СПОСОБ ИЗВЛЕЧЕНИЯ КАДМИЯ ИЗ ПРОМЫВНЫХ ВОД, СОДЕРЖАЩИХ ЦИАНИДЫ Российский патент 2020 года по МПК C25C1/16 C02F1/461 C02F103/16 

Описание патента на изобретение RU2712325C1

Изобретение относится к области гальванотехники, в частности, к способам извлечения кадмия из промывных вод после операции электрохимического кадмирования в цианидном электролите и может быть использовано в производстве изделий, в состав которых входят детали с кадмиевыми покрытиями.

Известен химический (так называемый реагентный) способ очистки промывных вод, поступающих с участка электрохимического кадмирования в цианидных электролитах и содержащих кадмий и цианиды, путем обработки промывной воды химическими окислителями ионов цианида, например, гипохлоритом натрия и последующего отделения осадка гидроксида кадмия, образующегося при подщелачивании раствора [Виноградов С.С. «Промывные операции в гальваническом производстве» /Под редакцией проф. В.Н. Кудрявцева. - М.: Глобус, 2007. - 157 с.]. Серьезный недостаток этого способа - невозможность обеспечить выполнение требованиям по ПДК в отношении содержания ионов кадмия в очищенных стоках, особенно в тех случаях, когда сточные воды от гальванического производства содержат ионы аммония, образующие в щелочной среде растворимые аммиакатные комплексы с ионами кадмия

Наиболее близким по технической сущности и достигаемому результату является способ электрохимического извлечения ионов кадмия из цианид-содержащих растворов, [Электромембранный метод извлечения ионов кадмия из разбавленных растворов ванн улавливания после электрохимического кадмирования / С.С. Кругликов, Н.Е. Некрасова, В.В. Кузнецов, Е.А. Филатова // Мембраны и мембранные технологии. - 2019. - Т. 9, №2. - С. 146-152.], заключающийся в электрохимической обработке с использованием двух катодов, один из которых помещен непосредственно в емкость с обрабатываемым раствором, где также находится и единственный анод, а второй катод помещен в катодную камеру, отделенную катионообменной мембраной от обрабатываемого раствора. При пропускании электрического тока часть его проходит в катодном направлении через катод, находящийся непосредственно в обрабатываемом растворе и на этом катоде осаждается металлический кадмий, а также выделяется водород. Другая часть тока проходит в катодном направлении через катод, находящийся в катодной камере, и на нем выделяется только водород, так как отрицательно заряженный цианидный комплекс кадмия не проходит через мембрану в катодную камеру. В процессе электролиза в катодной камере накапливается щелочь, а в обрабатываемом растворе снижается концентрация цианида в результате его окисления на аноде. Многолетняя промышленная эксплуатация этого процесса показала, что концентрацию ионов кадмия в промывной воде в ванне непроточной промывки (ванне улавливания) удается снизить до единиц-десятков мг/л. Однако обнаружилось, что часть ионов кадмия не разряжается на катоде с образованием металлического осадка, а образует взвесь нерастворимой соли, попадающей в сточные воды, и частично оседающей на дно ванны. Причиной этого является интенсивное окисление ионов цианида на аноде, в результате которого их концентрация оказывается недостаточной для связывания в растворимый цианидный комплекс всех ионов кадмия, присутствующих в растворе. Попытки устранить этот недостаток путем отделения анода от промывной воды в ванне улавливания с помощью катионообменной мембраны привели к нежелательным последствиям - образованию и выделению в атмосферу паров цианистого водорода вследствие снижения рН в анодной камере и переноса в нее анионов цианида.

Задачей предлагаемого способа является предотвращение образования в процессе электролиза нерастворимых соединений кадмия и паров цианистого водорода.

Поставленная задача решается предлагаемым способом извлечения кадмия из раствора, содержащего цианиды, путем электрохимической обработки раствора в электролизере (5) с катионообменной мембраной (6) и электродами (4) и (8) из углеродистой стали, причем в процессе электролиза раствор из катодной камеры (5) циркулирует через анодную камеру (10) и возвращается в катодную камеру, а количество электричества, проходящего через 1 л циркулирующего раствора, составляет 0,5-2,5 А⋅ч на 1 г цианида натрия, содержащегося в растворе. Если количество электричества, проходящего через анодную камеру, меньше 0,5 А⋅ч на 1 г цианида натрия, содержащегося в растворе, то рН в анодной камере снижается ниже 12, что ведет к появлению паров цианистого водорода.

