Изобретение относится к области обработки алмаза на многопуансонных аппаратах высокого давления и температуры для отжига алмаза под высоким давлением при температуре 2500°С и выше, что обеспечивает изменение физических свойств алмаза.
Известна реакционная ячейка многопуансонного аппарата высокого давления, содержащая соосно установленные цилиндрической формы нагревательный элемент с токовводными крышками и токовводными стержнями, запирающие ячейку таблетки, расположенную в полости ячейки подложку, выполненную из оксидов магния и циркония и хлорида цезия, с запрессованными кристаллами алмаза [RU A 2162734, МПК: B01J 3/06; C30B 29/04, опубл. 02.10.2001]. Данная реакционная ячейка предназначена для выращивания алмазов при температурах порядка 1550°C, и ее подложка выполнена из 5-10 мас. % MgO, 70-80 мас. % ZrO2, и 15-20 мас. % CsCl.
Известна также реакционная ячейка многопуансонного аппарата высокого давления для обработки алмаза при давлении порядка 70 кбар и температуры порядка 2000°С [RU A 2201797, МПК: B01J 3/06; C30B 29/04, опубл. 04.10.2003], содержащая соосно установленные цилиндрической формы нагревательный элемент с токовводными крышками и токовводными стержнями, запирающие ячейку таблетки, расположенную в полости ячейки подложку, выполненную в виде шайбы из оксидов магния и циркония и хлорида цезия, с запрессованным алмазом, при этом состав шайбы определен следующим соотношением компонентов, мас. %: MgO = 80-85, ZrO2 = 12-15, CsCl = 3-5.
Однако конструкции данных ячеек и используемый материал подложки не позволяют производить отжиг алмазных пластин при давлениях порядка 7 ГПа и температурах порядка 2500°С вследствие их растрескивания. Растрескивание пластин происходит в результате деформации ячейки при высоком давлении в непластичной среде (подложке), в которой находится пластина.
Наиболее близким из известных аналогов является реакционная ячейка [RU 54045 U1, МПК: C30B 29/04,B01J 3/06, опубл.10.06.2006] для обработки алмаза на многопуансонных аппаратах высокого давления и температуры, предназначенная для отжига изометричных алмаза под высоким давлением при температуре выше 2500°С, необходимой для улучшения физических характеристик алмаза, в частности изменения цвета коричневых алмазов типа IIa и трансформации их в бесцветные, улучшения механических характеристик искусственных алмазов вследствие упорядочения структуры кристаллической решетки, что важно для применения алмазов в прецизионном инструменте. Реакционная ячейка содержит соосно установленные цилиндрической формы нагревательный элемент с торцевыми двойными токовводными крышками и токовводными стержнями, запирающие ячейку таблетки, расположенную в полости ячейки подложку, выполненную из материала при следующем соотношении компонентов, мас. %: MgO = 75-80, ZrO2 = 18-23, C = 2-5, а между токовводными крышками установлены нагревательные диски, материал которых содержит, мас. %: ZrO2 = 85-90, C = 7-13, CsCl = 2-3.
Общим недостатком известных ячеек является то, что известные составы подложки не обеспечивают сохранность алмазных пластин при отжиге. В ячейке по патенту RU 54045 нет растрескивания образцов по причине их изометричности, при этом пластины алмаза в известных ячейках растрескиваются. Кроме того, подложки недостаточно прозрачны для пучка синхротронного излучения при просвечивании реакционной ячейки СИ-излучением, что необходимо при изучении физических свойств алмаза. Техническая проблема, решаемая изобретением, заключается в том, чтобы: а) избежать растрескивания пластин при РТ отжиге и б) повысить прозрачность среды для пучка синхротронного излучения при его пропускании через подложку. В аналогах и прототипе потеря составляет более 50% при энергии фотонов 30 кэВ на ВЭПП-4М. Изобретение обеспечивает сохранность алмазных пластин без растрескивания, и потеря энергии синхротронного излучения составляет менее 50% при 30 кэВ.
Технический результат достигается тем, что в реакционной ячейке многопуансонного аппарата высокого давления, содержащей соосно установленные цилиндрической формы нагревательный элемент с торцевыми двойными токовводными крышками и токовводными стержнями, запирающими ячейку таблетками и расположенной в полости ячейки подложки с запрессованным алмазом, материал подложки содержит, мас. %: NaCl=40-60, CsCl=40-60, причем используют алмаз в виде пластины с соотношением толщины к длине сторон квадратной пластины от 0,1 до 0,5, а диаметр подложки в 1,5 раза превышает длину стороны пластины алмаза.
