СПОСОБ ФОРМИРОВАНИЯ ИЗНОСОСТОЙКОГО ПОКРЫТИЯ НА ПОВЕРХНОСТИ ИЗДЕЛИЙ ИЗ СТАЛИ Российский патент 2019 года по МПК C23C14/48 C23C14/06 

Описание патента на изобретение RU2686397C1

Изобретение относится к области металлургии, в частности к плазменной химико-термической обработке стали, и может быть использовано в машиностроении для повышения износостойкости деталей и узлов машин, работающих при больших механических нагрузках.

Известно, что при формировании тонких пленок (1-5 мкм) нитридов переходных металлов на поверхности стальных деталей посредством дугового или магнетронного напыления в среде реактивных газов существует достаточно резкая граница в значениях твердости покрытия и материала самого изделия. Если рабочая поверхность изделия, на которую наносят износостойкое покрытие, пластична и обладает достаточной жесткостью, как, например, в сталях, то несмотря на высокую твердость это покрытие при повышенных удельных нагрузках в процессе эксплуатации прогибается и разрушается. Присутствие протяженных переходных слоев с постепенно нарастающей твердостью между материалом изделия и супертвердым покрытием позволяет устранить образование резкой границы, тем самым демпфируя градиент жесткости разнородных материалов. (Рыбаков Л.М., Куксенова Л.И. Трение и износ. - "Металловедение и термическая обработка". Том 19, Итоги науки и техники ВИНИТИ АН СССР. М., 1985, с).

Известен способ комбинированной ионно-плазменной обработки изделий из сталей и твердых сплавов (патент RU №2370570 МПК: С23С 26/00, С23С 14/06, С23С 8/36 опубл. 20.10.2009), обеспечивающий химическое сродство диффузионно-насыщенного поверхностного слоя изделия с наносимым покрытием, повышение твердости этого поверхностного слоя, улучшение свойств самого покрытия и, в конечном счете, повышение износостойкости всей композиции изделие - покрытие. Способ включает обработку изделия в газоразрядной плазме, содержащей ионы аргона, проведение диффузионного насыщения изделия и нанесение на него покрытия. Диффузионное насыщение проводят в газоразрядной плазме, в которую дополнительно вводят магнетронным распылением мишени-катода ионы компонентов твердого тела, входящих в состав наносимого покрытия, а само покрытие наносят магнетронным распылением мишени-катода с одновременным ассистирующим воздействием газоразрядной плазмы, при этом переход от диффузионного насыщения к нанесению покрытия осуществляют понижением отрицательного потенциала смещения на обрабатываемом изделии. Газоразрядная плазма, в которой проводят диффузионное насыщение и нанесение покрытия, содержит ионы аргона и азота и формируется газовым плазмогенератором с накаленным катодом. Недостатками данного способа являются сложность технологического цикла, заключающегося в непрерывном контроле и управлении многими параметрами, такими как ток накала катода, электрическое смещение на образце, давление и состав газовой среды.

Наиболее близким по технической сущности и выбранным в качестве прототипа является способ формирования износостойкого покрытия на поверхности изделий из конструкционной стали (патент RU №2131480 МПК: C23C 14/06, C23C 14/48), включающий ионно-плазменное азотирование в среде реактивного газа - азота, очистку поверхности детали и нанесение нитрида титана из плазменной фазы, причем азотирование, очистку поверхности и нанесение нитрида титана осуществляют в одной вакуумной камере в плазме дугового и газового разряда с накаленным катодом в едином цикле, образуя на поверхности деталей трехслойную структуру, при этом азотирование проводят при давлении реактивного газа 5⋅10-3-2⋅10-2 мм рт.ст., отрицательном напряжении смещения на деталях 300-1000 В и плотности ионного тока 2-8 мА/см2 в течение 30-90 мин, очистку проводят в плазме инертного газа - аргона при давлении 3⋅10-4-7⋅10-4 мм рт.ст. и плотности тока 3-5 мА/см-2, а нанесение нитрида титана осуществляют со скоростью 2 мкм/ч в течение 60-90 мин при одновременной работе генератора газоразрядной плазмы и дугового испарителя при отрицательном напряжении смещения на детали 300-600 В, токе электродугового испарителя 50-200 А, давлении реактивного газа 3⋅10-4-2⋅10-3 мм рт.ст. Недостатками такого способа являются:

