, в результате использования которых были получены MAPbI3, MAPbIxBr3-x); MAI/FAI, в результате использования которой был получен MAxFA1-xPbI3

Суммарное отношение содержания в растворе галогенидов к содержанию I2 или соотношение АХ-I2 при реакциях с металлами оказывает непосредственное влияние на морфологию, фазовый состав и другие свойства конечного продукта. Поскольку йод и различные галогениды сублимируются (испаряются) при распылении и последующем отжиге с разной скоростью, конечный состав расплава на поверхности подложки будет определяться не только составом наносимого раствора, но также температурой и давлением при осуществлении способа. На примере получения MAPbI3 были опробованы следующие соотношения: MAI:I2=1:1 и MAI:I2=1:1.5. Первичные результаты показали, что что в обозначенном диапазоне возможно получение однофазных пленок MAPbI3, при этом пленки, полученные с использованием р-ра 1:1.5 демонстрируют лучшие функциональные свойства, вследствие того что часть йода от нагрева испаряется и, в случае, если для протекания реакции требуется MAI:I2=1:1, и для осуществления способа используется состав, где MAI:I2=1:1, то фактическое содержание йода, участвующего в реакции меньше, то есть, в системе имеет место недостаток йода.

Для улучшения функциональных свойств и стабильности конечных пленок возможен ввод в исходный раствор других галогенидов, в чистом виде не образующих целевую структуру перовскита, например, гидройодида аминовалериановой кислоты, йодида бутиламмония (в общем случае, CH3-(CH2)n-NH3I), йодида фенилэтиламмония, BiI3 и других. В качестве модифицирующих добавок можно также использовать HI, CH3NH3Cl и (NH2)2CHCl.

При реализации способа возможно использование различных концентраций реагентов. Способ показал хорошие результаты в части повышения однородности и качества пленок перовскита в диапазоне суммарных концентраций йодидов от 2 до 10 мг/мл.

Важным фактором, определяющим функциональные свойства пленок полупроводниковых материалов, получаемых заявляемым способом, является мольное отношение компонента В и наносимых на него реагентов. Заявляемый способ позволяет подобрать такие условия нанесения реакционной смеси, при которых происходит удаление избытка компонентов этой смеси, т.е. достигается их «автодозирование». В частном случае при использовании реакционной смеси MAI-nI2 (n≥1) в изопропаноле «автодозирование» может быть достигнуто при распылении реакционной смеси на поверхность металлического свинца, разогретую до температуры 150-250°С, что приводит к испарению и/или сублимации избытка компонентов реакционной смеси.

При использовании в качестве слоя, содержащего металл, металлических пленок, нанесение таких пленок на подложку возможно методом вакуумного термического напыления, магнетронного напыления, электроосаждения, химического восстановления из растворов или газообразных соединений. При проверке возможности реализации предложенного способа были опробованы тонкие пленки металлического свинца, олова, сплавы Pb-Sn, а также сплавов с легирующими добавками, например, Cu и Bi. Также, для формирования слоя, содержащего метал может быть использовано послойное нанесение различных металлов, пригодных для формирования слоя перовскита.

В виде конкретного примера реализации в качестве пленки компонента В была использована пленка металлической меди, на которую наносили раствор MAI:I2=1:3 при температуре подложки 100°С, после чего избыток MAI удаляли путем промывания изопропиловым спиртом.

Для формирования слоя, содержащего компонент В, могут также быть использованы соединения свинца, например, PbI2 и PbO, которые могут быть нанесены на подложку различными методами, например, путем нанесения раствора солей свинца на вращающуюся подложку.

Для синтеза MAPbI3, MAPbIxBr3-х, MAxFA1-xPbI3 была использована температура 120°С. Кроме этого, способ показал возможность применения, по крайней мере температур от 20 до 150°С для MAPbI3 и от 20 до 400°С для CsPbI3. Оптимальной для реализации способа является поддержание температуры подложки выше температуры плавления соответствующего полийодида. Возможно также использовать предварительно разогретую подложку, а также постепенное охлаждение или постепенный нагрев подложки после нанесения реагентов. Опробован предварительный разогрев в течение 0-10 мин.

Подложка может быть подвергнута дополнительно обработке после нанесения на нее раствора и завершения реакции образования слоя перовскита. Например, может быть использована промывка с применением различных растворителей или их смесей, например, изопропанола, этанола, диэтилового эфира, хлорбензола, толуола.

