Тест-система для выявления генома возбудителя бруцеллезной инфекции (Brucella spp.) у сельскохозяйственных животных Российский патент 2019 года по МПК C12Q1/68 

Описание патента на изобретение RU2700255C1

Изобретение относится к ветеринарной микробиологии, в частности к лабораторной диагностике возбудителей инфекционных заболеваний а именно к средствам диагностики инфекции у животных, как в практике ветеринарной службы, так и для научных исследований.

Известен тест-система (патент РФ №2506317, C12Q 1/68, 2014 г), генома возбудителя инфекции у сельскохозяйственных животных с помощью мультиплексной полимеразной цепной реакции с флуоресцентной детекцией в режиме реального времени, включающий буфер для проведения полимеразной цепной реакции, смесь для ее проведения, состоящая из дезоксинук-леозидтрифосфатов, праймеров и флуоресцентных зондов специфичные для исследуемой инфекции, смесь ферментов из ДНК полимеразы с антителами, ингибирующих активность фермента TAQ - POLYMERASE, внутренний контрольный образец, отрицательный контрольный образец, положительный контрольный образец.

Наиболее близким является тест - система для молекулярно-генетической идентификации Brucella spp. с помощью полимеразной цепной реакции (https://infopedia.su/15×72b0.html), включающий пластиковые флаконы и пробирки, термостабильный фермент Tag-полимеразу, буфер для постановки реакции, смесь четырех дезоксинуклеотидтрифосфатов, внутренний контрольный образец, положительный контроль - рекомбинантную плазми-ду, содержащую фрагмент гена возбудителя Brucella spp., синтетические олигонуклеотидные праймеры и зонды меченные красителями для молеку-лярно-генетической идентификации Brucella spp.

Однако в известном техническом решении используется тест-система для проведения ПНР в агарозном теле и последовательность непосредственно читается по электрофореграмме. Длина фрагмента, который может быть расшифрован этим методом, ограничивается разрешающей способностью метода гель-электрофореза.

Общим недостатком известных технических решений является отсутствие возможности получения достоверной диагностики выявления генома возбудителя ДНК Brucella spp. инфекции у сельскохозяйственных животных.

Техническим результатом является получение достоверной диагностики возбудителя ДНК Brucella spp.

Технический результат достигается тем, что в тест-системе для для выявления генома возбудителя бруцеллезной инфекции (Brucella spp.) у сельскохозяйственных животных с помощью полимеразной цепной реакции в режиме реального времени, включающем пластиковые флаконы и пробирки, термостабильный фермент Tag-полимеразу, буфер для постановки реакции, смесь четырех дезоксинуклеотидтрифосфатов, внутренний контрольный образец, положительный контроль - рекомбинантную плазмиду, содержащую фрагмент гена возбудителя Brucella spp, синтетические олигонуклеотидные праймеры и зонды меченные красителями, согласно изобретению для внутреннего контрольного образца используют суспензию бактериофага Т4 с концентрацией 5×103 копий нуклеотидных последовательностей на 1 мкл, а для положительного контрольного образца - смесь рекомбинантных плазмидных ДНК, содержащих фрагмент генома ДНК Brucella spp и фрагмент генома бактериофага Т4, взятых в соотношении 1:1, со следующими нуклеотидными последовательностями:

В7 F TGAAGCTGCCTGCATCGGTC прямой праймер

B7R CATAATGGCCGGGTGTTGGCT обратный праймер

В7Р HEX -CAACAGCATGCAGCTTGGTCGTCAATC-BHQ1 зонд

T4F TACATATAAATCACGCAAAGC - прямой праймер

T4R TAGTATGGCTAATCTTATTGG - обратный праймер

Т4Р FAM ACATTGGCACTGACCGAGTTC - зонд

Новизна заявляемого технического решения заключается в том, что для получения достоверной диагностики возбудителя ДНК Brucella spp. инфекции животных проводят реакцию в одной ПЦР-пробирке (one-tube) с использованием специфичных для участка генома Brucella spp. олигонуклеотидных праймеров флуоресцентно-меченного зонда и разных видов контроля для которых используют различные формы материала бактериофага Т4: суспензия и фрагмент генома со специфическими к нему праймерами и зондом. Такая постановка ПЦР в реальном времени сокращает и упрощает процедуру анализа, снижает риск контаминации. Кроме того, флуоресцентная детекция продуктов амплификации осуществляется с использованием принципа выщепления флуоресцентной метки на 5' конце олигонуклеотидного зонда.

