Настоящая группа изобретений относится к области анализа материалов, а именно к области исследования масел применительно к оценке их деаэрирующих свойств.
Известен способ определения деаэрирующих свойств турбинных масел и установка для определения времени деаэрации (РД 153-34.1-43.211-2000, Масла турбинные огнестойкие и минеральные, Метод определения деаэрирующих свойств, 2000). В известном способе используется установка для определения деаэрирующих свойств масел, включающая стеклянный сосуд с рубашкой, с присоединенной к нему на шлифе форсункой с двумя отводами, один из которых соединен с капилляром. Определяют массу специального погружного элемента в масле, подвешивая его на гидростатические весы. Для образования воздушно-масляной эмульсии через масло при постоянном давлении 20 кПа в течение 420 секунд пропускают прогретый до 50°С воздух. Взвешивая погружной элемент, после прекращения подачи воздуха измеряют плотность воздушно-масляной эмульсии, которая непрерывно изменяется. Деаэрирующие свойства масла оценивают временем, по истечении которого, после прекращения подачи воздуха, в масле остается 0,2% об. диспергированного воздуха. Недостатками данного способа являются сложность определения показателя плотности в динамических условиях, сложность конструкции, обеспечивающей подачу нагретого воздуха при постоянной температуре, а также длительность испытаний и значительный временной интервал между фиксируемыми значениями плотности от 15 с. Известная установка для определения времени деаэрации является наиболее близким техническим решением к предлагаемому устройству, принятым заявителем в качестве прототипа. Установка представляет собой сборную панель управления, в которую вмонтированы: нагреватель воздуха, тумблер для включения системы подачи и подогрева воздуха, манометр со шкалой от 0 до 50 кПа (от 0 до 500 мбар) с регулятором давления воздуха, шланг для подачи сжатого воздуха к форсунке стеклянного сосуда с рубашкой, хомут для крепления сосуда, сигнальная лампочка. Известное решение представляет собой сложную конструкцию, в которой испытания проходят с большими временными затратами и недостаточно высокой степенью достоверности результатов.
Наиболее близким техническим решением к предлагаемому способу является способ определения деаэрирующих свойств масел, (диссертация Калинина П.А. «Исследование деаэрирующих и деэмульгирующих свойств смазочных масел», 1990, Решение ГМК №23/1-94 от 21.03.1989). Согласно данному способу используется аппарат, включающий в себя гомогенизатор на основе мешалки с лопастной насадкой, прецизионный прибор для измерения емкости и измерительную ячейку, состоящую из конденсатора, образованного 12 вертикальными радиально-ориентированными металлическими пластинами, помещенную в стакан из нержавеющей стали, расположенный в термостате. Измерение объема воздуха в воздушно-масляной эмульсии проводят при температуре 50°С. Воздушно-масляную эмульсию создают вращением гомогенизатора с частотой 12000 мин-1 в течение 30 с. Деаэрирующие свойства оценивают по величине изменения диэлектрической проницаемости в процессе выделения воздуха из масла. Показателем деаэрирующих свойств масел являются объемная доля воздуха и время деаэрации. К недостаткам известного способа относятся невозможность контроля и своевременного отделения процесса пенообразования от процесса аэрации масла, что приводит к снижению достоверности получаемых результатов, а также нагрев масла при механическом перемешивании, ограничение области применения способа для масел, обладающих высокой кинематической вязкостью, высокий расход масла на испытание.
Задача, решаемая предлагаемыми изобретениями, заключается в создании способа и устройства для определения деаэрирующих свойств масел, обеспечивающих высокую достоверность результатов испытаний.
Техническим результатом группы изобретений является повышение достоверности результатов испытаний, сокращение времени испытаний и автоматизация процесса измерений, направленного на оценку влияния деаэрирующих свойств масел на эксплуатационную надежность агрегатов.
Технический результат изобретения на устройство для определения деаэрирующих свойств масел достигается за счет того, что предлагаемое устройство включает прозрачный термостат с помещенным в него мерным стеклянным цилиндром объемом 250 мл, заполняемым маслом и снабженным фиксатором. Внутри мерного стеклянного цилиндра находится датчик-аэратор, состоящий из диэлектрической измерительной ячейки, образованной двумя соосными металлическими пустотелыми цилиндрами, разделенными диэлектрическими прокладками и упорами, подсоединенной к прецизионному измерителю емкости непосредственно за трубку для подачи воздуха и контактный электрод. Устройство содержит сферический металлокерамический газовый диффузор, диаметр которого составляет около 25,4 мм, размер пор 5 мкм, размещенный в нижней части упомянутой трубки, используемой также для подачи воздуха, и пеногаситель, размещенный в верхней части трубки.
