Способ управления судном при выполнении движения по заданной траектории Российский патент 2020 года по МПК B63H25/00 G05D1/00 

Описание патента на изобретение RU2713434C1

Изобретение относится к водному транспорту и касается управления судном, выполняющим движение по заданной траектории по величине поперечных смещений двух точек судна, в частности, носовой F и кормовой A, от текущего положения заданной линии пути (ЛП), являющейся секущей кривой заданной траектории движения (ЗТД), представленной аналитически в неподвижной координатной системе X0,Y0 в виде функции у0=f(х0).

Известен способ управления движением объекта (судна) при выполнении им сближения с другим объектом, например, заданным точкой ЗТ, (RU 2356784, B63H 25/00) [2] по величинам поперечных смещений расположенных на диаметральной плоскости (ДП) судна носовой F и кормовой A точек от текущего положения траектории сближения (линии пути) (см. Фиг. 2), при котором рассчитывают поперечные смещения этих точек; для вычисления поперечных смещений носовой F и кормовой A точек судна их координаты в неподвижной координатной системе F(x0F, y0F), A(x0A, y0A) измеряют с помощью спутниковой навигационной системы (СНС) и с дифференциальными поправками, перекладку руля судна производят в зависимости от комбинации поперечных смещений носовой dF и кормовой dA точек судна относительно текущего положения траектории сближения, которое определяют используя заданную точку (ЗТ), как объект, с которым происходит сближение судна и центр тяжести (ЦТ) судна; текущее положение ЗТ и текущее положение ЦТ судна определяют текущее положение траектория сближения в виде прямой линии ЛП, соединяющей текущее положение ЗТ и текущее положение ЦТ судна G, текущие координаты ЦТ судна в неподвижной координатной систем рассчитывают по формулам:

x 0G = x 0F [ ( x 0F x 0A )×( x F x G ) ] ( x F x A ) y 0G = y 0F [ ( y 0F y 0A )×( x F x G ) ] ( x F x A ) } (1)

где x0G, y0G – координаты ЦТ судна в неподвижной координатной системе (X0, Y0);

x0F , y0F – координаты носовой точки судна F в неподвижной координатной системе;

x0A , y0A – координаты кормовой точки судна А в неподвижной координатной системе;

xF , хА – абсцисса носовой F и кормовой A точки судна соответственно, в координатной системе (X, Y) связанной с судном (см. Фиг. 3);

xG – абсцисса центра тяжести судна в координатной системе, связанной с судном,

текущие координаты ЗТ определяют с помощью СНС и с дифференциальными поправками.

Однако, в этом способе управления судном, выполняющим сближение с ЗТ, есть определенный недостаток, препятствующий использованию его в управлении судном при движении по ЗТД, так как в алгоритме управления судном отсутствуют элементы управления, обеспечивающие условия безопасного движения по ЗТД, а именно, учет кривизны ЗТД на всех этапах движения, размерных характеристик судна и скорости его движения.

Задача, которую решает заявляемое изобретение, состоит в обеспечении условия безопасного движении судна по ЗТД.

Технический результат по величине поперечных смещений двух точек судна, носовой F и кормовой A, от текущего положения заданной линии пути (ЛП), являющейся секущей кривой заданной траектории движения (ЗТД), представленной аналитически в неподвижной координатной системе X0,Y0 в виде функции у0=f(х0).

