ВНУТРИТРУБНЫЙ УПРУГИЙ МИКРОРОБОТ С УПРАВЛЯЕМОЙ ПЬЕЗОАКТЮАТОРОМ ФОРМОЙ Российский патент 2019 года по МПК B25J7/00 

Описание патента на изобретение RU2690258C1

Изобретение относится к робототехнике, а именно к мобильным миниатюрным роботам, предназначенным для осуществления работ в трубчатых каналах различных типов.

Известен миниатюрный мобильный вибрационный робот с пьезоактюатором для движения в тонкой трубке. Мобильный робот содержит пьезоэлектрическую структуру биморфного типа, созданный путем присоединения двух пьезоэлектрических элементов, и четыре упругих гребня. Биморфная структура вибрацией создает изгиб в соответствии с прикладываемым напряжением переменного тока, и концы упругих гребней вибрируют вдоль внутренних стенок трубки. Динамическое трение при перемещении робота в горизонтальной трубке в левом направлении меньше трения в противоположном направлении. (Shin-ichi Aoshima, Takeshi Tsujimura, Tetsuro Yabuto A miniature mobile robot using piezo vibration for mobility in a thin tube // Journal of dynamic systems measurement and control // Vol. 115. P. 270-278). Недостатками такого устройства являются малая точность, невозможность реверсивного движения и высокое трение о внутренние поверхности трубки.

Наиболее близким по своей технической сущности к заявленному является ползающий робот с вибрационным актюатором (патент США №8294333 В2, МПК H01L 41/08, опубл. 23.10.2008), перемещающийся внутри трубки или вдоль поверхности, использующий множество гибких волокон, закрепленных на корпусе устройства. Наружная поверхность волокон имеет коэффициент анизотропного трения с поверхностью, вдоль которой устройство должно перемещаться, а волокна тянутся от корпуса устройства таким образом, что по меньшей мере некоторая часть длины волокон находится в контакте со стенками. Актюатор используется для вибрации устройства, таким образом, что оно движется вниз вдоль канала. Актюатором может быть устройство внутреннее или внешнее. Недостатками такого устройства является значительные массогабаритные характеристики и высокое анизотропное трение.

Техническая задача предлагаемого в качестве изобретения технического решения состоит в уменьшении массогабаритных показателей и расширении функциональных возможностей.

Технический эффект, возникающий при решении поставленной технической задачи, заключающийся в осуществлении диагностики трубчатых каналов различного поперечного сечения, обеспечении реверсивного движения в них и быстрой адресной доставке различных средств специального назначения в автономном режиме, достигается тем, что в известном внутритрубном упругом микророботе для создания движущих его сил реализовано управление формой изгиба микроробота в трубном канале переменной кривизны. Впервые такой возможный принцип создания силы тяги за счет внутренних сил живых организмов (ужей, рыб) для движения в твердом канале и жидкости был сформулирован М.А. Лаврентьевым и М.М. Лаврентьевым (Об одном принципе создания тяговой силы для движения // Прикл. мех. и техн. физика. 1962. №4 с. 3-9//), а на модели упругого стержня В.Ф. Журавлевым построено оптимальное управление формой изгиба змеи с помощью силового воздействия мышц при ее движении в канале синусоидальной формы (Об одной модели механизма движения змеи // Прикл. мат. и мех. 2002. т. 66. вып. 4 с. 534-538//). В предлагаемом устройстве управление формой внутритрубного робота осуществляется с помощью встроенного пьезоактюатора.

Указанный выше технический эффект достигается тем, что внутритрубный упругий микроробот, согласно изобретению, выполнен в виде гибкого многоопорного неразрезного стержня, опорами которого служат шарнирно закрепленные ползуны, расположенные симметрично по всей его длине и на концах стержня, имеет встроенный пьезоактюатор, формирующий с помощью блока управления и питания изгибающие моменты, управляющие формой микроробота в зависимости от изменения кривизны трубного канала.

Кроме того, во внутритрубном упругом микророботе с управляемой формой пьезоактюатор выполнен в виде композита биморфного типа: пьезопленка-металл и соответствующие проводящие слои.

Кроме того, во внутритрубном упругом микророботе с управляемой формой пьезоактюатор выполнен в виде композита триморфного типа: пьезопленка-металл-пьезопленка и соответствующие проводящие слои.

Кроме того, движение внутритрубного упругого микроробота с управляемой пьезоактюатором формой, может быть реализовано в трубе малого поперечного размера (менее 20 мм), осевая линия которой является комбинацией двух кривых: линии постоянной кривизны - горизонтальной прямой - и линии с периодически изменяющейся кривизной.

