Изобретение относится к области мембранных технологий, а именно к процессу мембранно-абсорбционного разделения газовых смесей, и может быть использовано для извлечения олефинов и монооксида углерода из нефтезаводских газовых смесей.
Из уровня техники [Bazhenov S.D. et al. Gas-Liquid Membrane Contactors for Carbon Dioxide Capture from Gaseous Streams / Petroleum Chemistry, 2016, V. 56, N. 10, pp. 889-914; Bazhenov S.D. et al. Gas-Liquid Hollow Fiber Membrane Contactors for Different Applications / Fibers, 2018, V. 6, N. 4, p. 76] известно, что метод мембранно-абсорбционного процесса выделения различных газовых компонентов, основанный на синергетической комбинации процессов мембранного газоразделения и абсорбционного улавливания требуемых компонентов, широко применяется для процессов разделения широкого спектра газовых смесей и, в частности для выделения непредельных углеводородов (олефинов) из их смесей с предельными углеводородами (парафинами). Процесс абсорбции/десорбции в данном случае протекает в мембранных газожидкостных модулях, в которых мембраны выступают в качестве границы раздела двух фаз - разделяемой газовой смеси и жидкого абсорбента, содержащего компоненты, образующие комплексные соединения с молекулами олефинов (водные растворы солей переходных металлов - соли серебра, меди, никеля и т.д.), и обеспечивающего селективность процесса. Такая реализация процесса обладает следующими достоинствами:
- циклический процесс абсорбции/десорбции проводится в условиях четко определенной поверхности раздела фаз, заданной мембраной. В этом случае площадь поверхности массообмена постоянна, и все оборудование работает с одинаковой эффективностью даже при изменении условий проведения процесса или характеристик жидкости;
- плотная упаковка мембран в модуле (особенно в случае мембран в виде полых волокон) приводит к высокой удельной поверхности контакта фаз на единицу объема аппарата. Это обуславливает его малые габариты и вес;
- отсутствие прямого взаимодействия газа и жидкости приводит к низким энергетическим потерям процесса: нет необходимости разделять две фазы на выходе аппарата, при этом отсутствует капельный унос абсорбционной жидкости и ее вспенивание;
- независимого регулирования скоростей газовых и жидкостных потоков в широких пределах приводит к повышенной технологической гибкости процесса;
- модульная природа процесса. Это обуславливает гибкость управления процессом и простоту масштабирования. При этом мембранные модули не содержат в своей конструкции движущихся деталей и элементов и в целом характеризуются незначительными перепадами давления.
Следует отметить, что в некоторых случаях разделяемые газовые смеси, в частности нефтезаводские газовые смеси, могут содержать помимо предельных и непредельных углеводородов еще один ценный газовый компонент - монооксид углерода. Одновременное выделение олефинов и монооксида углерода из таких смесей актуально и перспективно, поскольку указанные компоненты в дальнейшем используются в качестве сырьевого потока в процессах гидроформилирования. Разработка нового мембранно-абсорбционного метода позволила бы осуществлять процесс совместного выделения олефинов и монооксида углерода из нефтезаводских газовых смесей в сочетании со всеми достоинствами, присущими мембранно-абсорбционному методу выделения олефинов.
Существуют различные способы мембранно-сорбционного извлечения непредельных углеводородов из их смесей с предельными углеводородами.
Так, из уровня техники [патент US 5135547 А, опубл. 04.08.1992] известен процесс разделения газовых смесей предельных и непредельных углеводородов, характеризующийся тем, что разделение таких смесей осуществляют в мембранных модулях на основе пористых мембран (в частности, из полисульфона), предварительно импрегнированных жидким селективным абсорбентом, а именно водными растворами, содержащими соли металла, способного к координации с молекулами непредельного углеводорода, и алкилкарбонатный сорастворитель.
Недостатком такого способа является низкая стабильность импрегнированных мембран, тенденция к удалению селективного абсорбента из пор мембраны, ее высыханию и деградации разделительных свойств.
Также из уровня техники [патент US 5863420 А, опубл. 26.01.1999] известен способ разделения и очистки газовых смесей, содержащих непредельные углеводороды, согласно которому выделение олефинов осуществляется при контакте очищаемой газовой смеси, подаваемой с одной стороны мембран, в порах гидрофобных половолоконных мембран с водным раствором комплексообразователя, подаваемым с другой стороны мембран в половолоконном мембранном модуле. При этом происходит растворение части непредельных углеводородов, содержащихся в исходной газовой смеси.