Если же количество электричества, проходящего через 1 л циркулирующего раствора превышает 2,5 А⋅ч на 1 г цианида натрия, содержащегося в циркулирующем растворе, то возможно образование осадка нерастворимых соединений кадмия в результате нехватки свободного цианида.

Схематическое изображение установки для проведения процесса показано на фиг. 1, где 1 - насос, 2 - регулятор скорости движения раствора, 3 - подача раствора в систему циркуляции, 4 - катод, 5 - емкость с раствором снятия кадмиевых покрытий, 6 - катионообменная мембрана, 7 - подача раствора в анодную камеру, 8 - анод, 9 - перелив раствора из анодной камеры в катодную, 10 - корпус анодной камеры.

Предлагаемый способ позволяет предотвратить избыточное анодное окисление цианида путем уменьшения скорости циркуляции раствора через анодную камеру, а также устраняет снижение рН анолита ниже 12 и, тем самым, предотвращает образование паров цианистого водорода.

Реализацию предлагаемого способа иллюстрируют приведенные ниже примеры.

ПРИМЕР 1.

Извлечение кадмия проводили из катодной камеры (5) - емкости с катодом (4) с площадью 0,2 дм2 из углеродистой стали, моделирующей ванну улавливания после операции кадмирования и содержащей 3 л раствора, моделирующего промывную воду в ванне улавливания:

Cd………1,5 г/л (в пересчете на металл)

NaCN…9 г/л.

Na2OH - 15 г/л.

Na24 - 50 г/л.

В эту емкость была погружена анодная камера (10) емкостью 300 мл с катионообменной мембраной (6) и анодом (8) с площадью 0,5 дм2 из углеродистой стали, моделирующая погружной электрохимический модуль (ПЭМ). 300 мл вышеуказанного раствора переместили из катодной камеры в анодную и провели электролиз при силе тока 0,5 А. В процессе электролиза через каждые 5 час 100 мл раствора переливали из анодной камеры в катодную камеру, после чего в анодную камеру добавляли 100 мл раствора из катодной камеры. При таком режиме электролиза за 20 час на катоде выделилось 4,1 г. металлического кадмия и через раствор, обработанный в анодной камере, прошло 10 А⋅ч, то есть 1 А⋅ч на грамм цианида натрия, содержавшегося в исходном растворе. В катодной и анодной камерах сохранилась величина рН выше 12, поэтому не отмечено образование паров цианистого водорода. Не отмечено также образование нерастворимых соединений кадмия.

ПРИМЕР 2.

Извлечение кадмия проводили на той же установке из раствора, полученного по окончании процесса электролиза, описанного в ПРИМЕРЕ 1. Электролиз вели при силе тока 0,5 А в течение 20 час. по той же схеме, что и в ПРИМЕРЕ 1. При таком режиме электролиза электролиза на катоде выделилось 0,36 г и через раствор прошло 10 А⋅ч, то есть 2,5 А⋅ч на грамм цианида натрия, содержавшщегося в исходном растворе. В катодной и анодной камерах значение рН не снижалось ниже 12 и не происходило образование паров цианистого водорода. Не отмечено образование нерастворимых соединений кадмия.

ПРИМЕР 3.

Извлечение кадмия проводили на той же установке из раствора, полученного по окончании процесса электролиза, описанного в ПРИМЕРЕ 2. Электролиз вели при силе тока 0,1 А в течение 20 час по той же схеме, что и в ПРИМЕРЕ 1. При таком режиме электролиза на катоде выделилось 0,039 г кадмия и через раствор прошло 2 А⋅ч., то есть 0,5 А⋅ч на грамм цианида натрия, содержавшегося в исходном растворе. В катодной и анодной камерах значение рН не опускалось ниже 12 и не отмечено образование паров цианистого водорода и нерастворимых соединений кадмия.