Технический результат изобретения на способ определения деаэрирующих свойств масел достигается за счет того, что деаэрирующие свойства масел определяют по степени изменения диэлектрической проницаемости воздушно-масляной эмульсии во времени с использованием устройства для определения деаэрирующих свойств масел. Мерный стеклянный цилиндр наполняют маслом. Прозрачный термостат предварительно разогревают до 40°С. Для образования воздушно-масляной эмульсии осуществляют подачу воздуха через сферический металлокерамический газовый диффузор, поддерживая расход от 2,40 до 2,60 нл/час. При проведении испытаний обеспечивают визуальный контроль процесса аэрации масла, не допуская образования пены непосредственно в зоне диэлектрической измерительной ячейки. По истечении пяти минут подачу воздуха прекращают, и с этого момента фиксируют изменение емкости воздушно-масляной эмульсии с шагом по времени 0,5-2,0 с. Полученные результаты обрабатывают, определяя постоянную времени (Твр) переходного процесса,
где Δt - шаг изменения времени между соседними точками, с;
- нормированная емкость диэлектрической измерительной ячейки для оценки деаэрирующих свойств масел (i=1, 2…n),
Сн и Ск - емкость диэлектрической измерительной ячейки для оценки деаэрирующих свойств масел в начале и в конце переходного процесса, соответственно, пФ;
Ci - фактическая емкость диэлектрической измерительной ячейки для определения деаэрирующих свойств масел (i=1,2…n), пФ;
n - количество точек,
по постоянной времени переходного процесса Твр оценивают общую характеристику деаэрирующих свойств испытуемых масел.
Предлагаемая группа изобретений поясняется чертежами. На фиг. 1 приведена схема датчика-аэратора устройства для определения времени деаэрации, с помощью которого может быть реализован способ определения деаэрирующих свойств масел. На фиг. 2 представлены результаты испытаний, отражающие зависимости изменения нормированной емкости устройства для определения деаэрирующих свойств масел от времени проведения испытаний для трех различных образцов масел. Для проведения испытаний были использованы масла:
- турбинное Тп-22С Марка 1;
- авиационное МС-8П;
- синтетическое ВНИИ НП 50-1-4ф.
В таблице представлены результаты испытаний, отражающие зависимости изменения емкости устройства для определения деаэрирующих свойств масел от времени на заданном участке для указанных выше образцов масел.
Устройство для определения деаэрирующих свойств масел может быть реализовано на базе датчика - аэратора (фиг. 1), который содержит контактный электрод (1), разделительные диэлектрические прокладки (2, 3), пеногаситель (4), трубку (5) для подачи воздуха, уплотнитель (6), упоры (7), два соосных металлических пустотелых цилиндра (8, 9), фиксатор (10), сферический диффузор (11), выполненный из металлокерамического материала. Причем трубка (5) для подачи воздуха, пустотелые цилиндры (8, 9), разделенные диэлектрическими прокладками (2, 3) и упорами (7), образуют диэлектрическую измерительную ячейку.
В предлагаемом устройстве целесообразно использование сферического металлокерамического диффузора (11), диаметром ∅ 25,4 мм с размером пор 5 мкм, размещенного в нижней части трубки (5), через которую подается воздух. В процессе работы диэлектрическую измерительную ячейку подсоединяют к прецизионному измерителю емкости (на фиг. 1 не показан) непосредственно за трубку (5) и контактный электрод (1). Пузырьки воздуха из металлокерамического диффузора (11) уплотнителем (6) направляются между поверхностями цилиндров (8, 9) и трубки (5). В верхней части трубки размещен пеногаситель (4) для недопущения избыточного объема пены. Серию испытаний проводят при следующих условиях. Датчик-аэратор помещают в мерный стеклянный цилиндр (ГОСТ 1770-74) объемом 250 мл, заполненный 220 мл масла, при этом пеногаситель (4) должен оставаться на воздухе. Глубина размещения датчика-аэратора регулируется фиксатором (10).
Цилиндр с датчиком-аэратором помещают в нагретый до 40°С прозрачный термостат и выдерживают в течение 30 мин.
Воздух подают через трубку (5) и металлокерамический диффузор (11), поддерживая расход 2,40-2,60 нл/час. При этом визуально контролируют отсутствие образования пены непосредственно в зоне диэлектрической оценки устройства для определения деаэрирующих свойств масел. Отсчет времени начинают с появлением первых пузырьков воздуха из металлокерамического диффузора (11). По истечении 5 минут подачу воздуха прекращают, и с этого момента фиксируют изменение емкости воздушно-масляной эмульсии с шагом по времени 0,5-2,0 с. Устройство для определения деаэрирующих свойств масел коммутируется через интерфейс RS-232 с компьютером, с помощью которого проводится обработка результатов измерений и определяется постоянная времени Твр.
