СПОСОБ УМЕНЬШЕНИЯ ДЕВИАЦИИ ЧАСТОТЫ ВОЛНОВОДНОГО УРОВНЕМЕРА С ЛЧМ СИГНАЛОМ Российский патент 2019 года по МПК G01S13/34 G01F23/28 

Описание патента на изобретение RU2693032C1

Изобретение относится к области промышленных уровнемеров, использующих локационный принцип измерения расстояния до контролируемой среды на основе частотно-модулируемого по симметричному треугольному закону сигнала. По необходимости волноводный уровнемер работает только с жидкими средами.

Локационный принцип измерения расстояния основывается на однозначной связи между скоростью распространения сигнала и временем распространения до контролируемого объекта. При ЛЧМ сигнале эта связь преобразуется в разностную частоту между излученным и отраженным сигналами - сигнал разностной частоты (СРЧ). Если измерение происходит в свободном пространстве связь между измеряемым расстоянием R и разностной частотой линейна. В волноводном уровнемере из-за зависимости скорости распространения электромагнитной волны от частоты ƒ (волноводная дисперсия) эта зависимость нелинейна, что вызывает необходимость противодействовать дисперсии, чтобы уменьшить ошибку измерения [1]. С учетом поставленной задачи снижения девиации частоты излучаемого сигнала при сохранении точности измерения R, введем, наряду с физически реализуемым в волноводе сигналом, виртуальный сигнал, скорость распространения которого где с - скорость света в вакууме, ƒкр - критическая частота волновода. В реальности такой сигнал существует только как математический объект.

Расчет расстояния R до контролируемой среды для реального сигнала производится в соответствии с [2]:

где n - число нулей СРЧ на полупериоде модуляции, ƒn, ƒ1 - частоты, соответствующие n-му и первому нулям СРЧ, ƒ0 - начальная несущая частота.

Соотношение (1) свободно от дисперсии, а изобретение [2] является прототипом.

Рассмотрим выражение, аналогичное (1), для виртуального сигнала.

Частота разностного сигнала определяется по формуле:

где ΔF - девиация частоты, - период модуляции, а

- время задержки виртуального сигнала.

Величина τЗВ определяется в (2) при известном значении R, которое может быть найдено только из реального (физически реализуемого) сигнала.

Фаза сигнала СРЧ

ϕ=ϕСРЧτЗВt, 0≤t≤.

Обозначим через tj моменты времени, в которых СРЧ обращается в ноль, т.е.

где k - максимальное число нулей СРЧ виртуального сигнала, α - случайная фаза.

Ввиду линейности модуляционной характеристики (восходящая ветвь)

где ƒj - текущая частота.

С учетом (2) и (4) из (3) получаем

Последовательно полагая в (5) j=k, j=1 и вычитая полученные результаты, находим

где ƒВk, ƒВ1 - частоты, соответствующие k-му и первому нулям СРЧ виртуального сигнала.

Расчеты измеряемого расстояния R в соответствии с (1) и (6) проводились по следующим моделям СРЧ:

- для реального сигнала

где U0 - амплитуда, которая определяется приемным трактом измерителя, n(t) - аддитивный белый гауссовский шум;

- для виртуального сигнала

где U0B - амплитуда, не имеющая шумовой составляющей, β - произвольная фаза.

При расчете СРЧ в соответствии с (7), (8) принимались следующие дискретные значения параметров: Расчеты проводились методом статистических испытаний при следующих параметрах зондирующего сигнала: число отсчетов СРЧ на интервале анализа N=2000; 4000, =16 мс, несущая частота ƒ0=7900 МГц, критическая частота ƒкр=7032 МГц, девиация частоты ΔF=300; 500; 800 МГц, случайные фазы варьировались в пределах [0÷π), усреднение в точках осуществлялось по 106 значениям.

Результаты расчетов представлены на Фиг. 1-Фиг. 4. На этих зависимостях по оси ординат откладываются относительные ошибки измерения расстояния где - измеренное расстояние, рассчитываемое по реальному сигналу, распространяющемуся со скоростью νф, и где - уточненная оценка измеряемого расстояния R, рассчитываемая на основепо виртуальному сигналу, распространяющемуся со скоростью νгр.

Результаты расчетов при отсутствии шума (Фиг. 1 и Фиг. 2) свидетельствуют о меньшей ошибке при виртуальном сигнале (νгр), чем при реальном (νф) практически во всех точках расчета R для различных N.

