Устройство измерения неравномерности мгновенной частоты вращения вала Российский патент 2019 года по МПК H02P21/14 H02P21/18 

Описание патента на изобретение RU2703274C1

Изобретение относится к измерительной технике и электротехнике и может быть использовано для измерения неравномерности вращения вала электропривода и синхронного электродвигателя.

Известно устройство, содержащее генератор образцовой частоты, импульсный датчик скорости, первый, второй и третий регистрирующие счетчики, первую, вторую и третью схемы И, первый, второй и третий триггеры и клеммы «ЗАПРОС» и «ПУСК» [1].

Недостаток этого устройства заключается в том, что оно не позволяет точно определить проблемные места в конструкции электромагнитной системы контролируемого электропривода или электродвигателя.

Наиболее близким техническим решением к изобретению является устройство, содержащее последовательно соединенные задающий генератор, согласующий делитель частоты, фазовращатель, усилитель мощности, подключенный к контролируемому электродвигателю, на валу которого установлен импульсный датчик положения его ротора. Устройство содержит также первый делитель частоты с коэффициентом деления N и второй делитель частоты с коэффициентом деления М, первый и второй блок переключения, первую и вторую схемы И, формирователь корректирующего импульса, триггер и блок регистрации [2].

Недостаток этого устройства тот же.

Цель изобретения - повышение точности измерения неравномерности мгновенной частоты вращения вала и увеличение информации о ее поведении в пределах оборота вала.

Поставленная цель достигается тем, что в устройство измерения неравномерности мгновенной частоты вращения вала, содержащее привод (электродвигатель), с валом которого кинематически соединен импульсный датчик положения вала, генератор импульсов, первую и вторую схемы И, формирователь, триггер, регистрирующее устройство, отличающееся тем, что в устройство введены цифровой преобразователь угла (ЦПУ), муфта, схема И-НЕ, схема задержки, первый, второй и третий ключи, первый и второй счетчики, второй и третий формирователи, управляющее логическое устройство (УЛУ), причем вал электродвигателя кинематически соединен со входом муфты, выход которой кинематически связан с валом ЦПУ, выход которого соединен со входом схемы И-НЕ, выход которой подключен к входу первого счетчика, а также к первым входам первой и второй схем И, выход первого счетчика соединен со входом второго формирователя, выход которого подключен ко входу второго триггера, выход которого соединен со вторым входом второй схемы И, выход которой подключен ко входу второго счетчика, выход которого через третий формирователь связан с первым и вторым входами УЛУ, первый выход УЛУ соединен со входом первого ключа, выход которого подключен к второму входу первой схемы И, выход которой соединен со входом первого триггера, выход которого через схему задержки связан с управляющим входом первого ключа и со входом первого формирователя, с выхода которого импульс поступает на электронные элементы для обнуления перед началом собственно процесса измерения, выход ЦПУ соединен со входом второго ключа, выход которого подключен к первому входу регистрирующего устройства, выход второго триггера соединен с управляющими входами второго и третьего ключей, выход генератора импульсов через третий ключ связан со вторым входом регистрирующего устройства.

Кроме того предложен вариант выполнения УЛУ, которое заявлено в качестве зависимого пункта формулы изобретения и формулируется следующим образом: первый вход УЛУ является входом инвертора, выход которого соединен с первым входом третьей схемы И, выход которой подключен ко второму входу третьего триггера, выход которого соединен с управляющими входами четвертого и пятого ключей, выход первого источника питания подключен к первому входу кнопки «СТАРТ», первый выход которой соединен с первым (нормально замкнутым) контактом, а также с вторым и третьим контактами четвертого ключа, выход второго контакта этого (четвертого) ключа соединен с выходом его первого контакта, являющимся первым выходом УЛУ, первый выход кнопки «СТАРТ» подключен также к второму входу третьей схемы И, выход третьего контакта четвертого ключа соединен с выходом первого источника питания, выход второго источника питания подключен к второму входу кнопки «СТАРТ», второй выход которой соединен с первым (нормально замкнутым) контактом, а также с вторым и третьим контактами пятого ключа, выход второго контакта пятого ключа соединен с выходом первого контакта, выход которого является вторым выходом УЛУ, выход третьего контакта пятого ключа соединен с выходом второго источника питания, второй вход УЛУ является первым входом третьего триггера.