Для достижения указанного технического результата предлагается способ управления судном при движении по ЗТД по величинам поперечных смещений расположенных на ДП судна носовой F и кормовой A точек от текущего положения заданной ЛП, при котором рассчитывают поперечные смещения этих точек; для вычисления поперечных смещений носовой F и кормовой A точек судна их координаты в неподвижной координатной системе F(x0F, y0F), A(x0A, y0A) измеряют с помощью СНС и с дифференциальными поправками, перекладку руля судна производят в зависимости от комбинации поперечных смещений носовой dF и кормовой dA точек судна относительно текущего положения ЛП, которое определяют используя исходную заданную точку траектории (ЗТТ(1)) (см. Фиг. 4), как объект, с которым происходит сближение судна и ЦТ судна; положение ЗТТ(1) и текущее положение ЦТ судна определяют текущее положение ЛП, проходящей через две точки в виде прямой линии, соединяющей положение исходной ЗТТ(1) и текущее положение ЦТ судна G, текущие координаты ЦТ судна в неподвижной координатной системе рассчитывают по формулам (1), координаты исходной ЗТТ(1) определяют как координаты точки кривой, описывающей ЗТД уравнением у0=f(х0), дополнительно определяют положения ЛП(i) (i=1,2,…,n; n – количество этапов движения по ЗТД) на каждом этапе движения судна по ЗТД координатами двух заданных точек ЗТТ траектории, например, 1-ой ЗТТ(1)01, у01) и 2-ой ЗТТ(2)02, у02) (см. Фиг. 5). При этом координаты исходной (первой) ЗТТ(1) (см. Фиг. 1, позиция 1) соответствуют координатам точки ЗТД в момент начала движения судна по ЗТД. Координаты каждой следующей ЗТТ(i), например, позиция 2 (см. Фиг. 1) определяются как координаты точки пересечения двух кривых, а именно, кривой ЗТД, заданной аналитически в координатной системе X0, Y0 в виде функции у0=f(х0) и дуги окружности заданного радиуса R(i) (см. Фиг. 5) с центром, расположенным в предыдущей ЗТТ(i). Значение радиуса R(i) указанной окружности рассчитывается для каждой отдельной ЛП(i), это значение определяется исходя из кривизны ЗТД на данном этапе движения, размерных характеристик судна и скорости его движения.

Наличие полученных указанным способом данных, позволяет осуществлять движение судна по ЗТД, в несколько этапов, количество которых n определяется количеством секущих кривой ЗТД, определяющих положения ЛП(i) при движении судна от ЗТТ(i) до ЗТТ(i+1) до окончания движения по ЗТД:

I-ый этап – выход судна в первую ЗТТ (ЗТТ(1)) (см. Фиг. 4). Выбираем исходную (первую) ЗТТ(1), т.е. точку выхода судна на ЗТД, определяем ее координаты 01, у01) в неподвижной координатной системе X0,Y0. Рассчитываем по формулам (1) координаты ЦТ судна в неподвижной координатной системе G(x0G, y0G) на момент начала движения для выхода на ЗТД и координаты первой ЗТТ(1)01, у01), определяем начальное положение ЛП, по которой судно начинает движение для выхода в первую ЗТТ(1). При этом положение ЛП на плоскости X0,Y0 будет меняться в процессе сближения судна с первой ЗТТ(1), так как будет меняться положение ЦТ судна в процессе его движения в первую ЗТТ(1). В процессе движения судна в первую ЗТТ(1) по рассчитанной ЛП, управление судном осуществляется по отклонениям двух разнесенных по длине судна точек: носовой F(x0F, y0F) и кормовой А(x0A, y0A) (см. Фиг. 4).

II–ой этап - движение по ЛП(1) (см. Фиг. 5). До момента прихода в первую ЗТТ(1) рассчитываем первый радиус окружности R(1) с центром в первой ЗТТ(1) (в данном случае центр окружности имеет координаты х01, у01) и определяем координаты следующей ЗТТ(2)02, у02), как точки пересечения дуги окружности радиусом R(1) с кривой ЗТД. Строим первую секущую кривой ЗТД, то есть первую ЛП(1), которая будет проходить через первую ЗТТ(1) и вторую ЗТТ(2), являющуюся точкой пересечения дуги окружности заданного радиуса R(1) и кривой ЗТД.

Моментом окончания сближения судна с первой ЗТТ(1), равно как и моментом начала движения судна по первой ЛП(1), является момент выхода носовой точки F на первую ЛП(1). Этот момент фиксируется выполнением условия равенства нулю расстояния dF от носовой точки судна F до ЛП(1). Аналогичным образом определяется (фиксируется) момент начала движения по всем следующим линиям пути ЛП(i).

Алгоритм управления движением судна по ЗТД на всех следующих этапах аналогичный алгоритму, применяемому на II–ом этапе. При этом выходом судна с ЗТД считается момент прихода его ЦТ в конечную точку ЗТД, т.е. в заданную точку траектории ЗТТ(n).