Признаки, отличающие заявляемое техническое решение от прототипа, направлены на достижение технического результата и не выявлены при изучении данной и смежной областей науки и техники и, следовательно, соответствуют критерию «изобретательский уровень».

Сущность изобретения поясняется чертежами, где представлены скриншоты графиков, на фиг. 1 - представлен канал FAM - для тестирования сигнала от внутреннего контрольного образца - ВКО; на фиг. 2 Канал JOE(HEX)/Yellow накопление флуоресцентного сигнала для специфического сигнала тестирования наличия генома возбудителя бруцеллезной инфекции (Brucella spp.), на фиг. 3 - таблица количественных данных для Cycling A.Yellow (Brucella spp) и A. Green (ВКО).

Заявляемый тест-система рекомендовано использовать в ветеринарной вирусологии, так как относится к средствам диагностики Brucella spp. инфекции у животных, что соответствует критерию «промышленная применимость».

Тест-система для выявления генома возбудителя бруцеллезной инфекции (Brucella spp.) у сельскохозяйственных животных сельскохозяйственных животных применяется следующим образом.

Предварительно сорбционным методом выделяют ДНК генома возбудителя Brucella spp. из биологического материала, который берут от инфицированных животных по выбору:

1. Цельная кровь, плазма крови, сыворотка крови. Кровь забирается в пробирку с 6% ЭДТА из расчета 50 мкл раствора ЭДТА на 1 мл крови, закрытую пробирку с кровью несколько раз переворачивают. Для получения сыворотки забирают кровь в пробирку без антикоагулянта;

2. Молоко, отбирают в объеме 10-30 мл в стерильную посуду;

3. Содержимое брюшной полости и желудка, селезенка, печень абортированного плода;

4. Плацента и плодовые оболочки от абортировавших животных;

5. Содержимое бурс, гигром;

6. Кусочки паренхиматозных органов (печень, селезенка);

7. Парные лимфатические узлы парааортальные, надвыменные, паховые, тазовые) отбирают целиком с обеих сторон;

8. Семенники с придатками от самцов с признаками орхита или эпидидимита. Культуры микроорганизмов:

- культуры в жидких средах, без предварительной подготовки;

- бактериальные колонии, ресуспендировать в 0,5 мл физиологического раствора.

Затем проводят постановку одноэтапной полимеразной цепной реакции с добавлением внутреннего положительного контроля, в качестве которого используют суспензию бактериофага Т4 с концентрацией 5×103 копий нуклеотидных последовательностей на 1 мкл и проводят 45 циклов амплификации с флуоресцентной детекцией в реальном времени с использованием специфичных для участка генома возбудителя олигонуклеотидных праймеров флуоресцентно-меченного зонда и контрольных образцов. Для положительного контрольного образца используют смесь рекомбинантных плазмидных ДНК, содержащих фрагмент генома ДНК Brucella spp и фрагмент генома бактериофага Т4 взятых в соотношении 1:1, со следующими нуклеотидными последовательностями:

В7 F TGAAGCTGCCTGCATCGGTC прямой праймер

B7R CATAATGGCCGGGTGTTGGCT обратный праймер

В7Р HEX -CAACAGCATGCAGCTTGGTCGTCAATC-BHQ1 зонд

T4F TACATATAAATCACGCAAAGC - прямой праймер

T4R TAGTATGGCTAATCTTATTGG - обратный праймер

Т4Р FAM ACATTGGCACTGACCGAGTTC - зонд

Далее накопление флуоресцентного сигнала измеряют по каналам: JOE(HEX)/Yellow для специфического сигнала; FAM/Green для сигнала внутреннего контроля, если кривые накопления флуоресцентного сигнала выходят до 35 цикла, то результат реакции считается положительным, а если кривые не пересекают пороговую линию или пересекают ее после 35 цикла, то результат реакции - отрицательный.