Недостатком данного способа является применение пористых мембран, поры которых по мере протекания процесса постепенно смачиваются жидким селективным абсорбентом, в результате чего эффективность процесса переноса олефинов резко снижается. Кроме того, проникновение жидкого селективного абсорбента в поры мембраны может приводить к смешению газовой и жидкой фаз и капельному уносу жидкого селективного абсорбента с потоком очищаемой газовой смеси. Еще одним недостатком данного способа является возможность извлечения только ненасыщенных углеводородов в отсутствие одновременного извлечения монооксида углерода.
В уровне техники [заявка на патент WO 2004002928 А1, опубл. 08.01.2004] также раскрыты способ выделения непредельных углеводородов и устройство для его осуществления. Способ состоит в том, что выделение непредельных углеводородов из газовых смесей осуществляют с применением жидкого абсорбента, содержащего комплексообразователь с высоким сродством к молекулам непредельных углеводородов, в мембранных модулях на основе селективных газоразделительных мембран, состоящих по меньшей мере из пористой подложки и непористого тонкого селективного слоя из материала, обладающего высоким сродством к комплексообразователю жидкого абсорбента. В качестве материала непористого тонкого слоя мембран предложено использовать полиэлектролиты широкого класса соединений, а в качестве материала подложки - полисульфоны, полиэфирсульфоны, полиимиды, полиакрилонитрил, поливинилхорид, полиэтилен, полипропилен, полистирол, найлон. Комплексообразователи предпочтительно выбираются из ионов серебра или ионов меди.
Основным недостатком данного способа является высокая стоимость мембранных материалов и высокая стоимость требуемых для реализации способа мембран, а также невозможность реализации по данному способу одновременного извлечения как олефинов, так и монооксида углерода с целью их последующего использования в качестве сырья для процессов гидрокарбонилирования.
Наиболее близким к настоящему изобретению по совокупности признаков является способ мембранно-сорбционного разделения олефин-содержащих газовых смесей и устройство для его осуществления [заявка на патент RU 93021502 А, опубл. 27.06.1995], заключающийся в том, что выделение непредельных углеводородов из газовых смесей осуществляется путем их селективной абсорбции жидкой средой, подаваемой в мембранно-сорбционное устройство между поверхностями мембран при одновременном пропускании исходной смеси вдоль поверхности множества мембран и последующем отборе из жидкой среды олефинов. При этом в качестве жидкой селективной среды используют воду, водные растворы азотнокислого серебра или хлористой меди, хлористого аммония и соляной кислоты. Выделение олефинов из жидкости осуществляют в десорбере при вакуумировании или при введении транспортирующего газа или жидкости противотоком относительно содержащей олефины жидкости более высокой, чем при поглощении олефинов в адсорбере и давлении жидкости выше, ниже или равном давлению газов в десорбере, так и в абсорбере, а жидкий адсорбент постоянно или периодически, частично или полностью подвергают регенерации. При этом в качестве мембран в разделительном устройстве предлагается использовать асимметричные мембраны из поливинилтриметилсилана.
Недостатком вышеуказанного способа является применение жидких селективных абсорбентов, не содержащих комплексообразующих агентов, способных к одновременному взаимодействию как олефинов, так и монооксида углерода, что в результате приводит к отсутствию возможности их одновременного извлечения с целью их последующего использования в качестве сырья для процессов гидрокарбонилирования.
Задача предлагаемого изобретения состояла в создании простого и экономичного мембранно-абсорбционного способа одновременного выделения олефинов и монооксида углерода из нефтезаводских газовых смесей для их последующего совместного использования в качестве сырья в процессах гидроформилирования.
При этом технический результат, достигаемый настоящим изобретением, заключается в том, что осуществление предлагаемого способа обеспечивает реализацию одновременного получения олефинов и монооксида углерода, селективность которого обеспечивается жидким абсорбентом, в компактных и мобильных мембранных модулях без прямого контакта фаз при независимом регулировании движения газовой смеси и абсорбента в отсутствии вспенивания и захлебывания разделительного оборудования.