Отличительными признаками предлагаемого способа от указанного выше известного, наиболее близкого к нему, являются следующие:

дополнительно определяют положения ЛП(i) на каждом этапе движения судна по ЗТД координатами двух заданных точек траектории ЗТТ, например, 1-ой ЗТТ(1)01, у01) и 2-ой ЗТТ(2)02, у02) (см. Фиг. 5). При этом координаты исходной (первой) ЗТТ(1) (см. Фиг. 1, позиция 1, Фиг. 4) соответствуют координатам точки ЗТД в момент начала движения судна по ЗТД. Координаты каждой следующей ЗТТ, например, позиция 2 (см. Фиг. 1) определяются как координаты точки пересечения двух кривых, а именно, кривой ЗТД, заданной аналитически в координатной системе X0, Y0 в виде функции у0=f(х0) и дуги окружности заданного радиуса R(i) (см. Фиг. 5) с центром, расположенным в предыдущей ЗТТ. Значение радиуса R(i) указанной окружности рассчитывается для каждой отдельной ЛП(i), это значение определяется исходя из кривизны ЗТД на данном участке движения, размерных характеристик судна и скорости его движения.

Наличие полученных указанным способом данных, позволяет осуществлять движение судна по ЗТД, в несколько этапов, количество которых (n) определяется количеством секущих кривой ЗТД, определяющих положения ЛП(i) (i=1,2,…,n) при движении судна от ЗТТ(i) до ЗТТ(i+1) до окончания движения по ЗТД:

I-ый этап – выход судна в первую ЗТТ (ЗТТ(1)).

II–ой этап - движение по ЛП(1) (см. Фиг. 5).

Алгоритм управления движением судна по ЗТД на всех следующих этапах аналогичный алгоритму, применяемому на II–ом этапе. При этом выходом судна с ЗТД считается момент прихода его ЦТ в конечную точку ЗТД, т.е. в заданную точку траектории ЗТТ(n).

Использование предлагаемого алгоритма управления судном, осуществляющим движение по ЗТД позволяет соблюсти условия безопасного выполнения движения судна по ЗТД с учетом кривизны ЗТД на всех этапах движения судна, размерных характеристик судна и скорости его движения.

Предлагаемый способ управления судном при движении по ЗТД иллюстрируется чертежами, представленных на Фиг. 1-6, где:

Фиг. 1 - Общая схема движения судна по заданной траектории,

Фиг. 2 - Сближение судна с заданной точкой ЗТ,

Фиг. 3 - Определение текущих координат ЦТ судна x0G, y0G ,

Фиг. 4 - Сближение с первой (исходной) заданной точкой траектории,

Фиг. 5 - Определение координат заданной точки траектории ЗТТ(2) и положения первой линии пути ЛП(1),

Фиг. 6 - Определение координат заданной точки траектории ЗТТ(3) и положения второй линии пути ЛП(2).

Предлагаемый способ осуществляется следующим способом. В пределах контура судна, в его ДП выбирают две точки, одна из которых находится в носу F, другая - в корме A (см. Фиг. 3), относительно мидель-шпангоута судна. Расстояние между точками F и A выбирают в зависимости от технической возможности размещения в указанных точках приемных антенн СНС. Чем больше это расстояние, тем качественней работа системы управления движением судна, осуществляющего движение по ЗТД.

Координаты точек F, A в неподвижной координатной системе определяют непрерывно с высокой точностью (±1,0 м), это стало возможным с введением в СНС береговых станций, вычисляющих и передающих на суда дифференциальные поправки [1]. Используя значения координат точек судна F(x0F, y0F), A(x0A, y0A) в неподвижной координатной системе, а также координаты тех же точек в подвижной системе координат X,Y, связанной c судном F(xF, yF), A(xA, yA), рассчитывают координаты ЦТ судна в связанной с ним подвижной координатной системе G (xG, yG) по формулам (1). Координаты исходной (первой) ЗТТ(1) определяют используя аналитическое выражение для кривой ЗТД, заданной функцией у0=f(х0).