Использование для разных видов контроля различные формы материала бактериофага Т4: суспензии и фрагмента генома со специфическими к нему праймерами и зондом обусловлено тем, что это позволяет контролировать корректное прохождение реакции в каждой пробирки, а также контролируется этап выделения ДНК из образцов.

Выбор последовательности и расчет первичной структуры олигонуклеотидных праймеров и зондов.

Праймеры, специфичные для Brucella spp. были отобраны на основе митохондриальной последовательности ДНК генома Brucella (Brucella canis strain GB1 chromosome II, complete sequence, CP027642.1, участок между 251426 и 251535). Праймеры были спроектированы с использованием Primer Express Software v3.0 (Applied Biosystems) и исследованы с использованием BLAST, чтобы подтвердить их специфичность. Для детекции продуктов амплификации был подобран олигонуклеотидный флуоресцентно-меченный зонд В7Р (комплементарный участку нуклеотидной последовательности, ограниченной позициями отжига праймеров В7 F и B7R). Зонд был помечен красителем HEX. Для гашения самопроизвольной флуоресценции на 3'-конце олигонуклеотидного зонда прикреплен гаситель BHQ-1. Используя программу "Oligo 6.0" описаны основные свойства рассчитанных олигонуклеотидов, определившие возможность их использования в ПЦР.

В качестве внутреннего контрольного образца использовался бактериофаг Т4, имеющий геномную ДНК порядка 169-170 тысяч пар нуклеотидов (Enterobacteria phage Т4Т, complete genome GenBank: HM137666.1). В результате анализа был выбран участок между 400 и 500 нуклеотидами, содержащий уникальные нуклеотидные последовательности, рассчитаны первичные структуры олигонуклеотидных праймеров, фланкирующих выбранный участок генома. Праймеры были спроектированы с использованием Primer Express Software v3.0 (Applied Biosystems) и исследованы с использованием BLAST, чтобы подтвердить их специфичность.

Для детекции продуктов амплификации подобран олигонуклеотидный флуоресцентно-меченный зонд Т4Р, комплементарный участку нуклеотидной последовательности, ограниченной позициями отжига праймеров T4F и T4R. Зонд был помечен красителем Fam. Используя программу "Oligo 6.0" описаны основные свойства рассчитанных олигонуклеотидов, определившие возможность их использования в ПЦР.

Пример конкретного применения тест-системы для выявления генома возбудителя бруцеллезной инфекции Brucella spp.у с. -х животных.

Пробы цельной крови, консервированной ЭДТА, синовиальной жидкости, пунктаты из лимфоузлов, содержимое бурс и гигром, культуры микроорганизмов используют для выделения ДНК без предварительной подготовки.

Для получения сыворотки пробирки с кровью (без антикоагулянта) отстаивают при комнатной температуре в течение 30 минут до полного образования сгустка. Затем центрифугируют при 600-1600 g (3000 об./мин на центрифуге «MiniSpin», Eppendorf, Германия) в течение 10 минут при комнатной температуре. Сыворотку переносят отдельными наконечниками с фильтром в стерильные пробирки объемом 1,5 мл.

Для получения плазмы пробирку с цельной кровью центрифугируют в течение 10 мин при 1000 g (если кровь стояла при температуре от 2°С до 8°С более 1 ч после ее взятия, то пробирку следует аккуратно несколько раз перевернуть для равномерного перемешивания крови). Переносят плазму в количестве не менее 1 мл одноразовыми наконечниками с фильтром в стерильные пробирки объемом 1,5 мл.