Также может быть осуществлен отжиг при повышенной температуре. В частности, был опробован отжиг при 100°С в течение 1-10 мин, увеличение времени отжига до 60 минут и более не привело к ухудшению свойств слоя перовскита. При этом, выбор температуры проведения отжига определяется химическим составом конкретного соединения и, в частности, для MAPbI3 обычно не превышает 150°С, для CsPbI3 - 350°С. Также может быть осуществлен отжиг в специальной атмосфере, например, в атмосфере влажного воздуха, сухого воздуха, в атмосфере аргона, а также, в атмосфере, содержащей пары растворителя, например, метиламина, диметилформамида или диметилсульфоксида.

Возможен отжиг в парах соответствующих йодидов АХ при температурах, ограниченных снизу температурой испарения соответствующего галогенида, а сверху - температурой его разложения. Например, для MAI типичный диапазон температур 150-200°С.

Смесь из реагентов и растворителя (раствор) может быть нанесена на подложку следующими опробованными способами: классическим распылением через форсунку, ультразвуковым распылением, струйной печатью, спин-коатингом, электро распылением, аэрозольно-струйной печатью, дип-коатингом.

Конструкция сопла для распыления раствора, а также режим распыления оказывают непосредственное влияние на количество вещества, попадающего на подложку в единицу времени и размер капель, который влияет на равномерность покрытия подложки раствором. Оптимальные параметры могут быть подобраны экспериментально. Геометрия взаимного расположения сопла и подложки также оказывает влияние на качество покрытия и может быть подобрана экспериментально. Было опробовано расстояние 10 см, и угол наклона форсунки 0-15° между направлением распыления и нормалью к подложке.

Были проведены испытания реализации способа в следующих режимах: скорость расхода раствора ~0.5 мл/сек;

циклическая подача раствора в течение 2 секунд с 10 секундами паузы. Паузы могут быть необходимы для поддержания требуемой температуры подложки, обеспечения полного и быстрого высыхания капель и избегания нежелательного растекания раствора по поверхности.

Суммарное время распыления раствора, распыляемого с паузами или без пауз, подбиралось отдельно для каждого состава. Для MAPbI3 для получения однофазных пленок был использован диапазон суммарных времен нанесения от 14 до 18 секунд (7×2 сек, 9×2 сек). При выходе за границы оптимального диапазона образовывались пленки с примесями, что обусловлено существенным избытком или недостатком реагентов в растворе. В качестве газа-носителя для распыления использовались азот и аргон. Возможно также использование воздуха и других газов, а также использование газов, содержащих специальные модифицирующие добавки.

Похожие патенты RU2685296C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ПОЛУПРОВОДНИКОВОЙ ПЛЕНКИ НА ОСНОВЕ ОРГАНО-НЕОРГАНИЧЕСКИХ КОМПЛЕКСНЫХ ГАЛОГЕНИДОВ С ПЕРОВСКИТОПОДОБНОЙ СТРУКТУРОЙ 2019
  • Фатеев Сергей Анатольевич
  • Тарасов Алексей Борисович
  • Белич Николай Андреевич
  • Гришко Алексей Юрьевич
  • Шленская Наталья Николаевна
  • Гудилин Евгений Алексеевич
  • Петров Андрей Андреевич
RU2712151C1
СПОСОБ ПОЛУЧЕНИЯ ПЛЁНКИ ОРГАНО-НЕОРГАНИЧЕСКОГО КОМПЛЕКСНОГО ГАЛОГЕНИДА 2020
  • Гудилин Евгений Алексеевич
  • Тарасов Алексей Борисович
  • Белич Николай Андреевич
  • Ивлев Павел Андреевич
RU2779015C2
СПОСОБ ПОЛУЧЕНИЯ ПЛЁНКИ КРИСТАЛЛИЧЕСКОГО МАТЕРИАЛА НА ОСНОВЕ КОМПЛЕКСНЫХ ГАЛОГЕНИДОВ С ПЕРОВСКИТОПОДОБНОЙ СТРУКТУРОЙ 2020
  • Гудилин Евгений Алексеевич
  • Тарасов Алексей Борисович
  • Белич Николай Андреевич
RU2779016C2
СПОСОБ ПОЛУЧЕНИЯ ТОНКОПЛЕНОЧНЫХ СТРУКТУР ГАЛОГЕНИДНЫХ ПОЛУПРОВОДНИКОВ (ВАРИАНТЫ) 2018
  • Гудилин Евгений Алексеевич
  • Фатеев Сергей Анатольевич
  • Гришко Алексей Юрьевич
  • Тарасов Алексей Борисович
  • Петров Андрей Андреевич
  • Белич Николай Андреевич
  • Шлёнская Наталья Николаевна
RU2708365C1
СПОСОБ ПОЛУЧЕНИЯ ПЛЕНКИ СВЕТОПОГЛОЩАЮЩЕГО МАТЕРИАЛА С ПЕРОВСКИТОПОДОБНОЙ СТРУКТУРОЙ 2017
  • Тарасов Алексей Борисович
  • Белич Николай Андреевич
  • Гудилин Евгений Алексеевич
  • Петров Андрей Андреевич
  • Гришко Алексей Юрьевич
RU2675610C1
СПОСОБ ФОРМИРОВАНИЯ ДВУХСЛОЙНОЙ СВЕТОПОГЛОЩАЮЩЕЙ ЭЛЕКТРОПРОВОДЯЩЕЙ СТРУКТУРЫ 2018
  • Фатеев Сергей Анатольевич
  • Гудилин Евгений Алексеевич
  • Гришко Алексей Юрьевич
  • Тарасов Алексей Борисович
  • Петров Андрей Андреевич
  • Белич Николай Андреевич
  • Шлёнская Наталья Николаевна
RU2714273C1
СПОСОБ ПОЛУЧЕНИЯ КРУПНОЗЕРНИСТЫХ ПЛЕНОК ПЕРОВСКИТА В УСЛОВИЯХ ПРОСТРАНСТВЕННОГО ОГРАНИЧЕННОГО РОСТА 2017
  • Белич Николай Андреевич
  • Гришко Алексей Юрьевич
  • Гудилин Евгений Алексеевич
  • Тарасов Алексей Борисович
  • Петров Андрей Андреевич
RU2661025C1
СПОСОБ ФОРМИРОВАНИЯ ПЛЕНКИ ПЕРОВСКИТОПОДОБНОГО МАТЕРИАЛА 2018
  • Гудилин Евгений Алексеевич
  • Тарасов Алексей Борисович
  • Гришко Алексей Юрьевич
  • Финкельберг Яша Михайлович
RU2692110C1
СПОСОБ ПОЛУЧЕНИЯ СВЕТОПОГЛОЩАЮЩЕГО МАТЕРИАЛА СО СТРУКТУРОЙ ПЕРОВСКИТА 2016
  • Гудилин Евгений Алексеевич
  • Тарасов Алексей Борисович
  • Петров Андрей Андреевич
  • Белич Николай Андреевич
  • Гришко Алексей Юрьевич
RU2646671C1
ЖИДКАЯ КОМПОЗИЦИЯ ПОЛИГАЛОГЕНИДОВ ПЕРЕМЕННОГО СОСТАВА 2016
  • Гудилин Евгений Алексеевич
  • Тарасов Алексей Борисович
  • Петров Андрей Андреевич
  • Белич Николай Андреевич
  • Гришко Алексей Юрьевич
RU2648465C1

