СПОСОБ ПОЛУЧЕНИЯ СИНТЕТИЧЕСКИХ МИНЕРАЛОВ Российский патент 2009 года по МПК C01B13/28 C30B33/02 

Описание патента на изобретение RU2346887C2

Изобретение относится к области получения синтетических минералов и может быть использовано в технике и ювелирном деле.

Известен способ получения синтетических минералов по методу Вернейля [1], заключающийся в смешивании компонентов шихты заданного состава, подаче в печную камеру шихты из воронки, просыпании тонкодисперсного порошка через плазменный факел до спекания и кристаллизации на керамическом штифте, на который заранее помещают затравку. При этом кристалл «растет» в вертикальном направлении по мере подачи материала. Отжиг осуществляют в печной камере путем выведения штифта с затравкой из зоны синтеза.

Недостатками способа являются длительность синтеза, значительные напряжения в растущих кристаллах, возникающие при высоких температурах обычного пламени, в результате чего образуется большое количество отходов при вырезке деталей из конечного продукта.

Известен способ получения минералов по методу Чохральского [1], заключающийся в предварительном опускании вала с затравкой в расплав, полученный в тигле, с последующим поднятием стержня с затравкой из расплава со скоростью 1-50 мм/ч.

Недостатки данного способа заключаются в образовании значительных напряжений в конечном продукте, возможности отрыва затравки от вала, сложности аппаратурного оформления (необходимо использовать приспособление, обеспечивающее вертикальное перемещение и вращение вала с затравкой с частотой 30-150 об-1).

Наиболее близким аналогом заявленного изобретения является способ получения синтетических минералов тигельным методом, включающий обработку шихты плазменным факелом плазмотрона с образованием расплава, подачу капель расплава в тигель потоком плазмообразующего газа и последующую кристаллизацию [2].

Недостатками известного способа являются низкая скорость синтеза и сложность аппаратурного оформления процесса, что обусловлено необходимостью предварительного смешивания тонкодисперсного порошка шихты с вспомогательным потоком плазмообразующего газа (аргона).

Целью изобретения является устранение вышеуказанных недостатков, повышение скорости роста кристаллов, снижение напряжений в конечном продукте, упрощение аппаратурного оформления и уменьшение энергоемкости процесса синтеза.

Установка получения искусственных минералов в факеле низкотемпературной плазмы изображена на чертеже.

Тонкодисперсный порошок шихты 1 по трубопроводу 2 подается потоком аргона (Ar) в плазменную горелку 4 электродугового плазмотрона, где в плазменном факеле образуется расплавленный поток частиц 7, который накапливается в тигле 10 и катализируется на затравке 9. Тигель 10 с закристаллизованным расплавом, помещенный на огнеупорный столик 11 с подъемным механизмом 14, подвергается отжигу в трубной печи 8 с термоизоляцией 13 и силитовыми нагревателями 12. Для наблюдения процесса получения синтетических минералов предусмотрена система охлаждаемых кварцевых стекол 5. Для отвода отработанного плазмообразующего газа аргона в установке предусмотрена вытяжная вентиляция 3.

Отличительным признаком предлагаемого способа является предварительное размещение затравки на дне тигля, что позволяет подавать расплав с большей производительностью, чем в способах Вернейля и Чохральского и обеспечивает ускоренный рост кристалла. Процесс синтеза осуществляется с одновременным отжигом закристаллизованного на затравке расплава, что существенно снижает напряжение в конечном продукте.

Проведенный анализ известных способов получения синтетических минералов позволяет сделать заключение о соответствии заявляемого изобретения критерию «новизна».

Изобретательский уровень подтверждается тем, что размещение затравки на дне тигля и отжиг закристаллизованного на затравке расплава позволяют получить высококачественный продукт с гораздо более низкими напряжениями, чем в известном способе, а также увеличить скорость роста кристалла, следовательно, снизить себестоимость конечного продукта при повышении его качества. Полученные предлагаемым способом искусственные минералы (лейкосапфир, рубин, шпинель и др.) имеют конкурентоспособные преимущества по сравнению с зарубежными и отечественными аналогами.

Оптимальными условиями синтеза, найденными экспериментально, являются мощность работы плазмотрона 12 кВт при расходе шихты 2-3 г/мин. При данных параметрах работы плазмотрона скорость роста кристаллов составляет 2,4-3,0 мм/мин (табл.1).

Влияние температуры и времени отжига на величину напряжений в кристаллах показано в табл.2.

Таблица 2
Влияние технологических параметров на величину напряжений в кристаллах
№ п/пТемпература отжига, °СВремя отжига, чНапряжение, МПа18001
2
3
4
5,1
4,6
3,8
3,5
29001
2
3
4
4,5
3,6
2,7
2,5
310001
2
3
4
1,8
1,2
1,1
1,0
411001
2
3
4
2,1
1,8
1,75
1,70

Пример 1. Синтез лейкосапфира

Как известно [1], лейкосапфир является прозрачной разновидностью корунда, а его цветные разновидности - сапфир и рубин - драгоценными минералами.