В описании в основном рассматривается измерение неравномерности мгновенной частоты вращения вала электродвигателя, однако с помощью предложенного устройства можно проводить указанные измерения любого привода.

Устройство (фиг.1) включает в себя следующие элементы: контролируемый привод (электродвигатель (ЭД)) 1, муфта 2, ЦПУ 3, схема И-НЕ 4, первая схема И1 5, первый триггер Тг1 6, первый формирователь F17, схема задержки (СЗ) 8, первый ключ Кл1 9, первый счетчик Сч1 10, второй формирователь F2 11, второй триггер Тг2 12, второй ключ Кл2 13, третий ключ Кл3 14, генератор импульсов ГИ 15, регистрирующее устройство РУ 16, вторая схема И2 17, второй счетчик Сч2 18, третий формирователь F3 19, УЛУ 20, инвертор Инв 21, третья схема И3 22, третий триггер Тг3 23, четвертый ключ Кл4 24, первый источник питания ИП1 25, кнопка «СТАРТ» 26, второй источник питания ИП2 27, пятый ключ Кл5 28.

Устройство работает следующим образом. Перед началом процесса измерения выставляют вал электродвигателя 1 в согласованное положение с валом ЦПУ 3, совмещая вручную метки на их валах.

Нажимают кнопку «СТАРТ» 26, в результате с выходов первого 25 и второго 27 источников питания через нормально замкнутые контакты четвертого и пятого ключей 24 и 28 напряжение питания поступает от первого источника к электронным элементам (ЭЭ), а от второго источника питания к контролируемому электродвигателю 1. Кнопку «СТАРТ» отпускают, но напряжения от источников питания продолжают поступать на ЭЭ и электродвигатель. Это обусловлено тем, что на входы 1и 2 УЛУ 20 поступает нулевой сигнал, поскольку на выходах второго счетчика 18 и третьего формирователя 19 стоят нулевые сигналы. Нулевой сигнал с первого входа УЛУ поступает на вход инвертора 21, на его выходе формируется единичный сигнал, который приходит на первый вход третьей схемы И 22, а на второй ее вход поступает напряжение с первого источника питания со стороны входа четвертого ключа. Несмотря на то, что контакт кнопки «СТАРТ» разомкнут (кнопка отпущена), на входе контактов четвертого ключа присутствует напряжение питания, которое обеспечено следующей цепью: с выхода первого источника питания на выход третьего контакта четвертого ключа (ключ уже сработал) далее на вход четвертого ключа и в итоге на второй вход третьей схемы И. На выходе третьей схемы И устанавливается единичное состояние, которое поступает на второй (единичный) вход третьего триггера 23, а на первом входе его нулевой сигнал со входа 2 УЛУ. На выходе третьего триггера 23 установится единичное состояние, которое поступает на управляющие входы четвертого 24 и пятого 28 ключей, они остаются во включенном состоянии в течение всего процесса измерения. Тем самым напряжение питания с первого и второго источников питания поступает соответственно и к ЭЭ и к электродвигателю.

Когда вал электродвигателя начинает вращение, то соответственно вращается и вал ЦПУ 3. При этом он в течение первого же оборота проходит нулевое положение, характеризующееся тем, что на выходе ЦПУ во всех его разрядах будут нули. В этом случае на выходе схемы И-НЕ 4 установится единичное состояние. Этот сигнал поступает на вход первой схемы И 5, на второй вход которой через первый ключ 9 через его нормально замкнутые контакты пришло напряжение с выхода 1 УЛУ. Первая схема И откроется и сигнал с ее выхода поступает на вход первого триггера 5. Он установится в единичное состояние. Этот постоянный сигнал приходит на вход первого формирователя F1 7, на выходе которого появится импульс, который подается на электронные элементы и производит их обнуление. Напряжение с выхода первого триггера через схему задержки 8 поступает на управляющий вход первого ключа 9, он срабатывает и размыкает его нормально замкнутые контакты, первая схема И запирается и в дальнейшем в течение всего процесса измерения обнуление электронных элементов не производится.