При наличии шума (Фиг. 3 и Фиг. 4) наблюдается устойчивое преимущество виртуального сигнала (νгр) для рассмотренных отношений сигнал/шум в зависимости от ΔF для различных R.

Таким образом, предложенный способ может обеспечить уменьшение девиации частоты ΔF на величину (300÷500) МГц при сохранении требуемого уровня ошибки ER.

Предлагаемый способ уменьшения девиации частоты без изменения точности измерения расстояния до контролируемой среды не известен для способов и устройств, из чего следует соответствие его критерию «новизна».

Изобретательский уровень предлагаемого способа определяется преимуществами построения уровнемера по предлагаемой схеме - упрощается построение передающего и приемного трактов измерителя, а следовательно, их стоимость. Уменьшение девиации частоты также обеспечивает при сохранении требуемого уровня точности возможность более тщательно согласовать антенно-волноводный тракт, уменьшая мешающие отражения.

На основании сказанного можно утверждать, что заявляемый способ отвечает критерию «изобретательский уровень».

Возможная структурная схема реализации предполагаемого способа приведена на Фиг. 5. Обозначенные блоки выполняют следующие функции: 1 - волновод; 2 - циркулятор; 3 - приемо-передающий СВЧ модуль; 4 - цифровой синтезатор частот; 5 - задающий генератор; 6 - микропроцессор; 7 - блок аналоговой обработки СРЧ (усиление, фильтрация, ограничение); 8 - блок выходной.

Библиографические данные

1. Б.А. Атаянц, В.М. Давыдочкин, В.В. Езерский. Точность измерения уровня волноводным частотно-модулированным уровнемером. // Радиотехника. 2015. №5, С. 73-78.

2. Бакулин А.И., Смирнов А.А. Способ измерения расстояния до контролируемой среды с помощью волноводного ЛЧМ локатора. Заявка на ИЗ №2017123428. Получено решение о выдаче патента 27.03.2018 г.

Похожие патенты RU2693032C1

название год авторы номер документа
СПОСОБ ИЗМЕРЕНИЯ РАССТОЯНИЯ ДО КОНТРОЛИРУЕМОЙ СРЕДЫ С ПОМОЩЬЮ ВОЛНОВОДНОГО ЛЧМ ЛОКАТОРА 2017
  • Бакулин Анатолий Иванович
  • Смирнов Александр Анатольевич
RU2658558C1
СПОСОБ ИЗМЕРЕНИЯ РАССТОЯНИЯ 2017
  • Атаянц Борис Аванесович
  • Давыдочкин Вячеслав Михайлович
  • Езерский Виктор Витольдович
RU2661488C1
СПОСОБ ИЗМЕРЕНИЯ РАССТОЯНИЯ РАДИОДАЛЬНОМЕРОМ С ЧАСТОТНОЙ МОДУЛЯЦИЕЙ 2017
  • Давыдочкин Вячеслав Михайлович
RU2654215C1
СПОСОБ ИЗМЕРЕНИЯ УРОВНЯ И РАДИОДАЛЬНОМЕР С ЧАСТОТНОЙ МОДУЛЯЦИЕЙ 2017
  • Давыдочкин Вячеслав Михайлович
RU2655746C1
СПОСОБ ИЗМЕРЕНИЯ РАССТОЯНИЯ ОТ ИЗЛУЧАТЕЛЯ ДО КОНТРОЛИРУЕМОЙ СРЕДЫ 2010
  • Бакулин Анатолий Иванович
RU2436117C1
СПОСОБ ИЗМЕРЕНИЯ РАССТОЯНИЯ ОТ ИЗЛУЧАТЕЛЯ ДО КОНТРОЛИРУЕМОГО ОБЪЕКТА НА ОСНОВЕ ЧМ ЛОКАТОРА 2014
  • Бакулин Анатолий Иванович
  • Смирнов Александр Анатольевич
RU2567866C2
БЕСКОНТАКТНЫЙ РАДИОВОЛНОВЫЙ СПОСОБ ИЗМЕРЕНИЯ УРОВНЯ ЖИДКОСТИ В ЕМКОСТИ 2015
  • Хаблов Дмитрий Владиленович
RU2611333C1
РАДИОЛОКАЦИОННЫЙ УРОВНЕМЕР 2012
  • Курейчик Виктор Михайлович
  • Курейчик Владимир Викторович
  • Огурцов Евгений Сергеевич
  • Огурцов Сергей Федорович
  • Дорух Игорь Георгиевич
  • Огурцова Анна Сергеевна
  • Иванченко Юрий Борисович
  • Иванченко Борис Юрьевич
RU2518373C1
СПОСОБ ИЗМЕРЕНИЯ УРОВНЯ МАТЕРИАЛА В РЕЗЕРВУАРЕ 2008
  • Атаянц Борис Аванесович
  • Паршин Валерий Степанович
  • Езерский Виктор Витольдович
RU2410650C2
БЕСКОНТАКТНЫЙ РАДИОВОЛНОВЫЙ СПОСОБ ИЗМЕРЕНИЯ УРОВНЯ ЖИДКОСТИ В ЕМКОСТИ 2014
  • Хаблов Дмитрий Владиленович
RU2601283C2