Зная координаты первой ЗТТ(1)(х01, у01) и текущие координаты ЦТ судна G (x0G, y0G), определяют текущее положение ЛП, проходящей через первую заданную точку ЗТТ(1) и ЦТ судна G. После этого определяют поперечные смещения точек F и A от найденной указанным способом ЛП по формулам:

d F = [ ( y 0F y 0G )×( x 01 x 0G )( x 0F x 0G )×( y 01 y 0G ) ] ( x 01 x 0G ) 2 + ( y 01 y 0G ) 2 d A = [ ( y 0A y 0G )×( x 01 x 0G )( x 0A x 0G )×( y 01 y 0G ) ] ( x 01 x 0G ) 2 + ( y 01 y 0G ) 2 } (2)

Непрерывно определяемые значения координат точек F и A, позволяют непрерывно вычислять текущие координаты ЦТ судна G, поперечные смещения dF и dA точек F и A судна от текущего положения ЛП. Причем, поперечное смещение рассматриваемой точки относительно текущего положения ЛП считается положительным, если она смещается вправо от ЛП и отрицательным, если она смещается влево.

Возникающие поперечные смещения вырабатывают сигнал на отклонение рулевого органа, например, руля судна, по закону:

α= k F d F + k A d A , (3)

где kF, kA – коэффициенты усиления по перечным смещениям носовой и кормовой точек судна от текущего положения ЛП. Это положительные величины, причем kF больше kA. Угол перекладки руля α считается положительным при его перекладке в сторону правого борта судна.

Находим координаты ЗТТ(2)02, у02), которые определяются как координаты точки пересечения двух кривых, а именно, кривой ЗТД, заданной аналитически в координатной системе X0, Y0 в виде функции у0=f(х0) и дуги окружности заданного радиуса R(1) с центром, расположенным в ЗТТ(1)01, у01). Значение радиуса R(1) окружности рассчитывается для нахождения положения ЛП(1), это значение определяется исходя из кривизны ЗТД на данном этапе движения, размерных характеристик судна и скорости его движения. Строим ЛП(1), которая проходит через две ЗТТ, а именно, через ЗТТ(1)01, у01) и ЗТТ(2)02, у02).

Момент выхода судна в ЗТТ(1), соответствует моменту выхода носовой точки судна F на первую ЛП(1). Этот момент фиксируется выполнением условия равенства нулю отклонения точки F (dF=0) от ЛП(1). Судно переходит к сближению с ЗТТ(2)02, у02) по ЛП(1).

Непрерывно определяемые значения координат точек судна F и A, позволяют непрерывно вычислять их поперечные смещения dF и dA от ЛП(1) :

d F = [ ( y 0F y 02 )×( x 01 x 02 )( x 0F x 02 )×( y 01 y 02 ) ] ( x 01 x 02 ) 2 + ( y 01 y 02 ) 2 d A = [ ( y 0A y 02 )×( x 01 x 02 )( x 0A x 02 )×( y 01 y 02 ) ] ( x 01 x 02 ) 2 + ( y 01 y 02 ) 2 } (4)

Причем, поперечное смещение рассматриваемой точки относительно положения ЛП(1) считается положительным, если она смещается вправо от ЛП(1) и отрицательным, если она смещается влево.

Возникающие поперечные смещения вырабатывают сигнал на отклонение рулевого органа, например, руля судна, по закону:

α= k F d F + k A d A (5)

где kF, kA – коэффициенты усиления по перечным смещениям носовой и кормовой точек судна от текущего положения ЛП(1). Это положительные величины, причем kF больше kA. Угол перекладки руля α считается положительным при его перекладке в сторону правого борта судна.

Находим координаты ЗТТ(3)03, у03) (см. Фиг. 6), которые определяются как координаты точки пересечения двух кривых, а именно, кривой ЗТД, заданной аналитически в координатной системе X0, Y0 в виде функции у0=f(х0) и дуги окружности заданного радиуса R(2) с центром, расположенным в ЗТТ(2)02, у02). Значение радиуса R(2) окружности рассчитывается для ЛП(2), оно определяется исходя из кривизны ЗТД на данном этапе движения, размерных характеристик судна и скорости его движения. Строим ЛП(2), которая проходит через две заданные точки траектории ЗТТ, а именно, через ЗТТ(2)02, у02) и ЗТТ(3)03, у03).