Вал электродвигателя вращается и каждый оборот вала просчитывается с помощью первого счетчика 10. Когда на этом счетчике наберется установленное число оборотов, на его выходе установится сигнал, по переднему фронту которого второй формирователь 11 выдает импульс на вход второго триггера 12, он устанавливается в единичное состояние и его постоянное напряжение, которое формируется на его выходе, поступает на управляющие входы второго и третьего ключей 13 и 14. Их контакты замыкаются и коды с выхода ЦПУ 3 и импульсы с выхода генератора импульсов 15 поступают на вход регистрирующего устройства 16.

Этот момент времени делит работу устройства на два этапа: первый этап - разгон вала электродвигателя от нуля до номинального числа оборотов (ωном) закончился, а второй этап - пошел процесс измерения неравномерности мгновенной частоты вращения вала.

Второй этап процесса измерения начинается с момента появления на выходе второго триггера 12 постоянного напряжения, которое поступает на второй вход второй схемы И 17, а на первый ее вход будут поступать импульсы с выхода схемы И-НЕ, которые формируются при нулевых значениях кода во всех разрядах ЦПУ. То есть формируется один импульс за один оборот вала. Эти импульсы с выхода схемы И-НЕ проходя через вторую схему И 17 поступают на вход второго счетчика 18. Когда их накопится установленное число (о нем ниже), на выходе этого счетчика сформируется сигнал, по переднему фронту которого третий формирователь 19 выдает импульс (это единица) на первый и второй входы УЛУ.

Процесс завершения работы устройства осуществляется следующим образом. Импульс со входа 1 УЛУ поступает на вход инвертора 21, на выходе которого устанавливается нулевое состояние, которое поступает на первый вход третьей схемы И 22, она закрывается и на ее выходе будет нулевой сигнал, который поступает на единичный вход третьего триггера 23, а на его нулевой вход пришел единичный импульс со входа 2 УЛУ. Третий триггер устанавливается в нулевое состояние. Это нулевое напряжение поступает на управляющие входы четвертого и пятого ключей и отключает их. Питание электронных элементов и электродвигателя отключается, устройство закончивает свою работу.

Дополнения и пояснения по предложенному устройству. Муфта 2 в устройстве может отсутствовать, если будет применен ЦПУ с полым ротором. Он устанавливается непосредственно на вал.

Метки, поставленные на валу и корпусе привода (электродвигателя), позволяют определять начало отсчета углов электромагнитной системы электродвигателя и в ней фиксировать положение проблемных мест, в том числе каждый раз при многократных процессах измерения.

Необходимое число на первом счетчике 10 устанавливают равным и(или) несколько большим, чем необходимое количество оборотов вала для его разгона до выхода на номинальную частоту вращения.

Необходимое число на втором счетчике 18 устанавливают равным числу измерений неравномерности мгновенной частоты вращения вала: предпочтительно в интервале от трех до восьми. Более восьми на счетчике устанавливать нецелесообразно, так как это не даст практического эффекта, поскольку многократные измерения способствуют эффективному уменьшению случайной составляющей погрешности лишь при кратности не более восьми [Сергеев А.Г. Метрология. - М.: Логос, 2004].

Последовательный тракт элементов 10-11-12-13 не будет действовать во время процесса обнуления, так как вероятность нахождения вала ЦПУ в нулевом положении (во всех разрядах нули)очень мала. Следовательно на выходе схемы И-НЕ 4 будет нулевое состояние. То есть обнуление произойдет в тот промежуток времени, за который вал ЦПУ повернется из любого произвольного положения до нулевого. Если все-таки возникнут сомнения в полученных результатах измерения, то, сдвинув вал немного вручную сойти с нулевого положения и повторить процесс измерения.

При выборе типа ЦПУ следует учитывать следующее. Во-первых, необходима достаточная точность измерения. Этот комплексный показатель согласно стандарта ГОСТ РВ 52015-2003 характеризуется следующими параметрами: числом двоичных разрядов кода и погрешностью преобразования Е, которая в свою очередь состоит из двух составляющих: погрешности квантования E1 и погрешности угловых координат смены значений кода Е2.

Чтобы измерить неравномерность мгновенной частоты вращения вала с требуемой точностью, необходимо метрологическое соответствие между допустимым ее значением и погрешностью измерения, в данном случае практически полностью определяемой точностью ЦПУ.