Выбор оптимального состава материала подложки, в которую запрессована пластина алмаза, позволяет проводить отжиг ее при высоких давлениях и температурах и выдерживать температуру в течение необходимого времени. Предложенный состав подложки в реакционной ячейке многопуансонного аппарата позволяет обеспечить отжиг пластин алмаза без их растрескивания (обеспечивает сохранность пластин в процессе отжига) за счет более пластичной матрицы (подложки), поскольку прилагаемое внешнее давление более равномерно передается на пластину. Выбранные вещества являются инертными для алмаза при параметрах высокотемпературного отжига и поверхность алмазных пластин не корродируется. Немаловажным является и то, что по завершению опыта методически проще извлечь алмазную пластину без ее разрушения из смеси солей - для этого достаточно растворить солевую матрицу с алмазом в воде.
При введении в состав подложки NaCl или CsCl менее 40 мас. % не достигается необходимая пластичность подложки, а более 60 мас. % NaCl не достигается достаточная плотность рабочей ячейки, более 60 мас. % CsCl приводит к коррозии поверхности алмаза. При использовании для отжига пластин алмаза с соотношением толщины к длине стороны квадратной пластины менее 0,1 пластина является слишком тонкой и трудно избежать ее растрескивания, а при соотношении более 0,5 это уже не пластина, а изометричный образец, который может быть обработан по способу прототипа. Необходимость использования диаметра подложки более чем в 1,5 раза длиннее стороны пластины алмаза обусловлено желанием использования максимально возможного размера пластины, но избежать риска раскалывания пластины. Важным является так же и то обстоятельство, что выбранный состав подложки обеспечивает потери энергии СИ менее 50% при 30 кэВ (т.е. он более прозрачен для пучка синхротронного излучения, чем в известных ячейках).
На фиг. для пояснения способа приведен чертеж, на котором схематически в разрезе представлена реакционная ячейка многопуансонного аппарата высокого давления для отжига.
Реакционная ячейка установлена в рабочее тело кубической формы (на чертеже не показано) и состоит из графитового нагревательного элемента 1 с двойными торцевыми токовводными молибденовыми крышками 2, между которыми установлены торцевые нагревательные диски 3, при этом одна крышка контактирует с нагревательным элементом 1, а другая - с молибденовыми токовводными стержнями 4, расположенными в центре запирающих таблеток 5. В полости графитового нагревателя 1 установлена подложка 6, в которую запрессована пластина алмаза (фиг.).
Ниже приводятся варианты работы реакционной ячейки.
Пример 1. В подложку 6 (фиг.) диаметром (D) 14 мм и высотой (H) 16 мм, состав которой определен следующим соотношением компонентов, мас. %: NaCl - 40, CsCl - 60, запрессовывают квадратную пластину алмаза (L) с размером сторон 9 х 9 мм и толщиной 0,9 мм и устанавливают в графитовый нагреватель 1, закрывают торцевыми токовводными молибденовыми крышками 2, устанавливают торцевые нагревательные диски 3, и далее вновь торцевые токовводные молибденовые крышки 2, контактирующие с молибденовыми токовводными стержнями 4, установленные в запирающих таблетках 5. Собранную реакционную ячейку помещают в рабочее тело кубической формы, которое устанавливают в рабочую полость многопуансонного аппарата высокого давления. Создают давление 7 ГПа и температуру 2500°С и выдерживают 20 минут. За этот период происходит отжиг пластины алмаза. После отжига температуру сбрасывают, затем сбрасывают давление до атмосферного и извлекают реакционную ячейку. Подложку растворяют в воде и извлекают пластину алмаза. Исследования показали: на поверхности алмаза отсутствует графит, что означает сохранение РТ параметров в поле устойчивости алмаза. Пластина сохранилась, образования сколов на краях пластины, а также трещин в объеме кристалла алмаза не наблюдалось. Поверхность алмазной пластины не корродирована. Потери энергии синхротронного излучения составили менее 50% при 30 кэВ.
В таблице приведены дополнительные примеры, иллюстрирующие возможность осуществления способа.
При этом состав нагревательных дисков определен следующим соотношением компонентов, мас. %: ZrO2 = 85-90, C = 7-13, CsCl = 2-3. Далее, как в примере 1. После опыта подложку растворяют в воде и извлекают пластину алмаза.