- в процессе азотирования в чистом азоте на поверхности изделия образуется сплошная нитридная пленка, препятствующая эффективной диффузии азота вглубь поверхности и приводящая к сокращению толщины зоны упрочнения с постепенно нарастающей твердостью между материалом изделия (сталью) и последующим покрытием из нитрида титана,

- нанесение покрытия TiN электродуговым методом приводит к неравномерности покрытия и ухудшению адгезионных характеристик покрытия к подложке вследствие наличия микрокапель материала мишени.

Технический результат, на решение которого направлено настоящее изобретение, является создание способа формирования износостойкого покрытия на поверхности изделий из стали, позволяющего образование переходного слоя толщиной до 300 мкм с постепенно нарастающей твердостью между основным материалом изделия и последующим сверхтвердым покрытием из нитрида титана и приводящего к хорошей адгезии покрытия к положке, и в следствие, к улучшению эксплуатационных характеристик изделия при больших механических нагрузках.

Технический результат достигается тем, что предлагаемый способ формирования износостойкого покрытия на поверхности изделий из стали, включает в себя размещение образца в вакуумной камере, создание вакуума, напуск в вакуумную камеру реактивного газа, подачу на изделие отрицательного напряжения смещения относительно заземленной рабочей камеры, азотирование в плазме разряда, напуск в вакуумную камеру реактивного газа, нанесение TiN на изделие при одновременной работе генератора газоразрядной плазмы, причем азотирование и нанесение нитрида титана осуществляют в одной вакуумной камере в едином цикле, отличается тем, в качестве реактивного газа напускают смесь водорода с азотом при этом содержание азота в смеси от 5 до 50%, затем проводят азотирование поверхности изделия в плазме индукционного высокочастотного разряда при давлении 0,01-1,0 Па и отрицательном напряжении смещения на изделии в диапазоне 100-1000 В и температуре образца 400-600°С в течение 0,5-10,0 часов, после чего наносят покрытие TiN в вакууме в смеси аргона с азотом при давлении 0,01-1,0 Па путем импульсного магнетронного распыления мишени-катода при одновременной работе индукционного высокочастотного разряда в качестве генератора газоразрядной плазмы, затем осуществляют подачу в вакуумную камеру аргона до давления не выше 130 Па и охлаждают образец до комнатной температуры в атмосфере аргона.

Технический результат достигается благодаря следующему.

Во время азотирования и ассистирования процесса нанесения покрытия используется индукционный высокочастотный разряд частотой 13,56 МГц и мощностью до 1,5 кВт. Особенностью такого разряда, возбуждаемого плоской магнитной антенной, является отсутствие распыления и возможность получения однородной плазмы с высокой степенью ионизации во всем объеме вакуумной камеры, что способствует улучшенному проникновению химически активного азота вглубь поверхности образца, а подбор мощности высокочастотного генератора в процессе ассистирования способствует интенсификации процесса нанесения покрытия и улучшения его адгезионных свойств за счет механизмов радиационного стимулирования, не прибегая при этом к подаче на изделие дополнительного напряжения смещения.

Нанесение покрытия TiN в импульсном магнетронном разряде приводит к быстрому и эффективному образованию покрытия из нитрида титана, обладающего улучшенными прочностными характеристиками, повышенной твердостью и хорошей адгезией покрытия к подложке.

Режимы обработки выбраны исходя из следующего.

Азотирование поверхности изделия осуществлялось в плазме индукционного высокочастотного разряда в смеси водорода с азотом, при чем содержание азота по отношению к водороду должно быть в соотношении 5-50%, при общем давлении 0,01-1,0 Па при отрицательном напряжении смещения на изделии в диапазоне 100-1000 В в течение 0,5-6,0 ч. Температура образца в процессе азотирования составляет 400-600°С и достигается подбором мощностных режимов работы высокочастотного генератора и подбором напряжения смещения на образец.