Пробы паренхиматозных органов, семенников, плодовых оболочек, плаценты размером 1 см3, лимфатические узлы целиком, гомогенизируют с использованием стерильных фарфоровых ступок и пестиков, затем готовят 10% суспензию на стерильном физиологическом растворе или фосфатном буфере. Суспензию переносят в пробирку объемом 1,5 мл и центрифугируют при 600-1600 g (3000 об./мин на центрифуге «MiniSpin», Eppendorf, Германия) в течение 2 мин. Аликвоту надосадочной жидкости (0,1 мл) используют для экстракции ДНК.

Молоко в объеме до 10 мл обеззараживают и центрифугируют при 3 тыс об/мин в течение 10-15 мин. Надосадочную жидкость осторожно отбирают, оставив над осадком примерно 0,2 мл жидкости. Осадок ресуспендируют в оставшейся надосадочной жидкости и 0,1 мл суспензии используют для выделения ДНК.

Для анализа используют набор реагентов «ПЦР-БРУЦЕЛЛЕЗ-ФАКТОР», которые используют в соответствии с инструкцией по применению набора реагентов «ПЦР-БРУЦЕЛЛЕЗ-ФАКТОР» для выявления ДНК вируса (Brucella spp.) в биологическом материале методом полимеразной цепной реакции (ПЦР) с флуоресцентной детекцией в режиме реального времени ТУ 21.10.60-103-51062356-2015 (http://www.vetfaktor.ru/.).

Набор состоит из комплекта реагентов для проведения мультиплексной ПНР (комплект №1) и комплекта контрольных образцов (комплект №2).

Набор выпускается в двух вариантах:

1) Для анализа 55 образцов (включая контрольные образцы);

2) Для анализа 110 образцов (включая контрольные образцы).

Составы наборов приведены в таблицах 1 и 2.

Далее осуществляют анализ, состоящий из трех этапов:

экстракция нуклеитидных кислот (НК);

проведение реакции ПЦР РВ с флуоресцентной детекцией в режиме реального времени;

учет результатов анализа.

Проводят одноэтапную ПЦР РВ в одной пробирке.

Для экстракции (выделение) НК из исследуемых проб отбирают необходимое -количество одноразовых пробирок объемом - 1,5 мл, включая отрицательный контроль выделения. Вносят во все пробирки с исследуемыми образцами, включая пробирку для отрицательного контрольного образца (ОКО), по 10 мкл внутреннего контрольного образца (ВКО) Brucella spp. в качестве которого используют суспензию бактериофага Т4 с концентрацией 5×103 копий нуклеотидных последовательностей на 1 мкл.

Вносят исследуемые пробы в объеме согласно инструкции к набору для выделения НК, в пробирку отрицательного контроля выделения вместо исследуемой пробы вносят ОКО (пробирку обозначают как ВК-).

Выделяют ДНК из анализируемых и контрольных образцов согласно протоколу инструкции производителя набора для выделения НК.

Выделенную ДНК можно хранить в течение одной недели при температуре от 2°С до 8°С или в течение года при температуре не выше минус 16°С. Подготавливают образцы к проведению ПЦР следующим образом. Общий объем реакционной смеси - 25 мкл, объем ДНК-пробы -10 мкл. Успешное прохождение реакции контролируют, используя положительный контрольный образец (ПКО) Brucella spp., ВКО Brucella spp. и ДНК БУФЕР, где для внутреннего контрольного образца (ВКО) используют суспензию бактериофага Т4 с концентрацией 5×103 копий нуклеотидных последовательностей на 1 мкл, а для положительного контрольного образца (ПКО) используют смесь рекомбинантных плазмидных ДНК, содержащих фрагмент генома ДНК Brucella spp. и фрагмент генома бактериофага Т4 в соотношении 1:1, взятых по 5000 копий специфического фрагмента в 10 мкл (в соотношении 1:1).