Указанный технический результат достигается предлагаемым способом мембранно-абсорбционного разделения нефтезаводских газовых смесей, содержащих олефины и монооксид углерода, путем абсорбции с последующей десорбцией олефинов и монооксида углерода из газовой смеси жидким селективным абсорбентом в газожидкостных мембранных модулях с мембранами, выполняющими роль поверхности массопереноса, при этом:
(а) на стадии абсорбции
- исходную газовую смесь, содержащую олефины и монооксид углерода, пропускают с одной стороны мембраны в газожидкостном мембранном модуле-абсорбере;
- жидкий селективный абсорбент, содержащий комплексообразующие агенты, образующие комплексы с олефинами и монооксидом углерода, подают противотоком в газожидкостной мембранный модуль-абсорбер с другой стороны мембраны;
- после диффузии через мембрану олефины и монооксид углерода селективно абсорбируются комплексообразующими агентами на границе раздела поверхности мембраны и жидкого селективного абсорбента, после чего насыщенный жидкий абсорбент подают на стадию нагрева;
(б) на стадии нагрева насыщенный жидкий абсорбент подвергают нагреву до умеренных температур;
(в) на стадии десорбции
- подогретый насыщенный жидкий абсорбент подают с одной стороны мембраны в газожидкостном мембранном модуле-десорбере;
- находящиеся в жидком селективном абсорбенте комплексы комплексообразующих агентов с олефинами и монооксидом углерода разрушаются, после чего олефины и монооксид углерода диффундируют через мембрану;
- отбор олефинов и монооксида углерода, ведут в газожидкостном мембранном модуле-десорбере с другой стороны мембраны без вакуумирования, при вакуумировании или при введении транспортирующего газа или жидкости в прямоточном или противоточном режиме относительно насыщенного олефинами и монооксидом углерода жидкого селективного абсорбента при температуре указанного абсорбента более высокой, чем в газожидкостном мембранном модуле-асборбере, и давлении указанного абсорбента выше, ниже или равном давлению газов как в газожидкостном мембранном модуле-абсорбере, так и в газожидкостном мембранном модуле-десорбере.
(г) на стадии охлаждения регенерированный жидкий абсорбент, обедненный по олефинам и монооксиду углерода, подвергают охлаждению до комнатных температур.
В предпочтительном варианте осуществления предлагаемого способа абсорбцию олефинов и монооксида углерода жидким селективным абсорбентом осуществляют при температуре ниже или равной 30°C, а десорбцию олефинов и монооксида углерода из жидкого селективного абсорбента ведут при температуре выше или равной 50°C.
В качестве жидкого селективного абсорбента в заявленном способе предпочтительно используют водные растворы солей меди, аммония и алканоламинов. Например, указанный раствор содержит в 1 л 20-30 мас. % нитрата меди (I), 2-5 мас. % аммония, 40-60 мас. % моноэтаноламина и 10-35 мас. % воды.
Для осуществления способа по настоящему изобретению могут быть использованы газожидкостные мембранные модули на основе плоских либо половолоконных композиционных мембран, например, композиционные мембраны с тонким непористым селективным слоем из кремнийорганических полимеров толщиной 1-5 мкм.
Осуществление заявленного изобретения с достижением технического результата поясняется принципиальной схемой, представленной на фиг. 1.
Основными рабочими элементами предлагаемого процесса являются газожидкостной мембранный модуль-абсорбер 1 и газожидкостной мембранный модуль-десорбер 2, имеющие в своем составе мембраны 3, разделяющие газовую и жидкостную части модулей. Нефтезаводскую газовую смесь, содержащую олефины и монооксид углерода (поток I) подают в газовую часть газожидкостного мембранного модуля-абсорбера 1. Олефины и монооксид углерода проникают через мембрану 3 в жидкостную часть газожидкостного мембранного модуля-абсорбера 1, взаимодействуют с охлажденным регенерированным жидким селективным абсорбентом, содержащим комплексообразующие агенты, образующие комплексы с олефинами и монооксидом углерода (поток IV), и поглощаются им. Нефтезаводскую газовую смесь, обедненную по олефинам и монооксиду углерода, удаляют из газожидкостного мембранного модуля-абсорбера 1 (поток II). Движущей силой данного процесса является разность парциальных давлений олефинов и монооксида углерода с разных сторон мембран. При этом:
- селективность и одностадийность выделения олефинов и монооксида углерода из нефтезаводских газовых смесей обеспечивается их химическим взаимодействием с активными агентами жидкого селективного абсорбента, в отличие от их ректификационного извлечения при высоких давлениях и пониженных температурах. В качестве жидкого селективного абсорбента предпочтительно используются многокомпонентные водные растворы солей меди, аммония и алканоламинов. При этом поглощение олефинов протекает за счет образования комплексов с π-π связями между молекулами олефинов и ионами одновалентной меди, а поглощение монооксида углерода протекает за счет образования связей с медно-аммиачными и медно-аклканоламмонийными комплексными соединениями;
- мембрана, обладающая сравнительно высокими массообменными характеристиками, обеспечивает в мембранных модулях высокую поверхность контакта газовой и жидкостной фаз без их прямого смешения, что приводит к независимости регулирования потоков газа и жидкости в отсутствии вспенивания и захлебывания компактного и мобильного разделительного оборудования.