название | год | авторы | номер документа |
---|---|---|---|
РЕАКЦИОННАЯ ЯЧЕЙКА МНОГОПУАНСОННОГО АППАРАТА ВЫСОКОГО ДАВЛЕНИЯ ДЛЯ ВЫРАЩИВАНИЯ АСИММЕТРИЧНО ЗОНАЛЬНЫХ МОНОКРИСТАЛЛОВ АЛМАЗА | 2000 |
|
RU2176690C1 |
СПОСОБ ОБРАБОТКИ АЛМАЗА И РЕАКЦИОННАЯ ЯЧЕЙКА МНОГОПУАНСОННОГО АППАРАТА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2001 |
|
RU2201797C1 |
РЕАКЦИОННАЯ ЯЧЕЙКА ДЛЯ ВЫРАЩИВАНИЯ АСИММЕТРИЧНО ЗОНАЛЬНЫХ МОНОКРИСТАЛЛОВ АЛМАЗА | 1997 |
|
RU2128548C1 |
РЕАКЦИОННАЯ ЯЧЕЙКА МНОГОПУАНСОННОГО АППАРАТА ВЫСОКОГО ДАВЛЕНИЯ ДЛЯ ВЫРАЩИВАНИЯ АСИММЕТРИЧНО ЗОНАЛЬНЫХ МОНОКРИСТАЛЛОВ АЛМАЗА | 1999 |
|
RU2162734C2 |
РЕАКЦИОННАЯ ЯЧЕЙКА МНОГОПУАНСОННОГО АППАРАТА ВЫСОКОГО ДАВЛЕНИЯ ДЛЯ ВЫРАЩИВАНИЯ МАЛОАЗОТНЫХ МОНОКРИСТАЛЛОВ АЛМАЗА | 2003 |
|
RU2254910C2 |
УСТРОЙСТВО ДЛЯ СОЗДАНИЯ ВЫСОКОГО ДАВЛЕНИЯ И ВЫСОКОЙ ТЕМПЕРАТУРЫ | 2009 |
|
RU2421273C1 |
СПОСОБ ОБРАБОТКИ АЛМАЗА | 2010 |
|
RU2451774C1 |
СПОСОБ ПОЛУЧЕНИЯ АЛМАЗА, ЛЕГИРОВАННОГО ФОСФОРОМ (ВАРИАНТЫ) | 2011 |
|
RU2476375C1 |
УСТРОЙСТВО ДЛЯ СОЗДАНИЯ ВЫСОКОГО ДАВЛЕНИЯ И ВЫСОКОЙ ТЕМПЕРАТУРЫ | 2011 |
|
RU2476741C1 |
ЭЛЕКТРИЧЕСКИЙ НАГРЕВАТЕЛЬНЫЙ ЭЛЕМЕНТ, ЯЧЕЙКА ВЫСОКОГО ДАВЛЕНИЯ И СПОСОБ ПОЛУЧЕНИЯ И/ИЛИ ОБРАБОТКИ СВЕРХТВЕРДОГО МАТЕРИАЛА МЕТОДОМ ВЫСОКОГО ДАВЛЕНИЯ И ВЫСОКОЙ ТЕМПЕРАТУРЫ | 2021 |
|
RU2771977C1 |
Изобретение относится к области обработки алмаза на многопуансонных аппаратах высокого давления и температуры. Реакционная ячейка многопуансонного аппарата высокого давления и температуры содержит соосно установленные цилиндрической формы нагревательный элемент 1 с торцевыми двойными токовводными крышками 2 и токовводными стержнями 4, запирающие ячейку таблетки 5, и расположенную в полости ячейки подложку 6 с запрессованным алмазом, материал которой содержит, мас. %: NaCl = 40-60, CsCl = 40-60, алмаз выполнен в виде пластины с соотношением толщины к длине сторон квадратной пластины от 0,1 до 0,5, при этом диаметр подложки в 1,5 раза превышает длину стороны пластины алмаза. Технический результат: предотвращение растрескивания пластин алмаза при отжиге при температурах свыше 2500°С и давлении порядка 7 ГПа, повышение прозрачности среды для пучка синхротронного излучения при его пропускании через подложку, обеспечивая потерю энергии синхротронного излучения менее 50% при 30 кэВ. 1 ил., 1 табл., 1 пр.
Реакционная ячейка многопуансонного аппарата высокого давления для обработки алмаза, содержащая соосно установленные цилиндрической формы нагревательный элемент с торцевыми токовводными крышками и токовводными стержнями, запирающие ячейку таблетки, подложку с запрессованным алмазом, выполненную в виде шайбы из теплопроводного материала, и установленную в реакционной ячейке многопуансонного аппарата, отличающаяся тем, что используют алмаз в виде пластины с соотношением толщины и длины сторон пластины от 0,1 до 0, 5, материал подложки содержит, мас.%: NaCl - 40-60, CsCl - 40-60, причем диаметр подложки в 1,5 раза превышает длину пластины алмаза.
Способ ввода термопар в аппараты высокого давления | 1937 |
|
SU54045A1 |
СПОСОБ ОБРАБОТКИ АЛМАЗА И РЕАКЦИОННАЯ ЯЧЕЙКА МНОГОПУАНСОННОГО АППАРАТА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2001 |
|
RU2201797C1 |
РЕАКЦИОННАЯ ЯЧЕЙКА МНОГОПУАНСОННОГО АППАРАТА ВЫСОКОГО ДАВЛЕНИЯ ДЛЯ ВЫРАЩИВАНИЯ МАЛОАЗОТНЫХ МОНОКРИСТАЛЛОВ АЛМАЗА | 2003 |
|
RU2254910C2 |
Авторы
Даты
2019-11-12—Публикация
2019-04-09—Подача