Как видно из приведенных примеров, в предлагаемом способе в отличие от способа, описанного в прототипе:

1. Полностью устранено образование взвеси нерастворимых соединений кадмия.

2. Предотвращается выделение в атмосферу паров цианистого водорода.

Похожие патенты RU2712325C1

название год авторы номер документа
Способ регенерации хроматных растворов пассивирования 2018
  • Колесников Владимир Александрович
  • Губин Александр Федорович
  • Кругликов Сергей Сергеевич
  • Некрасова Наталия Евгеньевна
  • Тележкина Алина Валерьевна
  • Кузнецов Виталий Владимирович
  • Филатова Елена Алексеевна
  • Капустин Егор Сергеевич
  • Волков Михаил Александрович
  • Архипов Евгений Андреевич
RU2691791C1
СПОСОБ РЕГЕНЕРАЦИИ РАСТВОРА ПАССИВИРОВАНИЯ МЕДИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2021
  • Кругликов Сергей Сергеевич
  • Одинокова Ирина Вячеславовна
  • Кругликова Елена Сергеевна
  • Нефедова Наталья Владимировна
RU2764583C1
СПОСОБ РЕГЕНЕРАЦИИ ХРОМАТНОГО РАСТВОРА ПАССИВИРОВАНИЯ ЦИНКА 2018
  • Колесников Владимир Александрович
  • Губин Александр Федорович
  • Кругликов Сергей Сергеевич
  • Некрасова Наталия Евгеньевна
  • Тележкина Алина Валерьевна
  • Кузнецов Виталий Владимирович
  • Филатова Елена Алексеевна
  • Пшеничкина Татьяна Викторовна
RU2685840C1
СПОСОБ РЕГЕНЕРАЦИИ НИТРАТНО-АММОНИЙНОГО РАСТВОРА СНЯТИЯ КАДМИЕВЫХ ПОКРЫТИЙ 2020
  • Кругликов Сергей Сергеевич
  • Одинокова Ирина Вячеславовна
  • Остаева Галина Юрьевна
  • Смирнов Кирилл Николаевич
  • Исаева Ирина Юрьевна
  • Елисеева Екатерина Александровна
  • Суходоля Александр Валерьевич
RU2750654C1
Способ регенерации электролита хромирования 2022
  • Кругликов Сергей Сергеевич
  • Барботина Наталья Николаевна
  • Кожевникова Светлана Валерьевна
  • Понамарева Татьяна Николаевна
RU2789159C1
СПОСОБ ОБРАБОТКИ ОТРАБОТАННОГО РАСТВОРА БЛЕСТЯЩЕГО ТРАВЛЕНИЯ МЕДИ 2021
  • Кругликов Сергей Сергеевич
  • Кругликова Елена Сергеевна
  • Постников Алексей Алексеевич
  • Семенова Ирина Николаевна
  • Свириденкова Наталья Васильевна
RU2763856C1
СПОСОБ ОБРАБОТКИ РАСТВОРА ПОДТРАВЛИВАНИЯ ПЕЧАТНЫХ ПЛАТ 2021
  • Кругликов Сергей Сергеевич
  • Кругликова Елена Сергеевна
  • Царькова Татьяна Григорьевна
RU2765894C1
СПОСОБ ЭЛЕКТРОМЕМБРАННОЙ РЕГЕНЕРАЦИИ РАСТВОРА СНЯТИЯ КАДМИЕВЫХ ПОКРЫТИЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2015
  • Кругликов Сергей Сергеевич
  • Колесников Владимир Александрович
  • Колесников Артем Владимирович
  • Губина Ольга Александровна
  • Некрасова Наталья Евгеньевна
  • Одинокова Ирина Вячеславовна
RU2603522C2
Способ регенерации медно-хлоридного травильного раствора 2018
  • Колесников Владимир Александрович
  • Губин Александр Федорович
  • Кругликов Сергей Сергеевич
  • Кругликова Елена Сергеевна
  • Некрасова Наталия Евгеньевна
  • Тележкина Алина Валерьевна
  • Кузнецов Виталий Владимирович
  • Филатова Елена Алексеевна
  • Одинокова Ирина Вячеславовна
RU2677583C1
СПОСОБ ПОЛУЧЕНИЯ НИТРАТА ЦЕРИЯ (IV) 2015
  • Кругликов Сергей Сергеевич
  • Колесников Артем Владимирович
  • Кондратьева Екатерина Сергеевна
  • Губина Ольга Александровна
  • Перфильева Анна Владимировна
RU2603642C1