Насыщенный олефинами и монооксидом углерода жидкий селективный абсорбент далее подают в нагреватель 4 и нагретым (поток III) направляют в жидкостную часть газожидкостного мембранного модуля-десорбера 2, в котором протекает обратный процесс - десорбция олефинов и монооксида углерода через мембрану 3 в газовую часть газожидкостного мембранного модуля-десорбера 2, в результате чего происходит регенерация жидкого селективного абсорбента. Стадию регенерации осуществляют, как правило, при повышенных температурах, при которых комплексы олефинов и монооксида углерода с комплексообразующими агентами абсорбента нестойки и разрушаются с высвобождением олефинов и монооксида углерода. Выделенные олефины и монооксид углерода диффундируют через мембраны в газовую часть газожидкостного мембранного модуля-десорбера 2 и удаляются из газожидкостного мембранного модуля-десорбера 2 (поток V). Отбор олефинов и монооксида углерода ведут без вакуумирования или при вакуумировании газовой части газожидкостного мембранного модуля-десорбера. Регенерированный жидкий селективный абсорбент (поток IV) охлаждается в холодильнике 5 и возвращается насосом 6 в мембранный газожидкостной модуль-абсорбер 1, замыкая таким образом цикл.
Важнейшим преимуществом предлагаемого способа является его повышенная энергоэффективность в сравнении с традиционным затратным методом выделения олефинов при низких температурах и высоких давлениях за счет того, что в данном случае основную роль играет обратимое химическое взаимодействие между олефином и абсорбционной жидкостью, протекающее при комнатных температурах (выше 0°C).
Ниже представлены конкретные примеры осуществления заявленного способа, которые носят иллюстрирующий характер и никоим образом не должны ограничивать объем притязаний.
Пример 1.
Реализация процесса абсорбции олефинов и монооксида углерода в мембранном модуле-абсорбере. Исходный состав разделяемой газовой смеси С2Н4/СО/Н2/СН4=14/11/37/38 об. %. Жидкий селективный абсорбент: водный раствор, содержащий CuNO3 - 2,8 моль/л, NH4+ (в виде нитрата) - 2,8 моль/л, моноэтаноламин - 7,4 моль/л. Тип мембраны в модуле - плоский. Мембрана - промышленная мембрана марки МДК-3 (пористый полимерный пленочный материал на основе фторопласта Ф42Л на подложке из нетканого полипропилена с тонким непористым разделительным слоем на основе кремнийорганических полимеров). Подача жидкого абсорбента - со стороны непористого разделительного слоя мембраны. Перепад давления на мембране между газовой и жидкой фазами - не более 0,1 атм. Температура процесса - 30°C. Результат: состав газа на выходе из мембранного модуля-абсорбера - С2Н4/СО/Н2/CH4/Н2Опары=7,2/1/44,9/45,9/1 об. %. Степень извлечения этилена - 48,6%, СО - 90,9% в отсутствие прямого смешения газовой и жидкостной фаз, захлебывания модуля и вспенивания абсорбента.
Пример 2.
Реализация процесса десорбции олефинов и монооксида углерода в мембранном модуле-десорбере. Жидкий селективный абсорбент: водный раствор, содержащий CuNO3 - 2,8 моль/л, NH4+ (в виде гидроксида) - 2,8 моль/л, моноэтаноламин - 7,4 моль/л, растворенный С2Н4 - 1,03 моль/л, растворенный СО - 1,6 моль/л. Тип мембраны в модуле - плоский. Мембрана - промышленная мембрана марки МДК-3. Подача жидкого абсорбента - со стороны непористого разделительного слоя мембраны. Режим течения жидкого абсорбента и очищаемой газовой смеси - противоток. Давление в газовой части мембранного модуля-десорбера со стороны отходящих газов - не более 1 атм абс. Температура процесса - 50°C. Результат: состав газа на выходе из мембранного модуля-десорбера - С2Н4/СО/Н2Опары=50,8/47,2/2 об. %. Степень извлечения этилена из абсорбента - 72%, СО из абсорбента - 67% в отсутствие прямого смешения газовой и жидкостной фаз, захлебывания модуля и вспенивания абсорбента.