Кроме того, движение внутритрубного упругого микроробота с управляемой пьезоактюатором формой, может быть реализовано в трубе большого поперечного размера (более 100 мм), на внутренней поверхности которой выполнены направляющие специальной формы, являющиеся комбинацией двух кривых: винтовой линии с углом подъема θ - кривая постоянной кривизны - и геодезической кривой с периодически изменяющейся кривизной.

Упругий микроробот представлен на фиг. 1, выполнен в виде гибкого многоопорного неразрезного стержня 1, опорами которого служат шарнирно закрепленные ползуны 2, расположенные симметрично по всей его длине и на концах стержня (Фиг. 1, Фиг. 2).

Кроме того, во внутритрубном упругом микророботе с управляемой формой, пьезоактюатор выполнен в виде слоистой структуры (композита) (Фиг. 3).

Кроме того, во внутритрубном упругом микророботе с управляемой формой, пьезоактюатор выполнен в виде композита биморфного типа (пьезопленка-металл и соответствующие проводящие слои, образующие систему электродов).

Кроме того, во внутритрубном упругом микророботе с управляемой формой, пьезоактюатор выполнен в виде композита триморфного типа (пьезопленка 4, металл 5, пьезопленка 4 и соответствующие проводящие слои 6, образующие систему электродов (Фиг. 3).

На электроды 6 от блока, содержащего систему управления и источник питания (блок СУиП - Фиг. 3), по традиционной схеме подается управляющее электрическое напряжение. При электрическом нагружении пьезоактюатора в соответствии с обратным пьезоэффектом в неразрезном гибком стержне 1 слоистой структуры возникает напряженно-деформированное состояние, соответствующее изгибу под действием эквивалентных изгибающих управляющих моментов H, величина которых пропорциональна напряжению и формируется блоком управления и питания в зависимости от изменения кривизны трубного канала.

Предлагается упругий микроробот с управляемой пьезоактюатором формой для использования в трубных каналах двух типов: малого поперечного и большого поперечного сечений. При этом реверс движения осуществляется изменением знака напряжения, подаваемого на актюатор блоком управления и питания.

На фиг. 1 изображен микроробот при движении в трубчатом канале малого поперечного размера.

На фиг. 2 изображен микроробот при движении в трубчатом канале большого поперечного размера.

Для реализации движения микроробота в канале малого поперечного размера (менее 20 мм) используется трубка 3 (фиг. 1), осевая линия которой является комбинацией двух кривых: линии постоянной кривизны (горизонтальная прямая) и линии с периодически изменяющейся кривизной. Движение микроробота в канале большого поперечного размера (более 100 мм) реализуется в трубе 3 (фиг. 2), на внутренней поверхности которой выполнены направляющие, являющиеся комбинацией двух кривых: винтовой линии с постоянным углом подъема θ и геодезической кривой с периодически изменяющейся кривизной. Положение робота определяется координатой s на скелетной винтовой линии Трубный канал с направляющими указанного типа может быть выполнен с помощью современных 3D-технологий.

Похожие патенты RU2690258C1

название год авторы номер документа
ПЬЕЗОАКТЮАТОР ИЗГИБНОГО ТИПА 2023
  • Паньков Андрей Анатольевич
RU2819557C1
ПЬЕЗОАКТЮАТОР ИЗГИБНОГО ТИПА 2024
  • Паньков Андрей Анатольевич
RU2822976C1
ПЬЕЗОАКТЮАТОР ИЗГИБНОГО ТИПА 2016
  • Паньков Андрей Анатольевич
RU2636255C2
СПОСОБ УВЕЛИЧЕНИЯ ПЬЕЗОЧУВСТВИТЕЛЬНОСТИ БИМОРФА ИЗГИБНОГО ТИПА 2022
  • Паньков Андрей Анатольевич
RU2778161C1
Шагающий инсектоморфный мобильный микроробот 2018
  • Болотник Николай Николаевич
  • Горячева Ирина Георгиевна
  • Жуков Андрей Александрович
  • Смирнов Игорь Петрович
  • Самохвалов Геннадий Васильевич
RU2699209C1
Искусственное сердце с мембранно-клапанным насосом и способ настройки гармонических колебаний мембраны 2019
  • Горин Владимир Ильич
  • Хабарина Мария Владиславовна
RU2731820C2
МИКРОСИСТЕМНЫЙ КОСМИЧЕСКИЙ РОБОТ-ИНСПЕКТОР (ВАРИАНТЫ) 2014
  • Смирнов Игорь Петрович
  • Козлов Дмитрий Владимирович
  • Жуков Андрей Александрович
  • Чащухин Владислав Григорьевич
  • Градецкий Валерий Георгиевич
  • Болотник Николай Николаевич
RU2566454C2
Метаматериал для управления преломлением и отражением электромагнитного излучения 2023
  • Фон Гратовски Светлана Вячеславовна
  • Коледов Виктор Викторович
RU2819591C1
СПОСОБ КОНТРОЛЯ СОСТОЯНИЯ ПИПЕТКИ, СПОСОБ ПИПЕТИРОВАНИЯ, ПИПЕТИРУЮЩЕЕ УСТРОЙСТВО И УЗЕЛ ВСАСЫВАЮЩЕЙ ТРУБКИ ДЛЯ ПИПЕТИРУЮЩЕГО УСТРОЙСТВА 2009
  • Вассермайер Маттиас
  • Фон Гуттенберг Цено
  • Рерс Фридо
RU2518045C2
МИКРОСИСТЕМНЫЙ ЗАХВАТ 2015
  • Черноусько Феликс Леонидович
  • Болотник Николай Николаевич
  • Градецкий Валерий Георгиевич
  • Самохвалов Геннадий Васильевич
  • Чащухин Владислав Григорьевич
  • Жуков Андрей Александрович
  • Козлов Дмитрий Владимирович
  • Смирнов Игорь Петрович
RU2598416C1