В отдельной пробирке смешивают компоненты набора из расчета на каждую реакцию:

5 мкл ПЦР смесь Brucella spp.

10 мкл смеси ПЦР БУФЕР Brucella spp.

0,5 мкл TAQ POLYMERASE

Затем перемешивают смесь на вортексе и сбрасывают капли кратковременным центрифугированием. Отбирают необходимое количество пробирок для амплификации ДНК исследуемых и контрольных проб. Вносят по 15 мкл приготовленной реакционной смеси. Используя наконечники с фильтром в подготовленные пробирки вносят:

а) в пробирку отрицательного контроля ПЦР (К-) 10 мкл ДНК буфера;

б) в ряд пробирок для исследуемых проб - в каждую вносят по 10 мкл ДНК соответствующей пробы;

в) в пробирку положительный контроль ПЦР (К+) - 10 мкл ПКО Brucella spp.

Проводят реакцию ПЦР РВ с флуоресцентной детекцией.

Для проведения амплификации был использован прибор «Rotor Gene»

Помещают подготовленные для проведения ПЦР пробирки в ячейки амплификатора. Программируют прибор согласно инструкции производителя. Далее проводят интерпретацию результатов анализа.

Далее проводят интерпретацию результатов анализа. Во всех пробах за исключением пробы - отрицательный образец - (К-) наблюдается кривая роста флуоресценции (фиг. 1, 3). В четырех пробах, включая клинический образец k88_3668 и положительный контрольный образец (+) в двух повторах, наблюдается кривая роста флуоресценции. В пробирке - отрицательный образец (К-) - кривая роста флуоресценции отсутствует (фиг. 2, 3).

Полученные данные - кривые накопления флуоресцентного сигнала анализируются с помощью программного обеспечения используемого прибора для проведения ПЦР в режиме «реального времени» в соответствии с инструкцией производителя к прибору. Учет результатов ПЦР-анализа проводится по наличию или отсутствию пересечения кривой флуоресценции с установленной на соответствующем уровне пороговой линией (что соответствует наличию или отсутствию значения порогового цикла «Ct» для исследуемого образца).

Результат считается достоверным в случае корректного прохождения положительных и отрицательных контролей амплификации и экстракции ДНК в соответствии с таблицей 4, фигурами 1, 2, 3.

Для доказательства эффективности использования ПЦР с флуоресцентной детекцией в режиме реального времени проводился сравнительный анализ чувствительности заявляемого технического решения с прототипом, в котором использовался метод ПЦР с электрофоретической детекцией. Оказалось чувствительность ПЦР с флуоресцентной детекцией при выявлении генома возбудителя бруцеллезной инфекции (Brucella spp.) на 3,0-3,3% выше, чем ПЦР с электрофоретической детекцией.