При проведении азотирования при содержании азота в смеси менее 5% снижается эффективность азотирования в следствие недостатка азота, а проведение азотирования при содержании азота более 50% приводит к чрезмерному увеличению толщины компаунд слоя нитридов и существенному уменьшению толщины поддерживающей его диффузионной зоны, а следовательно, к сокращению ширины переходного слоя с постепенно нарастающей твердостью. При давлении рабочего газа менее 0,01 Па и более 1,0 Па высокочастотный индукционный разряд не зажигается.

При температуре образца менее 400°С процесс азотирования неэффективен, т.к. при таких температурах уменьшается диффузия азота вглубь поверхности, при температурах выше 600°С в стали происходят структурные превращения и осуществляется перестройка кристаллической решетки. При напряжении смещения меньше 100 В не достигается необходимая температура образца для проведения эффективного процесса азотирования, при напряжении смещения свыше 1000 В происходит нагрев поверхности образца свыше 600°С.

При азотировании менее 0,5 часов на поверхности образа формируется малая толщина диффузионной зоны либо диффузионная зона вовсе не образуется, при азотировании свыше 10 часов снижается эффективность азотирования.

Нанесение покрытия TiN осуществлялось в плазме импульсного магнетронного разряда при одновременной работе индукционного высокочастотного разряда частотой 13,56 МГц мощностью до 1,5 кВт в смеси аргона с азотом при давлении 0,01-1,0 Па. Импульсный магнетронный разряд зажигался при напряжении 300-700 В, токе разряда 1-100 А, длительности импульса 1-20 мс. Импульсная скорость нанесения покрытия нитрида титана была до 6 мкм/мин. Количество импульсов тока разряда варьировалось от 50 до 300. Толщина покрытия TiN составляла величину 1-5 мкм.

При толщине покрытия меньше 1 мкм снижалась износостойкость и твердость покрытия. При толщинах более 5 мкм покрытие обладало неудовлетворительной адгезией.

При давлении менее 0,01 Па и более 1,0 Па высокочастотный индукционный разряд и импульсный магнетронный разряд одновременно не зажигаются.

При напряжении импульсного магнетронного разряда меньше 400 В снижается эффективность распыления материала катода. При напряжении импульсного магнетронного разряда больше 700 В разряд становится неустойчивым и трансформируется в дуговой режим. При токе импульсного магнетронного разряда больше 100 А в следствие большого потока металла с поверхности мишени не происходит эффективный рост пленки нитрида титана. При токах импульсного магнетронного разряда меньше 1 А процесс нанесения становится неэффективным, т.к. сильно падает скорость нанесения покрытия.

При количестве импульсов тока импульсного магнетронного разряда менее 50 формируется покрытие толщиной менее 1 мкм, при количестве импульсов более 300 разряд становится не стабильным за счет перегрева и трансформируется в дуговой режим.

Сущность изобретения поясняется чертежами, где проиллюстрирован заявляемый способ:

на фиг. 1 показана схема установки для формирования износостойкого покрытия на поверхности изделия;

на фиг. 2 - фотография поперечного сечения поверхности образца, обработанной данным способом;

на фиг. 3 - распределение микротвердости исходного образца, проазотированного образца и образца, полученного по данной технологии, в зависимости от приложенной нагрузки.

на Фиг. 4 показано распределение микротвердости по глубине, измеренной по Виккерсу при нагрузке 10 г.

На фиг. 1 обозначено: образец 1, металлический держатель 2, вакуумная камера 3, Ti-мишень 4, плоская магнитная антенна 5, генератор высокочастотной мощности 6, автоматическое согласующее устройство 7, планарный магнетрон 8.

Ниже приведен пример конкретной реализации изобретения.

Пример.

Были использованы образцы из стали 40X13 в виде дисков диаметром 30 мм и высотой 3 мм. Производилась очистка поверхности образцов в ультразвуковой ванне «S5 Elmasonic» в бензине, в ацетоне и в спирте в течение 5-10 мин.