Иллюстрации к изобретению RU 2 690 258 C1

Реферат патента 2019 года ВНУТРИТРУБНЫЙ УПРУГИЙ МИКРОРОБОТ С УПРАВЛЯЕМОЙ ПЬЕЗОАКТЮАТОРОМ ФОРМОЙ

Изобретение относится к робототехнике, а именно к мобильным миниатюрным роботам, предназначенным для осуществления работ в трубчатых каналах различных типов. Внутритрубный упругий микроробот выполнен в виде гибкого многоопорного неразрезного стержня, опорами которого служат шарнирно закрепленные ползуны, расположенные симметрично по всей его длине и на концах, содержащего блок управления и питания и встроенный пьезоактюатор, выполненный с возможностью формирования изгибающих моментов, управляющих формой стержня в зависимости от изменения кривизны трубного канала. Изобретение направлено на уменьшение массогабаритных показателей и расширение функциональных возможностей. 4 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 690 258 C1

1. Внутритрубный упругий микроробот, отличающийся тем, что он выполнен в виде гибкого многоопорного неразрезного стержня, опорами которого служат шарнирно закрепленные ползуны, расположенные симметрично по всей его длине и на концах, содержащего блок управления и питания и встроенный пьезоактюатор, выполненные с возможностью формирования изгибающих моментов, управляющих формой стержня в зависимости от изменения кривизны трубного канала.

2. Микроробот по п. 1, отличающийся тем, что пьезоактюатор выполнен из композита биморфного типа в виде пьезопленка-металл с проводящими слоями, образующими систему электродов.

3. Микроробот по п. 1, отличающийся тем, что пьезоактюатор выполнен из композита триморфного типа в виде пьезопленка-металл-пьезопленка с проводящими слоями, образующими систему электродов.

4. Микроробот по п. 1, отличающийся тем, что он выполнен с возможностью движения в трубном канале, имеющем поперечный размер менее 20 мм, осевая линия которого является комбинацией двух кривых, которые представляют собой линию постоянной кривизны в виде горизонтальной прямой и линию с периодически изменяющейся кривизной.

5. Микроробот по п. 1, отличающийся тем, что он выполнен с возможностью движения в трубном канале, имеющем поперечный размер более 100 мм и направляющие, выполненные на внутренней поверхности канала и являющиеся комбинацией двух кривых, которые представляют собой винтовую линию с постоянным углом подъема θ в виде кривой постоянной кривизны и геодезическую кривую с периодически изменяющейся кривизной.

Документы, цитированные в отчете о поиске Патент 2019 года RU2690258C1

US 8294333 B2, 23.10.2012
Shin-ichi Aoshima et al
A Miniature Mobile Robot Using Piezo Vibration for Mobility in a Thin Tube
Journal of dynamic systems measurement and control
Vol
Ударно-долбежная врубовая машина 1921
  • Симонов Н.И.
SU115A1
Приспособление для уменьшения дымовой тяги паровоза 1920
  • Шелест А.Н.
SU270A1
US 6035786 A1, 14.03.2000
АКТЮАТОР 2007
  • Коледов Виктор Викторович
  • Ховайло Владимир Васильевич
  • Шавров Владимир Григорьевич
  • Лебедев Арсений Андреевич
  • Гизатуллин Рамиль Михайлович
RU2367573C2
0
SU154708A1
ЛИНЕЙНЫЙ ПЬЕЗОЭЛЕКТРИЧЕСКИЙ ДВИГАТЕЛЬ 2009
  • Гриценко Анатолий Лукьянович
  • Сафронов Алексей Яковлевич
RU2390090C1
WO 2009009679 A1, 15.01.2009
WO 2005057076 A1, 23.06.2005.

RU 2 690 258 C1

Авторы

Устинов Валентин Федорович

Степанов Александр Сергеевич

Иванов Алексей Игоревич

Даты

2019-05-31Публикация

2018-04-04Подача