Похожие патенты RU2700255C1

название год авторы номер документа
Способ выявления генома возбудителя бруцеллезной инфекции (Brucella spp.) у сельскохозяйственных животных 2018
  • Малышев Денис Владиславович
  • Баннов Василий Александрович
  • Черных Олег Юрьевич
  • Василевич Федор Иванович
  • Котельникова Александра Андреевна
  • Донник Ирина Михайловна
  • Лысенко Александр Анатолиевич
  • Лоретц Ольга Геннадьевна
  • Кривонос Роман Анатольевич
  • Шевкопляс Владимир Николаевич
  • Гулюкин Алексей Михайлович
  • Кощаев Андрей Георгиевич
  • Дайбова Любовь Анатольевна
  • Суханова Светлана Фаилевна
  • Мищенко Алексей Владимирович
RU2703400C1
Тест-система для обнаружения генома возбудителя ДНК Bordetella bronchiseptica инфекции у сельскохозяйственных животных 2018
  • Черных Олег Юрьевич
  • Баннов Василий Александрович
  • Малышев Денис Владиславович
  • Котельникова Александра Андреевна
  • Дробин Юрий Дмитриевич
  • Донник Ирина Михайловна
  • Лысенко Александр Анатолиевич
  • Макаров Юрий Анатольевич
  • Кривонос Роман Анатольевич
  • Шевкопляс Владимир Николаевич
  • Юлдашбаев Юсупжан Артыкович
  • Кощаев Андрей Георгиевич
  • Сисягин Павел Николаевич
  • Дайбова Любовь Анатольевна
  • Неверова Ольга Петровна
  • Чернов Альберт Николаевич
RU2700477C1
Способ выявления ДНК сальмонелл (Salmonella spp.) в биологическом материале животных, продуктах питания и кормах животного и растительного происхождения 2018
  • Котельникова Александра Андреевна
  • Черных Олег Юрьевич
  • Малышев Денис Владиславович
  • Донник Ирина Михайловна
  • Лысенко Александр Анатолиевич
  • Шабунин Сергей Викторович
  • Кривонос Роман Анатольевич
  • Шевкопляс Владимир Николаевич
  • Кощаев Андрей Георгиевич
  • Дайбова Любовь Анатольевна
  • Уша Борис Вениаминович
  • Василевич Федор Иванович
  • Гулюкин Алексей Михаилович
  • Гринь Светлана Анатольевна
  • Исаева Альбина Геннадиевна
  • Барашкин Михаил Иванович
  • Баннов Василий Александрович
  • Дробин Юрий Дмитриевич
RU2700476C1
Способ выявления ДНК хламидий у сельскохозяйственных животных и птиц 2018
  • Баннов Василий Александрович
  • Черных Олег Юрьевич
  • Малышев Денис Владиславович
  • Котельникова Александра Андреевна
  • Уша Борис Вениаминович
  • Дробин Юрий Дмитриевич
  • Донник Ирина Михайловна
  • Лысенко Александр Анатолиевич
  • Гулюкин Михаил Иванович
  • Кривонос Роман Анатольевич
  • Шевкопляс Владимир Николаевич
  • Шахов Алексей Гаврилович
  • Кощаев Андрей Георгиевич
  • Дайбова Любовь Анатольевна
  • Горковенко Наталья Евгеньевна
RU2700381C1
Тест-система для выявления ДНК возбудителя криптоспоридиоза (Cryptosporidiosis) в биологическом материале животных и кормах с помощью полимеразной цепной реакции в режиме реального времени 2021
  • Черных Олег Юрьевич
  • Баннов Василий Александрович
  • Малышев Денис Владиславович
  • Донник Ирина Михайловна
  • Василевич Федор Иванович
  • Кощаев Андрей Георгиевич
  • Кривонос Роман Анатольевич
  • Пономарева Ольга Ивановна
  • Лысенко Александр Анатолиевич
  • Белоусов Василий Иванович
  • Дайбова Любовь Анатольевна
  • Дмитрив Николай Иванович
RU2785381C1