Пример 3.
Реализация процесса десорбции олефинов и монооксида углерода в мембранном модуле-десорбере при вакуумировании. Жидкий селективный абсорбент: водный раствор, содержащий CuNO3 - 2,8 моль/л, NH4+ (в виде гидроксида) - 2,8 моль/л, моноэтаноламин - 7,4 моль/л, растворенный С2Н4 - 1,03 моль/л, растворенный СО - 1,6 моль/л. Тип мембраны в модуле - плоский. Мембрана - промышленная мембрана марки МДК-3. Подача жидкого абсорбента - со стороны непористого разделительного слоя мембраны. Давление в газовой части мембранного модуля-десорбера со стороны отходящих газов - не более 0,4 атм абс (режим вакуумирования). Температура процесса - 50°C. Результат: состав газа на выходе из мембранного модуля-десорбера - С2Н4/СО/Н2Опары=50/46,5/3,5 об. %. Степень извлечения этилена из абсорбента - 99%, СО из абсорбента - 94% в отсутствие прямого смешения газовой и жидкостной фаз, захлебывания модуля и вспенивания абсорбента.
Пример 4.
Реализация процесса абсорбции-десорбции олефинов и монооксида углерода в мембранных модулях - абсорбере и десорбере. Исходный состав разделяемой газовой смеси С2Н4/СО/Н2/СН4=14/11/37/38 об. %. Жидкий селективный абсорбент: водный раствор, содержащий CuNO3 - 2,8 моль/л, NH4+ (в виде гидроксида) - 2,8 моль/л, моноэтаноламин - 7,4 моль/л. Тип мембраны в модулях - плоский. Мембрана - промышленная мембрана марки МДК-3. Подача жидкого абсорбента - со стороны непористого разделительного слоя мембраны в обоих модулях. Режим течения жидкого абсорбента и очищаемой газовой смеси - противоток. Перепад давления на мембране между газовой и жидкой фазами в мембранном модуле-абсорбере - не более 0,1 атм. Температура процесса в мембранном модуле-абсорбере - 30°C, температура процесса в мембранном модуле-десорбере - 50°C. Давление в газовой части мембранного модуля-десорбера со стороны отходящих газов - не более 0,4 атм абс (режим вакуумирования). Результат: состав газа на выходе из абсорбера - C2H4/СО/Н2/CH4/Н2Опары=7,6/1,6/44,4/45,4/1 об. %. Состав газа на выходе из мембранного модуля-десорбера - С2Н4/СО/Н2Опары=50,5/46,0/3,5 об. %. Общая степень извлечения этилена в мембранно-абсорбционной системе - 45%, СО - 80% в отсутствие прямого смешения газовой и жидкостной фаз, захлебывания модуля и вспенивания абсорбента.
Пример 5.
Реализация процесса абсорбции-десорбции олефинов и монооксида углерода в мембранных модулях - абсорбере и десорбере с альтернативным составом абсорбента. Исходный состав разделяемой газовой смеси С2Н4/СО/Н2/СН4=14/11/37/38 об. %. Жидкий селективный абсорбент: водный раствор, содержащий CuC2H3O2 - 2,78 моль/л, NH4+ (в виде гидроксида) - 2,78 моль/л, моноэтаноламин - 7,4 моль/л. Тип мембраны в модулях - плоский. Мембрана - промышленная мембрана марки МДК-3. Подача жидкого абсорбента - со стороны непористого разделительного слоя мембраны в обоих модулях. Режим течения жидкого абсорбента и очищаемой газовой смеси - противоток. Перепад давления на мембране между газовой и жидкой фазами в мембранном модуле-абсорбере - не более 0,1 атм. Температура процесса в мембранном модуле-абсорбере - 30°C, температура процесса в мембранном модуле-десорбере - 50°C. Давление в газовой части мембранного модуля-десорбера со стороны отходящих газов - не более 0,4 атм абс (режим вакуумирования). Результат: состав газа на выходе из абсорбера - C2H4/CO/Н2/СН4/Н2Опары=8,1/2/44,4/45,4/1 об. %. Состав газа на выходе из мембранного модуля-десорбера - С2Н4/СО/Н2Опары=50/46,5/3,5 об. %. Общая степень извлечения этилена в мембранно-абсорбционной системе - 40%, СО - 74% в отсутствие прямого смешения газовой и жидкостной фаз, захлебывания модуля и вспенивания абсорбента.