Данный способ был реализован с помощью устройства, схема которого представлена на Фиг. 1. Образец 1 с помощью специального металлического держателя 2 помещалась в вакуумную камеру 3 на расстоянии 70 мм от Ti-мишени 4. Камера откачивалась сухим спиральным насосом и турбомолекулярным насосом до давления 10-4 Па и происходил напуск смеси водорода с азотом до давления 0,33 Па, при этом содержание азота в смеси 7,5%, а азотирование поверхности образца осуществлялось в плазме индукционного высокочастотного разряда частотой 13,56 МГц и мощностью 1,5 кВт при отрицательном напряжении смещения на образце 150 В. Время азотирования составило 2 ч. Температура поверхности образца, измеренная с помощью термопары, во время процесса азотирования была 450°С.

Затем проводилась откачка вакуумной камеры до остаточного давления 10-4 Па, происходил напуск смеси рабочего газа аргон с азотом в соотношении 29:1 до давления 0,48 Па. Последующее нанесение покрытия нитрида титана осуществлялось за счет катодного распыления в импульсном магнетронном разряде титанового катода-мишени 4 при одновременной работе индукционного высокочастотного разряда частотой 13,56 МГц и мощностью 1,5 кВт. Напряжение импульсного магнетронного разряда было 600-650 В, ток разряда - до 100 А. Магнетрон 11 работал в импульсном режиме с длительностью импульса тока 5-10 мс. Количество импульсов тока было 150 имп.

Затем осуществлялась подача в вакуумную камеру аргона до давления 130 Па и происходило охлаждение образца до комнатной температуры в атмосфере аргона.

На Фиг. 2 показана фотография участка шлифа поверхности образца, запрессованного в смолу, где 1 - кремнийорганическая смола, 2 - нанесенное покрытие TiN толщиной ~ 5 мкм и 3 - проазотированный слой толщиной ~ 110 мкм, 4 - не модифицированная основа. Фотография сделана с помощью растрового электронного микроскопа VEGA3 TESCAN.

На Фиг. 3 показано распределение микротвердости поверхности образца в зависимости от приложенной нагрузки, где 1 - микротвердость необработанного образца, 2 - только после азотирования, а 3 - образца, полученного данным способом. Микротвердость измерялась по Виккерсу с помощью микротвердомера Future Tech ТМ-9000. Видно, что микротвердость только азотированной поверхности почти в 2 раза превышает микротвердость необработанного образца, а микротвердость образца, упрочненного данным способом, превышает исходную почти в 4 раза. Ширина диффузионной зоны составляет 100 мкм.

На Фиг. 4 приведено распределение микротвердости по глубине, измеренной по Виккерсу при нагрузке 10 г., показавшее, что был сформирован протяженный переходный слой шириной около 110 мкм с постепенно нарастающей твердостью между основным материалом изделия и супертвердым покрытием из нитрида титана, что устранило образование резкой границы между разнородными материалами и привело к увеличению адгезионной прочности покрытия с подложкой.

Диагностика адгезионных свойств нанесенного покрытия проводилась с помощью скретч-тестера Revetest RST. Для этого проводилось царапание с линейно возрастающей нагрузкой от 0,5 до 100 Н со скоростью увеличения нагрузки 50 Н/мин на длине 5 мм при скорости перемещения индентора 5 мм/мин. Критическая нагрузка разрушения покрытия составила почти 50 Н, при этом критическая нагрузка разрушения покрытия без предварительного азотирования составила 10 Н.

Проведенные усталостные испытания на электродинамическом вибростенде в нормальных условиях по первой изгибной форме колебаний на определение предела выносливости при приложении нагрузки в интервале 12-20 кгс/мм2 с частотой 1680-1880 Гц, показали, что образец выдержал 20 млн. циклов нагрузки/разгрузки и на его поверхности не было обнаружено трещин.

Реализация вышеописанного способа позволит создать технологию формирования износостойкого покрытия на поверхности изделий из стали для использования в областях металлургии и машиностроении для повышения износостойкости деталей и узлов машин, работающих при больших механических нагрузках.