Конкретный пример. Согласно техническим условиям (ОСТ 16 0.512.011-75) на синхронные электродвигатели типов ДСП-10, …, ДСП-120 неравномерность мгновенной частоты вращения вала электродвигателя (ее относительное значение) равна 5×10-4 и определяется по формуле

где ωмакс, ωмин, ωном - соответственно максимальное, минимальное и номинальное значения угловой скорости. Для указанных типов ДСП ωном=6000 об/мин = 100 об/с.

Подставив в формулу (1) значения Δω и ωном, получаем 5×10-4=(ωмаксмин)/100; (ωмаксмин)=5×10-2=0,05 об/с.

максмин) - это диапазон изменения мгновенной частоты вращения вала. А пройденный при этом путь, например за одну секунду, есть фактически сектор погрешности, а именно: 0,05 оборота. В угловых единицах это будет 18 угл. град или 1080 угл. мин.

С какой точностью следует измерять этот сектор? Согласно метрологическому стандарту ГОСТ Р 8.563-96 «ГСИ Методики выполнения измерений» погрешность методики измерения должна составлять не более 0,3 от поля допуска измеряемой величины. Исходя из этого для рассматриваемого случая сектор погрешности (поле допуска) составит величину 1080×0,3=324 угл. мин.

Кроме того при измерении следует получать такой объем данных, чтобы можно было построить гистограмму (статистический вид закона распределения вероятностей) и определить вид полученного закона, поскольку лишь закон является наиболее полной характеристикой исследуемой величины. Минимальное значение объема данных составляет 30 значений. Тогда дискретизация сектора погрешности составит величину 324/30=10,8 угл. мин.

Полученное требование по точности может быть удовлетворено с помощью 12-разрядного ЦПУ, имеющего протяженность кванта q=5,27 угл. мин и погрешность преобразования Е=±7,91 угл. мин.

У 12-разрядного ЦПУ протяженность кванта q=21600/(212=4096)=5,27 угл. мин; погрешность квантования Е1=±q/2=±2,64 угл. мин; погрешность угловых координат смены значений кода Е2=±q=±5,27 угл. мин; погрешность преобразования Е=E12=±7,91 угл. мин.

Во-вторых, при выборе ЦПУ следует учитывать и такую характеристику как быстродействие. Необходимо, чтобы время преобразования (время обновления кода) было достаточно мало: на уровне 1-3 мкс (микросекунд), чтобы измерение проходило без пропуска кодов (квантов).

Кроме вышеизложенного можно провести частичную проверку правильности выбора ЦПУ по величине его разрядности путем сравнения с периодом изменения мгновенной частоты вращения вала, который зависит от числа полюсов (2р) электродвигателя. Например, если р=32, то период будет равен 21600/32=675 угл. мин. Полученное значение периода не равно (меньше) величине сектора погрешности, так как ωмакс и ωмин, как правило, не находятся в одном периоде (см. фиг. 2). Поэтому приведенное выше обоснование по выбору ЦПУ остается без изменения.

Реальным ЦПУ, с помощью которого можно выполнить указанные требования, причем с запасом, является 13-разрядный фотоэлектрический ЦПУ типа ECN 413 фирмы «Heidenhain» (Германия). Он обладает следующими характеристиками: число двоичных разрядов выходного кода 13; число двоичных кодов (информационная емкость) 213=8192; протяженность квантов (дискретность преобразования) q=21600/8192=2,64 угл. мин; погрешность квантования E1=±q/2=±1,32 угл. мин; погрешность угловых координат смены значений кода Е2=±2,64 угл. мин; погрешность преобразования Е=E1+E2=±3,96 угл. мин; тактовая частота опроса 400 кГц (то есть быстродействие не хуже 2,5 мкс); допустимая частота вращения вала 12000 об/мин (200 об/с).

Целесообразно проводить многократные измерения. Они начинаются с нажатия кнопки «СТАРТ». Не путать с теми многократными измерениями, которые заложены в процесс измерения и их количество отсчитывает второй счетчик 18. Предлагаемые многократные измерения позволят обнаружить те изменения неравномерности частоты вращения вала, которые обусловлены медленно изменяющимися влияющими факторами: изменение температуры окружающей среды, а также температуры прогрева электродвигателя, колебания параметров напряжения питания электродвигателя (амплитуды, частоты, фазы) и др.