Реферат патента 2019 года СПОСОБ ПОЛУЧЕНИЯ ПЛЕНКИ СВЕТОПОГЛОЩАЮЩЕГО МАТЕРИАЛА С ПЕРОВСКИТОПОДОБНОЙ СТРУКТУРОЙ

Изобретение относится к способам получения светопоглощающего материала с перовскитоподобной структурой и может быть использовано для формирования светопоглощающего слоя при производстве фотоэлектрических преобразователей с обеспечением экономии материалов и повышения допустимых размеров преобразователей. Способ получения пленки светопоглощающего материала с перовскитоподобной структурой включает формирование на подложке равномерного слоя компонента В в виде пленки элементарного свинца Pb2+ , или олова Sn2+ , или их смеси, приготовление смеси из реагентов АХ и Х2, которые вступают в реакцию с компонентом В при заранее заданных условиях, и ингибитора реакции, который подавляет данную реакцию при упомянутых условиях. Затем наносят приготовленную смесь в количестве стехиометрическом или большем, чем стехиометрическое, на слой компонента В и удаляют ингибитор реакции из упомянутой смеси с обеспечением активирования химической реакции между смесью из упомянутых реагентов и компонентом В с образованием пленки перовскитоподобного материала. В качестве компонента А упомянутого реагента используют CH3NH3+, или (NH2)2CH+, или С(NH2)3+ , или Cs+ , или Rb+ , или их смесь, и в качестве компонента Х используют Сl-, или Вr-, или I-, или их смесь. Обеспечивается возможность формирования слоя перовскита с заданными микроструктурой и функциональными свойствами на поверхностях любого размера. 19 з.п. ф-лы.

Формула изобретения RU 2 685 296 C1

1. Способ получения пленки светопоглощающего материала с перовскитоподобной структурой, отличающийся тем, что на подложке формируют равномерный слой компонента В в виде пленки элементарного свинца Pb2+ , или олова Sn2+ , или их смеси, готовят смесь из реагентов АХ и Х2, которые вступают в реакцию с компонентом В при заранее заданных условиях, и ингибитора реакции, который подавляет данную реакцию при упомянутых условиях, наносят приготовленную смесь в количестве стехиометрическом или большем, чем стехиометрическое, на слой компонента В и удаляют ингибитор реакции из упомянутой смеси с обеспечением активирования химической реакции между смесью из упомянутых реагентов и компонентом В с образованием пленки перовскитоподобного материала, при этом в качестве компонента А упомянутого реагента используют CH3NH3+ или (NH2)2CH+ , или С(NH2)3+ , или Cs+ , или Rb+ , или их смесь, и в качестве компонента Х используют Сl-, или Вr-, или I-, или их смесь.