Момент выхода судна в ЗТТ(2), соответствует моменту выхода носовой точки судна F на вторую ЛП(2). Этот момент фиксируется выполнением условия равенства нулю отклонения носовой точки судна F (dF=0) от ЛП(2). Судно переходит к сближению с ЗТТ(3)03, у03) по ЛП(2).

Аналогичным образом определяются положения ЛП(i) на всех следующих этапах движения судна по ЗТД, вплоть до выхода судна в конечную точку ЗТД ЗТТ(n), что будет соответствовать совпадения текущих координат ЦТ судна G(x0G, y0G) и координат конечной точки ЗТД ЗТТ(n)(x0n, y0n).

Алгоритм управления движением судна по ЗТД на всех следующих этапах аналогичный алгоритму, применяемому на II–ом этапе. При этом выходом судна с ЗТД считается момент прихода его ЦТ в ЗТТ(n).

В результате применения данного изобретения достигается возможность получения технического результата – повышение безопасности управления судном при движении по ЗТД, таким образом, предлагаемый способ управления судном при движении по ЗТД соответствует критерию патентоспособности «промышленная применимость».

Список литературы.

1. Липкин И.А. Спутниковые навигационные системы. - М.: Вузовская книга, 2001. – 215 с.

2. Пат. 2356784 Российская Федерация, МПК7 В63Н 25/00 (2006.01). Способ управления движением объекта при выполнении им сближения с другим подвижным объектом / Юдин Ю.И., Пашенцев С.В.; заявитель и патентообладатель Мурм. гос. техн. ун-т. - № 2006111031/11; заявл. 05.04.2006; опубл. 27.05.2009, Бюл. № 15. – 6 с.: ил.

Похожие патенты RU2713434C1

название год авторы номер документа
Способ управления судном при выполнении движения по заданной траектории 2023
  • Юдин Юрий Иванович
  • Пашенцев Сергей Владимирович
RU2827122C1
СПОСОБ УПРАВЛЕНИЯ СУДНОМ ПРИ ВЫПОЛНЕНИИ ИМ ШВАРТОВНОЙ ОПЕРАЦИИ К БОРТУ СУДНА-ПАРТНЕРА, ЛЕЖАЩЕГО В ДРЕЙФЕ 2012
  • Юдин Юрий Иванович
  • Глущенко Николай Анатольевич
RU2509029C1
Способ управления судном при выполнении им швартовной операции к борту судна партнёра 2019
  • Юдин Юрий Иванович
  • Перевозов Владимир Викторович
RU2714994C1
СПОСОБ УПРАВЛЕНИЯ СУДНОМ ПРИ ВЫПОЛНЕНИИ ИМ ШВАРТОВНОЙ ОПЕРАЦИИ К БОРТУ СУДНА ПАРТНЕРА 2011
  • Юдин Юрий Иванович
  • Холичев Сергей Николаевич
  • Петров Сергей Олегович
RU2475410C1
СПОСОБ УПРАВЛЕНИЯ СУДНОМ ПРИ ВЫПОЛНЕНИИ ИМ ШВАРТОВНОЙ ОПЕРАЦИИ К БОРТУ СУДНА ПАРТНЕРА, СТОЯЩЕГО НА ЯКОРЕ 2012
  • Юдин Юрий Иванович
  • Иванов Виталий Витальевич
  • Холичев Сергей Николаевич
  • Петров Сергей Олегович
RU2509031C1
СПОСОБ ОПРЕДЕЛЕНИЯ ГИДРОДИНАМИЧЕСКИХ ПАРАМЕТРОВ МАТЕМАТИЧЕСКОЙ МОДЕЛИ СУДНА 2012
  • Юдин Юрий Иванович
RU2493048C1
СПОСОБ УПРАВЛЕНИЯ ДВИЖЕНИЕМ ОБЪЕКТА ПРИ ВЫПОЛНЕНИИ ИМ СБЛИЖЕНИЯ С ДРУГИМ ПОДВИЖНЫМ ОБЪЕКТОМ 2006
  • Юдин Юрий Иванович
  • Пашенцев Сергей Владимирович
RU2356784C2
СПОСОБ УПРАВЛЕНИЯ ТРАЕКТОРИЕЙ ДВИЖЕНИЯ СУДНА 2012
  • Юдин Юрий Иванович
  • Пашенцев Сергей Владимирович
RU2501064C2
СПОСОБ УПРАВЛЕНИЯ СУДНОМ ПРИ ВЫПОЛНЕНИИ ИМ ШВАРТОВНОЙ ОПЕРАЦИИ К БОРТУ СУДНА ПАРТНЕРА 2010
  • Юдин Юрий Иванович
  • Гололобов Александр Николаевич
RU2422326C1
СПОСОБ ТЕПЛОВОГО НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ ТЕПЛОТЕХНИЧЕСКИХ ХАРАКТЕРИСТИК МАТЕРИАЛОВ И КОНСТРУКЦИЙ 2008
  • Будадин Олег Николаевич
  • Абрамова Елена Вячеславовна
  • Батов Георгий Павлович
  • Юмштык Николай Григорьевич
RU2383008C1