При подаче воздуха диэлектрическая проницаемость воздушно-масляной эмульсии снижается по сравнению с исходной для чистого масла, после прекращения подачи воздуха пузырьки постепенно удаляются из масла и диэлектрическая проницаемость постепенно возвращается к исходному состоянию. После окончания переходного процесса и стабилизации значения емкости устройства для определения деаэрирующих свойств масел измерение прекращают. Испытание повторяют, по меньшей мере, 3 раза. По окончании испытаний датчик-аэратор с мерным цилиндром промывают несколькими порциями бензина до полного удаления масла и высушивают.
Измеренные данные сводят в таблицу и строят график зависимости нормированной емкости устройства для определения деаэрирующих свойств масел от времени проведения испытаний на заданном участке. Затем определяют постоянную времени Твр полученного переходного процесса, принимая допущение, что рассматриваемая система имеет передаточную функцию апериодического (инерционного) звена 1-го порядка. Постоянная времени Твр переходного процесса определяется методом площадей по формуле.
где Δt - шаг изменения времени между соседними точками, с;
- нормированная емкость устройства для определения деаэрирующих свойств масел (i=1, 2…n), Сн и Ск - емкость устройства в начале и в конце переходного процесса, соответственно, пФ;
Ci - фактическая емкость устройства для определения деаэрирующих свойств масел (i=1,2…n), пФ;
n - количество точек.
По постоянной времени переходного процесса Твр оценивают общую характеристику деаэрирующих свойств испытуемых масел.
Обработка полученных результатов заключается в определении постоянной времени (Твр) полученного переходного процесса, принимая допущение, что рассматриваемая система имеет передаточную функцию апериодического (инерционного) звена 1-го порядка. Постоянная времени (Твр) переходного процесса определяется методом площадей (И.М. Макаров, Б.М. Менский, Линейные автоматические системы, Москва, Машиностроение, 1982, стр. 71-75) по формуле, приведенной на стр. 4-7.
Представленные на фиг. 2 и в таблице результаты испытаний отражают зависимости изменения емкости устройства для определения деаэрирующих свойств масел от времени на заданном участке для трех образцов масел. Анализируя полученные данные, а также график, представленный на фиг. 2, можно видеть, что предложенный способ позволяет оценить деаэрирующие свойства масел. Наилучшими показателями деаэрирующих свойств из трех рассматриваемых образцов масел обладает синтетическое масло ВНИИ НП 50-1-4ф, а наихудшими - минеральное турбинное Тп-22С Марка 1.
Применение предлагаемых устройства и способа определения деаэрирующих свойств масел позволит получить более достоверные результаты исследований, позволяющие оценивать эксплуатационные свойства масел.
название | год | авторы | номер документа |
---|---|---|---|
Способ определения аэрационно-деаэрирующих свойств смазочных масел | 1986 |
|
SU1338599A1 |
Прибор для оценки стабильности масел, применяемых в воздушно-реактивных двигателях, турбинах и трансформаторах | 1958 |
|
SU116924A1 |
УСТРОЙСТВО ДЛЯ МОДЕЛИРОВАНИЯ ПРОЦЕССОВ РАЗЛОЖЕНИЯ СМАЗОЧНЫХ МАСЕЛ В КОМПРЕССОРАХ АВИАЦИОННЫХ ГАЗОТУРБИННЫХ ДВИГАТЕЛЕЙ | 2014 |
|
RU2553856C1 |
СПОСОБ ОЦЕНКИ КОРРОЗИОННОЙ АКТИВНОСТИ МОТОРНЫХ МАСЕЛ | 2006 |
|
RU2304764C1 |
СПОСОБ ФИЛЬТРАЦИИ ТРАНСФОРМАТОРНОГО МАСЛА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2009 |
|
RU2415175C2 |
СПОСОБ И УСТАНОВКА ДЛЯ ИССЛЕДОВАНИЯ ПРОЦЕССОВ СТАРЕНИЯ МОТОРНЫХ МАСЕЛ | 2011 |
|
RU2542470C2 |
Автоматизированная установка для испытания топлив и масел при различных режимах эксплуатации дизельного двигателя | 2023 |
|
RU2817032C1 |
Емкостной преобразователь концентрации | 1982 |
|
SU1041921A1 |
СПОСОБ ОЦЕНКИ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ МАСЕЛ ДЛЯ АВИАЦИОННЫХ ГТД | 1999 |
|
RU2156973C1 |
УСТАНОВКА ДЛЯ ОЦЕНКИ МОЮЩИХ СВОЙСТВ МАСЕЛ С ПРИСАДКАМИ | 2011 |
|
RU2482466C1 |