Пояснения к результатам измерений. По окончании процесса измерения будут записаны в регистрирующем устройстве 16 два массива: один из них представляет собой запись пройденного пути (с первого входа от ЦПУ -∑q), выраженного суммарным числом действительных квантов, а второй массив - время измерения (с второго входа от генератора импульсов).

На фиг. 3 приведен график зависимости неравномерности мгновенной частоты вращения вала (ωнер) от времени и от нарастания угла поворота вала (∑q) при его вращении как с равномерной скоростью (прямая 1), так и с переменной составляющей на фоне равномерной скорости (кривая 2).

Для удобства восприятия процесса формирования неравномерности мгновенной частоты вращения вала при построении графика на фиг. 3 приняты следующие ограничения:

1) ЦПУ принят идеализированный - у него все кванты равны расчетной величине;

2) на оси абсцисс за единицу времени принята величина Δt. Это тот промежуток времени, за который квант ЦПУ пройдет при вращении вала с равномерной скоростью, равной номинальной;

3) так как ЦПУ идеализированный и частота вращения его вала равномерная, то нарастание кода (суммирование квантов) происходит на одну и ту же величину (на фигуре на один квант), в итоге образуя равномерные ступени 3.

В этом случае реализуется следующая зависимость ∑q=ωΔt. Это уравнение прямой, на фиг. 3 - прямая 1. В действительности частота вращения вала изменяется, на фиг. 3 - это кривая 2. В этом случае, например при увеличении частоты вращения вала за время t1=3 Δt согласно графику будет сосчитано ∑q1=6 квантов. А при уменьшении частоты вращения за время t2=5 Δt на регистрирующее устройство поступит ∑q2=2 кванта. Аналогичная картина наблюдается и во второй половине периода изменения частоты вращения: за время t3=5 Δt поступит два кванта, а за время t4=2 Δt - шесть квантов.

Имея данные измерений пройденного расстояния (числа квантов) и времени, можно определить частоту вращения вала по формуле ω=∑q/t. Из полученного массива значений ω находят и фиксируют ее минимальное и максимальное значения, определяют разность между ними, делят эту разность на среднее значение, которое в данном измерении является оценкой номинального значения ω, и определяют при этом относительное значение неравномерности мгновенной частоты вращения вала.

Полученный массив частоты вращения вала привода можно подвергнуть статистической обработке, определяя при этом среднее значение, среднее квадратическое отклонение, диапазон закона распределения вероятностей (d=ωмаксмин), строят гистограмму, согласовывают ее с теоретическим законом распределения вероятностей и определяют в итоге вид этого теоретического закона.

И, наконец, определяют также угловые положения, в которых имеют место быть экстремальные значения частоты вращения вала, а также при необходимости как ближайшие к ним значения, так и положения всех остальных значений ω. Это позволит выявить не только все проблемные места электромагнитной системы измеряемого изделия (привода, электродвигателя), но и все особенности изменения частоты вращения вала.

Поскольку на валу привода (электродвигателя) установлена метка и ее положение согласовано с меткой нулевого положения ЦПУ, то имеется возможность однозначно определить все отклонения Δω от ωном, а разработчику изделия проанализировать состояние каждого рассматриваемого участка электромагнитной системы и разработать предложения по ее улучшению.

Список документов, цитированных в отчете о поиске:

1 SU №881622 15.11.1981.

2 SU №1120243 А 23.10.1984.

Похожие патенты RU2703274C1

название год авторы номер документа
Устройство измерения времени разгона вала электродвигателя 2022
  • Полушкин Вячеслав Михайлович
  • Князев Роман Игоревич
  • Алексеев Валерий Васильевич
  • Воронцов Павел Сергеевич
  • Долидзе Вахтанг Чолович
  • Котов Юрий Терентьевич
  • Соболев Владимир Алексеевич
  • Старостин Олег Викторович
RU2796152C1
УСТРОЙСТВО КОНТРОЛЯ ТОЧНОСТИ ЦИФРОВЫХ ПРЕОБРАЗОВАТЕЛЕЙ УГЛА 2015
  • Алексеев Александр Валерьевич
  • Алексеев Валерий Васильевич
  • Афанасьев Алексей Сергеевич
  • Болдырев Максим Александрович
  • Воронцов Павел Сергеевич
  • Князев Роман Игоревич
  • Полушкин Вячеслав Михайлович
RU2577186C1
УСТРОЙСТВО КОНТРОЛЯ ДОПОЛНИТЕЛЬНОЙ НЕЛИНЕЙНОСТИ МИКРОЭЛЕКТРОМЕХАНИЧЕСКИХ ПРЕОБРАЗОВАТЕЛЕЙ ЛИНЕЙНОГО УСКОРЕНИЯ ПРИ ИСПЫТАНИИ НА ВИБРОУСТОЙЧИВОСТЬ 2014
  • Полушкин Вячеслав Михайлович
  • Алексеев Валерий Васильевич
  • Афанасьев Алексей Сергеевич
  • Болдырев Максим Александрович
  • Воронцов Павел Сергеевич
  • Князев Роман Игоревич
RU2586262C2
УСТРОЙСТВО КОНТРОЛЯ ПЕРЕХОДНОГО СОПРОТИВЛЕНИЯ КОНТАКТНОГО УЗЛА ЭЛЕКТРИЧЕСКОЙ МАШИНЫ 2012
  • Скрипник Александр Борисович
  • Князев Роман Игоревич
  • Алексеев Александр Валерьевич
  • Алексеев Валерий Васильевич
  • Афанасьев Алексей Сергеевич
  • Полушкин Вячеслав Михайлович
RU2527655C2
УСТРОЙСТВО КОНТРОЛЯ ПРОДОЛЖИТЕЛЬНОСТИ КОНТАКТИРОВАНИЯ ЭЛЕМЕНТОВ КАЧЕНИЯ ПОДШИПНИКОВОГО УЗЛА ЭЛЕКТРИЧЕСКОЙ МАШИНЫ 2012
  • Скрипник Александр Борисович
  • Князев Роман Игоревич
  • Алексеев Валерий Васильевич
  • Афанасьев Алексей Сергеевич
  • Полушкин Вячеслав Михайлович
RU2510562C2
УСТРОЙСТВО КОНТРОЛЯ ТОЧНОСТИ АНАЛОГОВОГО И ЦИФРОВОГО ПРЕОБРАЗОВАТЕЛЕЙ УГЛА 2014
  • Алексеев Александр Валерьевич
  • Алексеев Валерий Васильевич
  • Афанасьев Алексей Сергеевич
  • Болдырев Максим Александрович
  • Воронцов Павел Сергеевич
  • Князев Роман Игоревич
  • Полушкин Вячеслав Михайлович
RU2575467C1
СИГНАЛИЗАТОР ПРЕДЕЛЬНЫХ ЗНАЧЕНИЙ УГЛОВОЙ СКОРОСТИ 1991
  • Давыдов И.Б.
  • Ноянов В.М.
RU2012891C1
Устройство для управления скоростью перемещения магнитной ленты 1982
  • Афанасьев Василий Сергеевич
SU1062779A2
Фотоэлектрический преобразовательуглА пОВОРОТА ВАлА B чиСлО 1979
  • Габидулин Марклен Абдурахманович
  • Кулаков Алексей Тимофеевич
SU822118A1
УСТРОЙСТВО ЗАЩИТЫ ОТ ПОМЕХ 1990
  • Соболев А.И.
  • Аксенов Ф.В.
  • Удальцов А.Б.
RU2074516C1

Иллюстрации к изобретению RU 2 703 274 C1

Реферат патента 2019 года Устройство измерения неравномерности мгновенной частоты вращения вала

Изобретение относится к измерительной технике и электротехнике. Технический результат: повышение точности измерения неравномерности мгновенной частоты вращения вала и увеличение информации о ее поведении в пределах оборота вала. Устройство содержит контролируемый привод 1, муфту 2, цифровой преобразователь угла 3, схему И-НЕ 4, первую схему И 5, первый триггер 6, первый формирователь 7, схему задержки 8, первый ключ 9, первый счетчик 10, второй формирователь 11, второй триггер 12, второй ключ 13, третий ключ 14, генератор импульсов 15, регистрирующее устройство 16, вторую схему И 17, второй счетчик 18, третий формирователь 19, управляющее логическое устройство 20. В устройство введены следующие элементы и изделия (обозначены номерами): 2, 3, 4, 8, 9, 10, 11, 12, 13, 14, 18, 19, 20. Новые связи элементов: 3-4-5-6-7; 6-8-9; 4-10-11-12-17-18-19- к двум входам 20; 3-13-16; 15-14-16; 12-13; 12-14; 20-1; 20-9. 1 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 703 274 C1