Пример 6.
Реализация процесса абсорбции-десорбции олефинов и монооксида углерода в половолоконных мембранных модулях - абсорбере и десорбере. Исходный состав разделяемой газовой смеси С2Н4/СО/Н2/СН4=14/11/37/38 об. %. Жидкий селективный абсорбент: водный раствор, содержащий CuNO3 - 2,8 моль/л, NH4+ (в виде гидроксида) - 2,8 моль/л, моноэтаноламин - 7,4 моль/л. Тип мембраны в модулях - половолоконный. Мембрана - композиционная половолоконная мембрана из полисульфона с тонким слоем из кремнийорганического полимера. Подача жидкого абсорбента - со стороны непористого разделительного слоя мембраны в обоих модулях. Режим течения жидкого абсорбента и очищаемой газовой смеси - противоток. Перепад давления на мембране между газовой и жидкой фазами в мембранном модуле-абсорбере - не более 0,1 атм. Температура процесса в мембранном модуле-абсорбере - 30°C, температура процесса в мембранном модуле-десорбере - 50°C. Давление в газовой части мембранного модуля-десорбера со стороны отходящих газов - не более 0,4 атм абс (режим вакуумирования). Результат: состав газа на выходе из абсорбера - С2Н4/СО/Н2/СН4/Н2Опары=7/0,5/45,2/46,3/1 об. %. Состав газа на выходе из мембранного модуля-десорбера - C2H4/СО/Н2Опары=50,2/46,3/3,5 об. %. Общая степень извлечения этилена в мембранно-абсорбционной системе - 49%, СО - 90% в отсутствие прямого смешения газовой и жидкостной фаз, захлебывания модуля и вспенивания абсорбента.
название | год | авторы | номер документа |
---|---|---|---|
Способ переработки нефтезаводских газов | 2017 |
|
RU2688932C1 |
Способ удаления диоксида углерода и сероводорода из метансодержащих газовых смесей | 2020 |
|
RU2768147C1 |
Абсорбционно-десорбционное устройство циркуляционного типа для сепарации гелия из природного газа | 2019 |
|
RU2708606C1 |
СПОСОБ ПОВЫШЕНИЯ ДАВЛЕНИЯ ДИОКСИДА УГЛЕРОДА ПРИ АБСОРБЦИОННОМ ВЫДЕЛЕНИИ ЕГО ИЗ ГАЗОВЫХ СМЕСЕЙ (ТЕРМОСОРБЦИОННЫЙ КОМПРЕССОР) | 2006 |
|
RU2329858C2 |
СПОСОБ И УСТРОЙСТВО ДЛЯ РАЗДЕЛЕНИЯ ГАЗОВОЙ СМЕСИ | 2012 |
|
RU2592522C2 |
СПОСОБ ПОЛУЧЕНИЯ СИНТЕЗ-ГАЗА И ПРОДУКТОВ ОРГАНИЧЕСКОГО СИНТЕЗА ИЗ ДИОКСИДА УГЛЕРОДА И ВОДЫ | 2008 |
|
RU2396204C2 |
Способ получения пропаналя гидроформилированием этилена в разбавленных газовых потоках | 2019 |
|
RU2737189C1 |
Абсорбер и абсорбент для удаления кислых газов из газообразного углеводородсодержащего сырья | 2021 |
|
RU2809723C2 |
СПОСОБ УДАЛЕНИЯ ДИОКСИДА УГЛЕРОДА ИЗ ГАЗОВЫХ СМЕСЕЙ | 2017 |
|
RU2656661C1 |
АБСОРБЦИОННЫЙ СПОСОБ РЕКУПЕРАЦИИ ХЛОРА ИЗ ГАЗОВЫХ СМЕСЕЙ | 2007 |
|
RU2346729C2 |
Изобретение относится к области мембранных технологий, а именно к процессу мембранно-абсорбционного разделения газовых смесей, и может быть использовано для извлечения олефинов и монооксида углерода из нефтезаводских газовых смесей. Задача предлагаемого изобретения состоит в создании простого и экономичного мембранно-абсорбционного способа одновременного выделения олефинов и монооксида углерода из нефтезаводских газовых смесей для их последующего совместного использования в качестве сырья в процессах гидроформилирования. При этом технический результат, достигаемый настоящим изобретением, заключается в том, что осуществление предлагаемого способа обеспечивает реализацию одновременного получения олефинов и монооксида углерода, селективность которого обеспечивается жидким абсорбентом, в компактных и мобильных мембранных модулях без прямого контакта фаз при независимом регулировании движения газовой смеси и абсорбента в отсутствие вспенивания и захлебывания разделительного оборудования. 5 з.п. ф-лы, 1 ил.