Похожие патенты RU2686397C1

название год авторы номер документа
СПОСОБ КОМБИНИРОВАННОГО ПЛАЗМЕННОГО УПРОЧНЕНИЯ ПОВЕРХНОСТИ ИЗДЕЛИЙ ИЗ ТИТАНОВЫХ СПЛАВОВ 2017
  • Писарев Александр Александрович
  • Степанова Татьяна Владимировна
  • Мозгрин Дмитрий Витальевич
  • Казиев Андрей Викторович
  • Тумаркин Александр Владимирович
  • Харьков Максим Михайлович
  • Колодко Добрыня Вячеславич
  • Леонова Ксения Александровна
  • Дробинин Вячеслав Евгеньевич
RU2671026C1
СПОСОБ КОМБИНИРОВАННОЙ ИОННО-ПЛАЗМЕННОЙ ОБРАБОТКИ ИЗДЕЛИЙ ИЗ СТАЛЕЙ И ТВЕРДЫХ СПЛАВОВ 2008
  • Савостиков Виктор Михайлович
  • Сергеев Сергей Михайлович
  • Пинжин Юрий Павлович
RU2370570C1
СПОСОБ ФОРМИРОВАНИЯ ИЗНОСОСТОЙКОГО ПОКРЫТИЯ НА ПОВЕРХНОСТИ ИЗДЕЛИЙ ИЗ КОНСТРУКЦИОННОЙ СТАЛИ 1998
  • Щанин П.М.
  • Коваль Н.Н.
  • Борисов Д.П.
  • Гончаренко И.М.
RU2131480C1
Способ ионно-плазменного нанесения износостойкого и коррозионностойкого покрытия на изделия из алюминиевых сплавов 2015
  • Писарев Александр Александрович
  • Степанова Татьяна Владимировна
  • Бердникова Мария Михайловна
  • Тумаркин Александр Владимирович
  • Тарасюк Григорий Михайлович
  • Харьков Максим Михайлович
RU2612113C1
СПОСОБ НАНЕСЕНИЯ ПОКРЫТИЯ НА ИЗДЕЛИЯ ИЗ ТВЕРДЫХ СПЛАВОВ 2009
  • Гончаренко Игорь Михайлович
  • Григорьев Сергей Владимирович
  • Лобач Максим Ильич
  • Лыков Сергей Витальевич
  • Тересов Антон Дмитриевич
RU2415966C1
Способ получения многослойных износостойких алмазоподобных покрытий 2020
  • Колесников Владимир Иванович
  • Сычев Александр Павлович
  • Колесников Игорь Владимирович
  • Сычев Алексей Александрович
  • Мотренко Петр Данилович
  • Ковалев Петр Павлович
  • Воропаев Александр Иванович
RU2740591C1
СПОСОБ ИОННО-ПЛАЗМЕННОГО НАНЕСЕНИЯ МНОГОСЛОЙНОГО ПОКРЫТИЯ НА ИЗДЕЛИЯ ИЗ АЛЮМИНИЕВЫХ СПЛАВОВ 2015
  • Ходаченко Георгий Владимирович
  • Степанова Татьяна Владимировна
  • Писарев Александр Александрович
  • Атаманов Михаил Владимирович
RU2599073C1
СПОСОБ НАНЕСЕНИЯ ИЗНОСОСТОЙКИХ ПОКРЫТИЙ НА ЛОПАТКИ КОМПРЕССОРА ГТД 2009
  • Гейкин Валерий Александрович
  • Белова Лидия Николаевна
  • Наговицын Евгений Михайлович
  • Поклад Валерий Александрович
  • Шаронова Наталия Ивановна
  • Рябчиков Александр Ильич
  • Степанов Игорь Борисович
RU2430992C2
СПОСОБ СИНТЕЗА КОМПОЗИТНЫХ ПОКРЫТИЙ TiN-Cu И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2017
  • Семенов Александр Петрович
  • Цыренов Дмитрий Бадма-Доржиевич
  • Семенова Ирина Александровна
RU2649355C1
Способ нанесения покрытия на поверхность стального изделия 2017
  • Качалин Геннадий Викторович
  • Медведев Константин Сергеевич
  • Медников Алексей Феликсович
  • Тхабисимов Александр Борисович
  • Сидоров Сергей Васильевич
RU2660502C1