Иллюстрации к изобретению RU 2 693 032 C1

Реферат патента 2019 года СПОСОБ УМЕНЬШЕНИЯ ДЕВИАЦИИ ЧАСТОТЫ ВОЛНОВОДНОГО УРОВНЕМЕРА С ЛЧМ СИГНАЛОМ

Изобретение относится к технике промышленных уровнемеров, реализующих излучение в волновод ЛЧМ сигнала, модулированного по симметричному треугольному закону, получение сигнала разностной частоты путем преобразования в смесителе отраженного и излученного сигналов. Путем обработки сигнала разностной частоты во временной области рассчитывается искомая дальность. Вводится в рассмотрение виртуальный сигнал, отличающийся от реального тем, что скорость его распространения равна νгр. По рассчитанной дальности для реального сигнала рассчитывается сигнал разностной частоты для виртуального сигнала и на его основе рассчитывается дальность во временной области. Виртуальный сигнал, как и реальный, свободен от волноводной дисперсии. Техническим результатом при реализации заявленного решения является расчет дальности по виртуальному сигналу, что позволяет снизить девиацию частоты на сотни МГц, не увеличивая ошибку измерения. 5 ил.

Формула изобретения RU 2 693 032 C1

Способ уменьшения девиации частоты волноводного уровнемера, включающий излучение в полый волновод ЛЧМ сигнала, модулированного по симметричному треугольному закону, реализуемому цифровым синтезатором частот, прием отраженного от среды сигнала, получение сигнала разностной частоты преобразованием в смесителе отраженного и излученного сигналов, измерение числа нулевых значений n сигнала разностной частоты на каждом полупериоде модуляции, расчет частот ƒl, ƒn, соответствующих первому и n-му нулям СРЧ, отличающийся тем, что на первом этапе измеряемое расстояние определяется по формуле

На втором этапе используется виртуальный сигнал, отличающийся от реального скоростью распространения, которая равна νгр, и по полученному из (1) значению R рассчитывается СРЧ для виртуального сигнала, по которому определяются k - число нулей СРЧ, ƒBk, ƒВ1 - частоты, соответствующие k-му и первому нулям СРЧ виртуального сигнала, по найденным параметрам определяется измеряемое расстояние по формуле

где в (1) и (2) ƒкр - критическая частота волновода; ƒ0 - несущая частота; с - скорость света в вакууме.

Документы, цитированные в отчете о поиске Патент 2019 года RU2693032C1

Устройство для измерения скорости изменения и девиации частоты сигнала с линейной частотной модуляцией 1982
  • Андреев Анатолий Александрович
  • Любимова Наталья Анатольевна
SU1095090A1
СПОСОБ ИЗМЕРЕНИЯ РАССТОЯНИЯ ДО КОНТРОЛИРУЕМОЙ СРЕДЫ С ПОМОЩЬЮ ВОЛНОВОДНОГО ЛЧМ ЛОКАТОРА 2017
  • Бакулин Анатолий Иванович
  • Смирнов Александр Анатольевич
RU2658558C1
Статья: "ОЦЕНКА ПАРАМЕТРОВ ЛЧМ СИГНАЛОВ МЕТОДОМ ЦИФРОВОЙ АДАПТИВНОЙ ФИЛЬТРАЦИИ", Ж
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
БЕСКОНТАКТНЫЙ РАДИОВОЛНОВЫЙ СПОСОБ ИЗМЕРЕНИЯ УРОВНЯ ЖИДКОСТИ В ЕМКОСТИ 2015
  • Хаблов Дмитрий Владиленович
RU2611333C1
WO 2008057022 A1, 15.05.2008
US 5504490 A1, 02.04.1996.

RU 2 693 032 C1

Авторы

Бакулин Анатолий Иванович

Смирнов Александр Анатольевич

Даты

2019-07-01Публикация

2018-07-23Подача