1. Способ мембранно-абсорбционного разделения нефтезаводских газовых смесей, содержащих олефины и монооксид углерода, путем абсорбции с последующей десорбцией олефинов и монооксида углерода из газовой смеси жидким селективным абсорбентом в газожидкостных мембранных модулях с мембранами, выполняющими роль поверхности массопереноса, характеризующийся тем, что:
(а) на стадии абсорбции
- исходную газовую смесь, содержащую олефины и монооксид углерода, пропускают с одной стороны мембраны в газожидкостном мембранном модуле-абсорбере;
- жидкий селективный абсорбент, содержащий комплексообразующие агенты, образующие комплексы с олефинами и монооксидом углерода, подают противотоком в газожидкостный мембранный модуль-абсорбер с другой стороны мембраны;
- после диффузии через мембрану олефины и монооксид углерода селективно абсорбируются комплексообразующими агентами на границе раздела поверхности мембраны и жидкого селективного абсорбента, после чего насыщенный жидкий абсорбент подают на стадию десорбции;
(б) на стадии нагрева насыщенный жидкий абсорбент подвергают нагреву;
(в) на стадии десорбции
- подогретый насыщенный жидкий абсорбент подают с одной стороны мембраны в газожидкостном мембранном модуле-десорбере;
- находящиеся в жидком селективном абсорбенте комплексы комплексообразующих агентов с олефинами и монооксидом углерода разрушаются, после чего олефины и монооксид углерода диффундируют через мембрану;
- отбор олефинов и монооксида углерода ведут в газожидкостном мембранном модуле-десорбере с другой стороны мембраны при вакуумировании и при температуре указанного абсорбента более высокой, чем в газожидкостном мембранном модуле-абсорбере, и давлении указанного абсорбента выше, ниже или равном давлению газов как в газожидкостном мембранном модуле-абсорбере, так и в газожидкостном мембранном модуле-десорбере;
(г) на стадии охлаждения регенерированный жидкий абсорбент, обедненный по олефинам и монооксиду углерода, подвергают охлаждению до температуры, при которой проводят процесс абсорбции.
2. Способ по п. 1, характеризующийся тем, что абсорбцию олефинов и монооксида углерода жидким селективным абсорбентом осуществляют при температуре ниже или равной 30°C, а десорбцию олефинов и монооксида углерода из жидкого селективного абсорбента ведут при температуре выше или равной 50°C.
3. Способ по пп. 1, 2, характеризующийся тем, что в качестве жидкого селективного абсорбента используют водные растворы солей меди, аммония и алканоламинов.
4. Способ по п. 3, характеризующийся тем, что в качестве водных растворов солей меди, аммония и алканоламинов используют раствор, содержащий в 1 л 20-30 мас. % нитрата или ацетата меди (I), 2-5 мас. % аммония, 40-60 мас. % моноэтаноламина и 10-35 мас. % воды.
5. Способ пп. 1, 2, характеризующийся тем, что используют газожидкостные мембранные модули на основе плоских либо половолоконных композиционных мембран.
6. Способ по п. 5, характеризующийся тем, что используют композиционные мембраны с тонким непористым селективным слоем из кремнийорганических полимеров толщиной 1-5 мкм.
RU 93021502 A, 27.06.1995 | |||
ИЗВЛЕЧЕНИЕ ЭТИЛЕНА ПУТЕМ АБСОРБЦИИ | 2013 |
|
RU2623433C2 |
WO 2004002928 A1, 08.01.2004 | |||
WO 9816489 A1, 23.04.1998. |
Авторы
Даты
2019-12-24—Публикация
2018-12-28—Подача