1. Устройство измерения неравномерности мгновенной частоты вращения вала, содержащее привод (электродвигатель), с валом которого кинематически соединен импульсный датчик положения вала, генератор импульсов, первую и вторую схемы И, формирователь, триггер, регистрирующее устройство, отличающееся тем, что в устройство введены цифровой преобразователь угла (ЦПУ), муфта, схема И-НЕ, схема задержки, первый, второй и третий ключи, первый и второй счетчики, второй и третий формирователи, управляющее логическое устройство (УЛУ), причем вал электродвигателя кинематически соединен со входом муфты, выход которой кинематически связан с валом ЦПУ, выход которого соединен со входом схемы И-НЕ, выход которой подключен к входу первого счетчика, а также к первым входам первой и второй схем И, выход первого счетчика соединен со входом второго формирователя, выход которого подключен к входу второго триггера, выход которого соединен со вторым входом второй схемы И, выход которой подключен ко входу второго счетчика, выход которого через третий формирователь связан с первым и вторым входами УЛУ, первый выход УЛУ соединен со входом первого ключа, выход которого подключен к второму входу первой схемы И, выход которой соединен со входом первого триггера, выход которого через схему задержки связан с управляющим входом первого ключа и со входом первого формирователя, с выхода которого импульс поступает на электронные элементы для обнуления перед началом собственно процесса измерения, выход ЦПУ соединен со входом второго ключа, выход которого подключен к первому входу регистрирующего устройства, выход второго триггера соединен с управляющими входами второго и третьего ключей, выход генератора импульсов через третий ключ связан со вторым входом регистрирующего устройства.

2. Устройство по п. 1, отличающееся тем, что первый вход УЛУ является входом инвертора, выход которого соединен с первым входом третьей схемы И, выход которой подключен ко второму входу третьего триггера, выход которого соединен с управляющими входами четвертого и пятого ключей, выход первого источника питания подключен к первому входу кнопки «СТАРТ», первый выход которой соединен с первым (нормально замкнутым) контактом, а также с вторым и третьим контактами четвертого ключа, выход второго контакта этого (четвертого) ключа соединен с выходом его первого контакта, являющимся первым выходом УЛУ, первый выход кнопки «СТАРТ» подключен также к второму входу третьей схемы И, выход третьего контакта четвертого ключа соединен с выходом первого источника питания, выход второго источника питания подключен к второму входу кнопки «СТАРТ», второй выход которой соединен с первым (нормально замкнутым) контактом, а также с вторым и третьим контактами пятого ключа, выход второго контакта пятого ключа соединен с выходом его первого контакта, выход которого является вторым выходом УЛУ, выход третьего контакта пятого ключа соединен с выходом второго источника питания, второй вход УЛУ является первым входом третьего триггера.

Документы, цитированные в отчете о поиске Патент 2019 года RU2703274C1

Устройство для измерения мгновенной частоты вращения ротора гистерезисного электродвигателя 1982
  • Позднухов Сергей Федорович
  • Прудников Сергей Владимирович
  • Богоявленский Петр Евгеньевич
SU1120243A1
Устройство для измерения неравномерности частоты вращения вала 1982
  • Отставнов Алексей Андреевич
  • Никитин Александр Владимирович
SU1035521A1
1972
SU415582A1
Устройство для измерения нестабильности частоты вращения вала 1984
  • Заозерский Алексей Юрьевич
  • Кутищев Александр Александрович
  • Курдыбайлова Надежда Викторовна
  • Серебрянский Андрей Алексеевич
  • Скалон Анатолий Иванович
  • Явленский Константин Николаевич
SU1210100A1
US 4316143 А, 16.02.1982.

RU 2 703 274 C1

Авторы

Афанасьев Алексей Сергеевич

Полушкин Вячеслав Михайлович

Князев Роман Игоревич

Алексеев Валерий Васильевич

Болдырев Максим Александрович

Воронцов Павел Сергеевич

Долидзе Вахтанг Чолович

Соболев Владимир Алексеевич

Даты

2019-10-16Публикация

2018-11-20Подача