Иллюстрации к изобретению RU 2 686 397 C1

Реферат патента 2019 года СПОСОБ ФОРМИРОВАНИЯ ИЗНОСОСТОЙКОГО ПОКРЫТИЯ НА ПОВЕРХНОСТИ ИЗДЕЛИЙ ИЗ СТАЛИ

Изобретение относится способу плазменной химико-термической обработке стали. Размещают в вакуумной камере образец, создают вакуум, напускают в камеру реактивный газ в виде смеси водорода и азота. Проводят азотирование поверхности изделия в плазме индукционного высокочастотного разряда при давлении 0,01-1,0 Па и отрицательном напряжении смещения на изделии 100-1000 В и температуре образца 400-600°С в течение 0,5-10,0 часов. Затем наносят покрытие ТiN в вакууме в смеси Аr с N2 при давлении 0,01-1,0 Па путем импульсного магнетронного распыления мишени-катода при одновременной работе индукционного высокочастотного разряда посредством генератора газоразрядной плазмы. Затем осуществляют подачу в вакуумную камеру Аr до давления не выше 130 Па и охлаждают образец до комнатной температуры в атмосфере Аr. В результате получают образование переходного слоя толщиной до 300 мкм с постепенно нарастающей твердостью между материалом изделия и последующим сверхтвердым покрытием из нитрида титана с хорошей адгезией покрытия к стальной положке. 4 ил.

Формула изобретения RU 2 686 397 C1

Способ формирования износостойкого покрытия на поверхности изделий из стали, включающий размещение образца в вакуумной камере, создание вакуума, напуск в вакуумную камеру реактивного газа, подачу на изделие отрицательного напряжения смещения относительно заземленной рабочей камеры, азотирование в плазме разряда, напуск в вакуумную камеру реактивного газа, нанесение нитрида титана (TiN) на изделие при одновременной работе генератора газоразрядной плазмы, причем азотирование и нанесение TiN осуществляют в одной вакуумной камере в едином цикле, отличающийся тем, что в качестве реактивного газа напускают смесь водорода с азотом, содержание которого в смеси составляет от 5 до 50%, затем проводят азотирование поверхности изделия в плазме индукционного высокочастотного разряда при давлении 0,01-1,0 Па и отрицательном напряжении смещения на изделии 100-1000 В и температуре образца 400-600°С в течение 0,5-10,0 часов, после чего наносят покрытие TiN в вакууме в смеси аргона с азотом при давлении 0,01-1,0 Па путем импульсного магнетронного распыления мишени-катода и одновременной работе индукционного высокочастотного разряда генератора газоразрядной плазмы, затем осуществляют подачу в вакуумную камеру аргона до давления не выше 130 Па и охлаждают образец до комнатной температуры в атмосфере аргона.

Документы, цитированные в отчете о поиске Патент 2019 года RU2686397C1

СПОСОБ ФОРМИРОВАНИЯ ИЗНОСОСТОЙКОГО ПОКРЫТИЯ НА ПОВЕРХНОСТИ ИЗДЕЛИЙ ИЗ КОНСТРУКЦИОННОЙ СТАЛИ 1998
  • Щанин П.М.
  • Коваль Н.Н.
  • Борисов Д.П.
  • Гончаренко И.М.
RU2131480C1
СПОСОБ ПЛАЗМЕННОЙ ОБРАБОТКИ ДЕТАЛЕЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1993
  • Богатов Валерий Афанасьевич
  • Марахтанов Михаил Константинович
  • Хохлов Юрий Александрович
RU2063472C1
Приспособление для смолки ткацких берд 1928
  • Демичев С.А.
SU10786A1
US 5473468 A1, 05.12.1995
US 4798663 A1, 17.01.1989
Абразивный круг 1977
  • Шушпан Юрий Иванович
SU878558A1

RU 2 686 397 C1

Авторы

Писарев Александр Александрович

Степанова Татьяна Владимировна

Мозгрин Дмитрий Витальевич

Казиев Андрей Викторович

Тумаркин Александр Владимирович

Харьков Максим Михайлович

Колодко Добрыня Вячеславич

Леонова Ксения Александровна

Агейченков Дмитрий Григорьевич

Даты

2019-04-25Публикация

2017-12-21Подача