Изобретение предлагает устройство для определения деаэрирующих свойств масел, включающее прозрачный термостат с помещенным в него мерным стеклянным цилиндром объемом 250 мл, заполняемым маслом и снабженным фиксатором, внутри мерного стеклянного цилиндра находится датчик-аэратор, состоящий из диэлектрической измерительной ячейки, образованной двумя соосными металлическими пустотелыми цилиндрами, разделенными диэлектрическими прокладками и упорами, подсоединенной к прецизионному измерителю емкости непосредственно за трубку для подачи воздуха и контактный электрод, сферического металлокерамического газового диффузора, диаметр которого составляет около 25,4 мм, размер пор 5 мкм, размещенного в нижней части упомянутой трубки, используемой также для подачи воздуха, пеногасителя, размещенного в верхней части трубки. Также раскрывается способ определения деарирующих свойств масел с использованием указанного устройства, включающий изменение емкости воздушно-масляной эмульсии, определение постоянной времени Твр полученного переходного процесса, по которой оценивают общую характеристику деаэрирующих свойств испытуемых масел. Технический результат изобретений - повышение достоверности результатов испытаний, сокращение времени испытаний и автоматизация процесса измерений, направленных на оценку влияния деаэрирующих свойств масел на эксплуатационную надежность агрегатов. 2 н.п. ф-лы, 2 ил., 1 табл.
1. Устройство для определения деаэрирующих свойств масел, включающее прозрачный термостат с помещенным в него мерным стеклянным цилиндром объемом 250 мл, заполняемым маслом и снабженным фиксатором, внутри мерного стеклянного цилиндра находится датчик-аэратор, состоящий из диэлектрической измерительной ячейки, образованной двумя соосными металлическими пустотелыми цилиндрами, разделенными диэлектрическими прокладками и упорами, подсоединенной к прецизионному измерителю емкости непосредственно за трубку для подачи воздуха и контактный электрод, сферического металлокерамического газового диффузора, диаметр которого составляет около 25,4 мм, размер пор 5 мкм, размещенного в нижней части упомянутой трубки, используемой также для подачи воздуха, пеногасителя, размещенного в верхней части трубки.
2. Способ определения деаэрирующих свойств масел, заключающийся в том, что деаэрирующие свойства масел определяют по степени изменения диэлектрической проницаемости воздушно-масляной эмульсии во времени с использованием устройства по п. 1, в котором мерный стеклянный цилиндр наполняют маслом, прозрачный термостат предварительно разогревают до 40°С, для образования воздушно-масляной эмульсии осуществляют подачу воздуха через сферический металлокерамический газовый диффузор, поддерживая расход от 2,40 до 2,60 нл/час, обеспечивают визуальный контроль процесса аэрации масла, не допуская образования пены непосредственно в зоне диэлектрической измерительной ячейки, по истечении пяти минут подачу воздуха прекращают, и с этого момента фиксируют изменение емкости воздушно-масляной эмульсии с шагом по времени 0,5-2,0 с, обрабатывают полученные результаты, определяя постоянную времени (Твр) переходного процесса,
где Δt - шаг изменения времени между соседними точками, с;
- нормированная емкость диэлектрической измерительной ячейки для оценки деаэрирующих свойств масел (i=1,2 … n),
Сн и Ск - емкость диэлектрической измерительной ячейки для оценки деаэрирующих свойств масел в начале и в конце переходного процесса, соответственно, пФ;
Ci - фактическая емкость диэлектрической измерительной ячейки для определения деаэрирующих свойств масел (i=1,2 … n), пФ;
n - количество точек,
по постоянной времени переходного процесса Твр оценивают общую характеристику деаэрирующих свойств испытуемых масел.
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ МАСЕЛ | 0 |
|
SU268734A1 |
СПОСОБ ОПРЕДЕЛЕНИЯ УСЛОВНОГО ЭКСПЛУАТАЦИОННОГО РЕСУРСА СМАЗОЧНОГО МАСЛА | 2015 |
|
RU2595874C1 |
Способ определения аэрационно-деаэрирующих свойств смазочных масел | 1986 |
|
SU1338599A1 |
ПРИБОР ДЛЯ ОЦЕНКИ ЭКСПЛУАТАЦИОННЫХ СВОЙСТВ МОТОРНЫХ МАСЕЛ | 2001 |
|
RU2199114C1 |
CN 106405035 A, 15.02.2017 | |||
CN 105445432 A, 30.03.2016 | |||
US 3942792 A1, 09.03.1976 | |||
US 20170328879 A1, 16.11.2017. |
Авторы
Даты
2019-06-18—Публикация
2018-10-26—Подача