2. Способ по п. 1, отличающийся тем, что ингибитор удаляют при условиях, отличающихся от заранее заданных.

3. Способ по п. 1, отличающийся тем, что ингибитор удаляют из смеси выпариванием, или вымораживанием, или сублимацией.

4. Способ по п. 1, отличающийся тем, что в качестве ингибитора используют растворитель, обеспечивающий растворение в нем по крайней мере одного из реагентов.

5. Способ по п. 1, отличающийся тем, что в качестве ингибитора используют жидкость, не смешиваемую по крайней мере с одним из реагентов.

6. Способ по п. 1, отличающийся тем, что ингибитор удаляют путем промывания подложки растворителем, в котором не растворимы компоненты пленки перовскитоподобного материала.

7. Способ по п. 1, отличающийся тем, что для получения пленки светопоглощающего материала с перовскитоподобной структурой, имеющего структурную формулу АВХ3, смесь реагентов АХ и Х2 наносят на подложку в растворе ингибитора, представляющего собой органический растворитель, замедляющий реакцию АХ и Х2 с реагентом В, и удаляют упомянутый органический растворитель для обеспечения протекания реакции В+АХ+Х2=АВХ3.

8. Способ по п. 7, отличающийся тем, что в качестве ингибитора используют органический растворитель, в котором растворяются реагенты АХ и Х2, но не растворяется компонент В.

9. Способ по п. 7, отличающийся тем, что компонент В наносят на единицу площади подложки в количестве, обеспечивающем получение конечной пленки перовскитоподобного соединения АВХ3 заданной толщины.

10. Способ по п. 1, отличающийся тем, что компонент В наносят методом вакуумного напыления или электрохимического осаждения или контактом волны расплавленного компонента В с охлажденной подложкой или методом химического осаждения из газовой фазы.

11. Способ по п. 1, отличающийся тем, что смесь наносят методом распыления или печати, или накапывания.

12. Способ по п. 7, отличающийся тем, что избыток реагентов АХ и Х2, после завершения реакции, удаляют промыванием в растворителе, не взаимодействующем с пленкой перовскитоподобного материала.

13. Способ по п. 7, отличающийся тем, что избыток реагентов АХ и Х2, после завершения реакции, удаляют путем накапывания растворителя, не взаимодействующего с пленкой перовскитоподобного материала на подложку.

14. Способ по п. 7, отличающийся тем, что избыток реагентов АХ и Х2, после завершения реакции, удаляют путем прокаливания при повышенной температуре.

15. Способ по п. 7, отличающийся тем, что избыток реагентов АХ и Х2, после завершения реакции, удаляют путем испарения при пониженном давлении.

16. Способ по п. 10, отличающийся тем, что напыление осуществляют с использованием газа носителя, в качестве которого используют сухой воздух или аргон, или азот.

17. Способ по п. 1, отличающийся тем, что в качестве ингибитора используют изопропиловый спирт или этиловый спирт.

18. Способ по п. 7, отличающийся тем, что в качестве ингибитора используют изопропиловый спирт или этиловый спирт.

19. Способ по п. 12, отличающийся тем, что в качестве растворителя используют изопропиловый спирт или этиловый спирт.

20. Способ по п. 12, отличающийся тем, что приготовленную смесь наносят при условиях, обеспечивающих удаление избытка компонентов, не участвующих в реакции.

Документы, цитированные в отчете о поиске Патент 2019 года RU2685296C1

WO 2017031193 A1, 23.02.2017
ТОНКОПЛЕНОЧНЫЙ МАТЕРИАЛ ДИЭЛЕКТРИКА ЗАТВОРА С ВЫСОКОЙ ДИЭЛЕКТРИЧЕСКОЙ ПРОНИЦАЕМОСТЬЮ И СПОСОБ ЕГО ПОЛУЧЕНИЯ (ВАРИАНТЫ) 2004
  • Политова Екатерина Дмитриевна
  • Голубко Наталья Владимировна
RU2305346C2
WO 2017011239 A1, 19.01.2017
CN 104518091 A, 15.04.2015.

RU 2 685 296 C1

Авторы

Гудилин Евгений Алексеевич

Тарасов Алексей Борисович

Петров Андрей Андреевич

Белич Николай Андреевич

Гришко Алексей Юрьевич

Даты

2019-04-17Публикация

2017-12-25Подача