Тест-система для выявления ДНК сальмонелл (Salmonella spp.) в биологическом материале животных, продуктах питания и кормах животного и растительного происхождения 2018
  • Черных Олег Юрьевич
  • Котельникова Александра Андреевна
  • Донник Ирина Михайловна
  • Лысенко Александр Анатолиевич
  • Кривонос Роман Анатольевич
  • Шевкопляс Владимир Николаевич
  • Кощаев Андрей Георгиевич
  • Дайбова Любовь Анатольевна
  • Самуйленко Анатолий Яковлевич
  • Смирнов Анатолий Михайлович
  • Сисягин Павел Николаевич
  • Иванов Аркадий Васильевич
  • Авилов Вячеслав Михайлович
  • Кривоногова Анна Сергеевна
  • Неверова Ольга Петровна
  • Баннов Василий Александрович
  • Дробин Юрий Дмитриевич
  • Малышев Денис Владиславович
RU2700247C1
Тест-система для выявления ДНК возбудителя лептоспироза (Leptospira spp.) у сельскохозяйственных животных 2018
  • Котельникова Александра Андреевна
  • Черных Олег Юрьевич
  • Баннов Василий Александрович
  • Малышев Денис Владиславович
  • Василевич Федор Иванович
  • Донник Ирина Михайловна
  • Дробин Юрий Дмитриевич
  • Самуйленко Анатолий Яковлевич
  • Лысенко Александр Анатолиевич
  • Калашникова Татьяна Валерьевна
  • Кривонос Роман Анатольевич
  • Лоретц Ольга Геннадьевна
  • Шевкопляс Владимир Николаевич
  • Гринь Светлана Анатольевна
  • Кощаев Андрей Георгиевич
  • Исаева Альбина Геннадиевна
  • Кулакова Мария Александровна
RU2680094C1
Способ выявления ДНК возбудителя лептоспироза (Leptospira spp.) у сельскохозяйственных животных 2018
  • Малышев Денис Владиславович
  • Баннов Василий Александрович
  • Черных Олег Юрьевич
  • Котельникова Александра Андреевна
  • Джавадов Эдуард Джавадович
  • Дробин Юрий Дмитриевич
  • Донник Ирина Михайловна
  • Калашникова Татьяна Валерьевна
  • Лысенко Александр Анатолиевич
  • Лоретц Ольга Геннадьевна
  • Кривонос Роман Анатольевич
  • Лайшев Касим Анверович
  • Шевкопляс Владимир Николаевич
  • Тюрин Владимир Григорьевич
  • Кощаев Андрей Георгиевич
  • Шаравьев Павел Викторович
  • Кулакова Мария Александровна
RU2700478C1
Способ выявления ДНК возбудителя криптоспоридиоза (Cryptosporidiosis) в биологическом материале животных и кормах с помощью полимеразной цепной реакции в режиме реального времени 2021
  • Черных Олег Юрьевич
  • Баннов Василий Александрович
  • Малышев Денис Владиславович
  • Донник Ирина Михайловна
  • Василевич Федор Иванович
  • Кощаев Андрей Георгиевич
  • Кривонос Роман Анатольевич
  • Пономарева Ольга Ивановна
  • Лысенко Александр Анатолиевич
  • Белоусов Василий Иванович
  • Дайбова Любовь Анатольевна
  • Дмитрив Николай Иванович
RU2782427C1
Способ обнаружения ДНК генома возбудителя бордетеллеза (Bordetella bronchiseptica) у сельскохозяйственных животных 2018
  • Баннов Василий Александрович
  • Черных Олег Юрьевич
  • Малышев Денис Владиславович
  • Котельникова Александра Андреевна
  • Донник Ирина Михайловна
  • Лысенко Александр Анатолиевич
  • Клименко Александр Иванович
  • Кривонос Роман Анатольевич
  • Стекольников Анатолий Александрович
  • Шевкопляс Владимир Николаевич
  • Кощаев Андрей Георгиевич
  • Иванов Аркадий Васильевич
  • Исаева Альбина Геннадиевна
  • Хахов Латиф Асланбиевич
  • Дайбова Любовь Анатольевна
RU2703405C1