Иллюстрации к изобретению RU 2 712 325 C1

Реферат патента 2020 года СПОСОБ ИЗВЛЕЧЕНИЯ КАДМИЯ ИЗ ПРОМЫВНЫХ ВОД, СОДЕРЖАЩИХ ЦИАНИДЫ

Изобретение относится к области гальванотехники, в частности к способам электрохимического извлечения кадмия, присутствующего в промывных водах в виде цианидных комплексов, и может быть использовано для удаления ионов кадмия из промывных вод ванн улавливания на участке кадмирования с целью предотвращения их попадания в сточные воды гальванического цеха. Извлечение кадмия проводят путем электрохимической обработки промывной воды в электролизере с катионообменной мембраной и электродами из углеродистой стали. В процессе электролиза раствор из катодной камеры циркулирует через анодную камеру. Электролиз ведут в режиме прохождения 0,5-1 А⋅ч электричества, через 1 л циркулирующей воды на 1 г содержащегося в ней цианида натрия. Способ позволяет предотвратить образование в процессе электролиза нерастворимых соединений кадмия и паров цианистого водорода. 1 ил., 3 пр.

Формула изобретения RU 2 712 325 C1

Способ извлечения кадмия из промывных вод, содержащих цианиды, включающий их электрохимическую обработку в электролизере с катионообменной мембраной и электродами из углеродистой стали, отличающийся тем, что в процессе электрохимической обработки промывная вода из катодной камеры электролизера циркулирует через анодную камеру и возвращается в катодную камеру, при этом обработку ведут в режиме прохождения 0,5-2,5 А⋅ч электричества через 1 л воды на 1 г содержащегося в ней цианида натрия.

Документы, цитированные в отчете о поиске Патент 2020 года RU2712325C1

КРУГЛИКОВ С.С
и др
Электромембранный метод извлечения ионов кадмия из разбавленных растворов ванн улавливания после электрохимического кадмирования
Мембраны и мембранные технологии., 2019, N2, с
Приспособление, увеличивающее число оборотов движущихся колес паровоза 1919
  • Козляков Н.Ф.
SU146A1
УСТРОЙСТВО ДЛЯ ИЗВЛЕЧЕНИЯ МЕТАЛЛОВ ИЗ ЭЛЕКТРОЛИТИЧЕСКИХ РАСТВОРОВ 1991
  • Петропавловский Александр Владимирович
  • Халдеев Геннадий Владимирович
  • Абашева Валентина Ивановна
  • Максимов Владимир Иванович
RU2048614C1
СПОСОБ ИЗВЛЕЧЕНИЯ МЕТАЛЛОВ ИЗ ВОДНЫХ РАСТВОРОВ 2001
  • Майборода А.Б.
  • Трошкина И.Д.
  • Петров Д.Г.
  • Чекмарев А.М.
RU2186142C1
СПОСОБ ОЧИСТКИ СТОЧНЫХ ВОД И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1991
  • Грязнов Николай Константинович[By]
  • Егудкин Алевтин Михайлович[By]
  • Леонов Авинир Васильевич[By]
  • Яновский Лев Петрович[By]
  • Яновский Евгений Львович[By]
RU2031855C1
СПОСОБ ОЧИСТКИ ВОДЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1997
  • Кокин В.П.
RU2129529C1
УЗЕЛ РАЗДВИЖНОЙ РУЧКИ ДЛЯ ЗОНТА, УПРАВЛЯЕМЫЙ КНОПКОЙ 2007
  • Ванг Макс
RU2343811C1
SU

RU 2 712 325 C1

Авторы

Кругликов Сергей Сергеевич

Колесников Владимир Александрович

Губин Александр Федорович

Перфильева Анна Владимировна

Даты

2020-01-28Публикация

2019-06-28Подача