Исходным материалом служил порошок оксида алюминия (Al2О3) зернового состава 20-100 мкм, который помещали в порошковый питатель и по трубопроводу подавали в плазменную горелку ГН-5р электродугового плазмотрона УПУ-8М. Параметры работы плазмотрона следующие: мощность - 12 кВт, расход порошка оксида алюминия - 2-3 г/мин, аргона - 2,5 м3/ч при давлении 0,25 МПа.

Полученный расплав накапливался и кристаллизовался в тигле на затравке из лейкосапфира в виде таблетки ⊘ 20 мм и толщиной 4 мм со скоростью 2,4-3,0 мм/мин.

Одновременно синтезировали лейкосапфир по известному методу [2]. Затем по стандартным методикам определяли фазовый состав, плотность, микротвердость, показатель преломления и напряжения в конечном продукте.

Сравнительные характеристики лейкосапфира, полученного известным [2] и предлагаемым способами, приведены в табл.3.

Пример 2. Синтез шпинели синего цвета

Как известно [1], благородная шпинель состава MgAl2O4 является драгоценным минералом.

Исходным материалом служила стехиометрическая смесь оксидов алюминия и магния (Al2О3·MgO2) зерновым составом от 20 до 100 мкл, красящим компонентом - оксид железа (Fe2О3). Компоненты смешивали в шаровой мельнице с уралитовыми шарами в течение 30 минут. Исходный состав шихты имел состав (мас.%): Al2O3 - 72,84; MgO - 27,04. Оксид железа вводился в шихту в количестве 0,12 мас.%. Аргоновая плазма восстанавливала Fe3+ до Fe2+. Двухвалентное железо окрашивало шпинель в синий и васильковые цвета.

Шихту помещали в порошковый питатель и подавали по трубопроводу с плазмообразующим газом аргоном в плазменную горелку ГН-5р электродугового плазмотрона УПУ-8М. Расплав подавали на затравку из голубой шпинели в виде таблетки ⊘ 15 мм и толщиной 4 мм, помещенную на дно тигля. Параметры работы плазмотрона следующие: мощность - 12кВт, расход аргона - 0,25 МПа при давлении 0,25 МПа. Расход воды на охлаждение - 0,6 м3/ч.

Полученный расплав кристаллизовался на затравке со скоростью 2,5-2,9 мм/ч.

Сравнительные характеристики шпинели, полученной известным [2] и предлагаемым способами, представлены в табл.4.

Таблица 4
Свойства шпинели, полученной известным и предлагаемым способами
№ п/пСвойстваЕд. измеренияИзвестный способПредлагаемый способ1Показатель преломления-1,723-1,7261,724-1,7272ПлотностьКг/м33589-36303592-35983МикротвердостьГПа17,89-17,9918,124НапряжениеМПа9-171,2-1,85Отходы при обработке%72-7818-236Цвет черты-БелыйБелый

Список использованных источников

1. Вильке К.Т. Выращивание кристаллов. - М.: Недра, 1977. С.388-402.

2. Патент RU 2248933 C1, 27.03.2005.