Иллюстрации к изобретению RU 2 700 255 C1

Реферат патента 2019 года Тест-система для выявления генома возбудителя бруцеллезной инфекции (Brucella spp.) у сельскохозяйственных животных

Изобретение относится к области биотехнологии. Изобретение представляет собой тест-систему для выявления генома возбудителя бруцеллезной инфекции (Brucella spp.) у сельскохозяйственных животных с помощью полимеразной цепной реакции в режиме реального времени, включающую пластиковые флаконы и пробирки, термостабильный фермент Tag-полимеразу, буфер для постановки реакции, смесь четырех дезоксинуклеотидтрифосфатов, внутренний контрольный образец, положительный контроль - рекомбинантную плазмиду, содержащую фрагмент гена возбудителя Brucella spp, синтетические олигонуклеотидные праймеры и зонды, меченные красителями, согласно изобретению для внутреннего контрольного образца используют суспензию бактериофага Т4 с концентрацией 5×103 копий нуклеотидных последовательностей на 1 мкл, а для положительного контрольного образца - смесь рекомбинантных плазмидных ДНК, содержащих фрагмент генома ДНК Brucella spp и фрагмент генома бактериофага Т4, взятых в соотношении 1:1. Изобретение позволяет достоверно диагностировать возбудителя ДНК Brucella spp. 4 табл.

Формула изобретения RU 2 700 255 C1

Тест-система для обнаружения ДНК генома возбудителя Brucella spp инфекции у сельскохозяйственных животных с помощью полимеразной цепной реакции в режиме реального времени, включающая пластиковые флаконы и пробирки, термостабильный фермент Tag-полимеразу, буфер для постановки реакции, смесь четырех дезоксинуклеотидтрифосфатов, внутренний контрольный образец, положительный контроль - рекомбинантную плазмиду, содержащую фрагмент гена возбудителя Brucella spp, синтетические олигонуклеотидные праймеры и зонды меченные красителями, отличающаяся тем, что для внутреннего контрольного образца используют суспензию бактериофага Т4 с концентрацией 5×103 копий нуклеотидных последовательностей на 1 мкл, а для положительного контрольного образца - смесь рекомбинантных плазмидных ДНК, содержащих фрагмент генома ДНК Brucella spp и фрагмент генома бактериофага Т4, взятых в соотношении 1:1, со следующими нуклеотидными последовательностями:

B7 F TGAAGCTGCCTGCATCGGTC прямой праймер

B7R CATAATGGCCGGGTGTTGGCT обратный праймер

В7Р HEX -CAACAGCATGCAGCTTGGTCGTCAATC - BHQ 1 зонд

T4F TACATATAAATCACGCAAAGC - прямой праймер

T4R TAGTATGGCTAATCTTATTGG - обратный праймер

Т4Р FAM ACATTGGCACTGACCGAGTTC - зонд.

Документы, цитированные в отчете о поиске Патент 2019 года RU2700255C1

СКЛЯРОВ О.Д., Разработка и совершенствование средств и методов диагностики бруцеллеза и кампилобактериоза животных, автореферат диссертации, Москва, 2006
СПОСОБ ВЫЯВЛЕНИЯ КИШЕЧНЫХ ВИРУСОВ В КЛИНИЧЕСКИХ ОБРАЗЦАХ И ВОДЕ МЕТОДОМ МУЛЬТИПЛЕКСНОЙ ПЦР С ДЕТЕКЦИЕЙ В РЕЖИМЕ РЕАЛЬНОГО ВРЕМЕНИ И ПЕРЕЧЕНЬ ПОСЛЕДОВАТЕЛЬНОСТЕЙ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2012
  • Оксанич Алексей Сергеевич
  • Файзулоев Евгений Бахтиерович
  • Марова Анна Александровна
  • Никонова Александра Александровна
  • Зверев Виталий Васильевич
  • Егорова Ольга Валерьевна
  • Калинкина Марина Алексеевна
RU2506317C2

RU 2 700 255 C1

Авторы

Котельникова Александра Андреевна

Черных Олег Юрьевич

Донник Ирина Михайловна

Лысенко Александр Анатолиевич

Самуйленко Анатолий Яковлевич

Кривонос Роман Анатольевич

Дорожкин Василий Иванович

Шевкопляс Владимир Николаевич

Кощаев Андрей Георгиевич

Лайшев Касим Анверович

Дайбова Любовь Анатольевна

Мищенко Алексей Владимирович

Гринь Светлана Анатольевна

Вацаев Шахаб Вахидович

Калошкина Инна Муратовна

Даты

2019-09-13Публикация

2018-10-01Подача