Похожие патенты RU2346887C2

название год авторы номер документа
СПОСОБ СИНТЕЗА ЧИСТЫХ КРИСТАЛЛИЧЕСКИХ МАТЕРИАЛОВ НА ОСНОВЕ ТУГОПЛАВКИХ ОКСИДОВ 1996
  • Крохин В.П.
  • Бессмертный В.С.
  • Пучка О.В.
RU2104942C1
СПОСОБ ПОЛУЧЕНИЯ СИНТЕТИЧЕСКИХ МИНЕРАЛОВ 2003
  • Бессмертный В.С.
  • Трубицын М.А.
  • Дюмина П.С.
  • Семененко С.В.
  • Панасенко В.А.
  • Крохин В.П.
  • Минько Н.И.
RU2248933C1
СПОСОБ ПОЛУЧЕНИЯ СФЕРИЧЕСКИХ ГРАНУЛ ЖАРОПРОЧНЫХ И ХИМИЧЕСКИ АКТИВНЫХ МЕТАЛЛОВ И СПЛАВОВ, УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ И УСТРОЙСТВО ДЛЯ ИЗГОТОВЛЕНИЯ ИСХОДНОЙ РАСХОДУЕМОЙ ЗАГОТОВКИ ДЛЯ РЕАЛИЗАЦИИ СПОСОБА 2008
  • Агеев Сергей Викторович
  • Москвичев Юрий Петрович
RU2413595C2
СПОСОБ СИНТЕЗА АЛЮМОИТТРИЕВЫХ СТЕКОЛ 2023
  • Здоренко Наталья Михайловна
  • Бессмертный Василий Степанович
  • Устинов Егор Денисович
RU2822147C1
СПОСОБ ВАКУУМНО-ПЛАЗМЕННОЙ ПЛАВКИ МЕТАЛЛОВ И СПЛАВОВ В ГАРНИСАЖНОЙ ПЕЧИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2007
  • Агеев Сергей Викторович
  • Москвичев Юрий Петрович
RU2346221C1
СПОСОБ ВАРКИ СТЕКЛА В ТИГЛЯХ С ГАРНИСАЖНЫМ СЛОЕМ 2022
  • Бессмертный Василий Степанович
  • Здоренко Наталья Михайловна
  • Макаров Алексей Владимирович
  • Савельев Николай Николаевич
  • Варфоломеева Софья Владимировна
  • Бурлаков Николай Михайлович
RU2799670C1
СПОСОБ ОЧИСТКИ МЕТАЛЛУРГИЧЕСКОГО КРЕМНИЯ УВЛАЖНЕННОЙ ПЛАЗМОЙ ПЕРЕМЕННОГО ТОКА В ВАКУУМЕ 2010
  • Карабанов Сергей Михайлович
  • Джхунян Валерий Леонидович
  • Ясевич Виктор Игоревич
RU2465202C2
СПОСОБ ВАРКИ АЛЮМОИТТРИЕВЫХ СТЕКОЛ 2023
  • Бессмертный Василий Степанович
  • Здоренко Наталья Михайловна
  • Макаров Алексей Владимирович
  • Бурлаков Николай Михайлович
  • Варфоломеева Софья Владимировна
RU2814011C1
СПОСОБ СИНТЕЗА СИЛИКАТ-ГЛЫБЫ 2017
  • Бондаренко Диана Олеговна
  • Бессмертный Василий Степанович
  • Бондаренко Надежда Ивановна
  • Павленко Зоя Владимировна
  • Изофатова Дарья Игоревна
  • Купавцев Эдуард Леонидович
RU2660138C1
СПОСОБ И УСТРОЙСТВО ДЛЯ ПЛАЗМОТЕРМИЧЕСКОГО ЦЕНТРОБЕЖНОГО ВОССТАНОВЛЕНИЯ И РАЗДЕЛЕНИЯ ХИМИЧЕСКИХ ВЕЩЕСТВ ИЗ РУДЫ В ГРАВИТАЦИОННОМ ПОЛЕ 2020
  • Волков Александр Анатольевич
RU2758609C1

Реферат патента 2009 года СПОСОБ ПОЛУЧЕНИЯ СИНТЕТИЧЕСКИХ МИНЕРАЛОВ

Изобретение относится к области получения синтетических минералов и может быть использовано в технике и ювелирном деле. Способ синтеза искусственных минералов осуществляют тигельным методом, включающим обработку шихты плазменным факелом плазмоторона с образованием расплава, подачу капель расплава в тигель потоком плазмообразующего газа с последующей кристаллизацией, при этом предварительно на дно тигля помещают затравку, а синтез ведут при мощности плазмотрона 12 кВт и расходе шихты 2-3 г/мин с одновременным отжигом закристаллизованного на затравке расплава в кольцевой печи в течение 2-3 часов при 1000°С. Предварительное размещение затравки на дне тигля обеспечивает ускоренный рост кристаллов и более высокую производительность процесса. Одновременный отжиг искусственных минералов существенно снижает напряжение в конечном продукте. Преимущества способа заключаются также в упрощении аппаратурного оформления технологической линии синтеза и снижении энергоемкости производства. 1 ил., 4 табл.

Формула изобретения RU 2 346 887 C2

Способ синтеза искусственных минералов тигельным методом, включающий обработку шихты плазменным факелом плазмотрона с образованием расплава, подачу капель расплава в тигель потоком плазмообразующего газа с последующей кристаллизацией, отличающийся тем, что предварительно на дно тигля помещают затравку, а синтез ведут при мощности плазмотрона 12 кВт и расходе шихты 2-3 г/мин с одновременным отжигом закристаллизованного на затравке расплава в кольцевой печи в течение 2-3 ч при 1000°С.

Документы, цитированные в отчете о поиске Патент 2009 года RU2346887C2

СПОСОБ ПОЛУЧЕНИЯ СИНТЕТИЧЕСКИХ МИНЕРАЛОВ 2003
  • Бессмертный В.С.
  • Трубицын М.А.
  • Дюмина П.С.
  • Семененко С.В.
  • Панасенко В.А.
  • Крохин В.П.
  • Минько Н.И.
RU2248933C1
JP 5097587 A, 20.04.1993
Схват манипулятора 1982
  • Степовой Евгений Иванович
  • Гадючко Анатолий Петрович
SU1058773A1

RU 2 346 887 C2

Авторы

Бессмертный Василий Степанович

Симачёв Александр Викторович

Минько Нина Ивановна

Крохин Вольт Павлович

Дюмина Полина Семеновна

Семененко Сергей Викторович

Даты

2009-02-20Публикация

2005-12-26Подача