Иллюстрации к изобретению RU 2 713 434 C1

Реферат патента 2020 года Способ управления судном при выполнении движения по заданной траектории

Изобретение относится к водному транспорту и касается управления движением судна по величине поперечных смещений его носовой и кормовой точек от текущего положения линии пути при выполнении им движения по заданной траектории. Текущее положение линии пути определяется в виде прямой линии, проходящей через две точки на плоскости; при выходе судна на заданную траекторию движения одна из указанных точек - это центр тяжести судна, вторая - заданная исходная точка заданной траектории движения судна; при движении судна по заданной траектории движения линия пути задается на каждом этапе движения судна в виде секущей кривой заданной траектории. Координаты точек заданной траектории движения, через которые проходит линия пути на данном этапе движения судна по заданной траектории, определяются в зависимости от кривизны ЗТД на данном этапе движения, размерных характеристик судна и скорости его движения. Совершенствуется управление судном, выполняющим движение по заданной траектории, по величине поперечных смещений двух точек судна, носовой F и кормовой A, от текущего положения заданной линии пути, являющейся секущей кривой ЗТД, представленной аналитически в неподвижной координатной системе X0,Y0 в виде функции у0=f(х0). Обеспечивается безопасность движения судна. 3 з.п. ф-лы, 6 ил.

Формула изобретения RU 2 713 434 C1

1. Способ поэтапного управления судном при движении по заданной траектории движения (ЗТД) по величинам поперечных смещений, расположенных на диаметральной плоскости (ДП) судна носовой F и кормовой A точек от текущего положения заданной линии пути (ЛП), при котором рассчитывают поперечные смещения этих точек, для вычисления поперечных смещений носовой F и кормовой A точек судна их координаты в неподвижной координатной системе F(x0F, y0F), A(x0A, y0A) измеряют с помощью спутниковой навигационной системы (СНС) и с дифференциальными поправками, перекладку руля судна производят в зависимости от комбинации поперечных смещений носовой dF и кормовой dA точек судна относительно текущего положения ЛП, которое определяют используя исходную заданную точку траектории (ЗТТ(1)) как объект, с которым происходит сближение судна и центр тяжести (ЦТ) судна; положение ЗТТ(1) и текущее положение ЦТ судна определяют текущее положение ЛП, проходящей через две точки в виде прямой линии, соединяющей положение исходной ЗТТ(1) и текущее положение ЦТ судна G, текущие координаты ЦТ судна в неподвижной координатной системе рассчитывают по формулам

x 0G = x 0F [ ( x 0F x 0A )×( x F x G ) ] ( x F x A ) y 0G = y 0F [ ( y 0F y 0A )×( x F x G ) ] ( x F x A ) } ,

координаты исходной ЗТТ(1) определяют как координаты точки кривой, описывающей ЗТД уравнением у0=f(х0), отличающийся тем, что определяют положения ЛП(i) (i=1, 2,…,n; n - количество этапов движения по ЗТД) на каждом этапе движения судна по ЗТД координатами двух заданных точек траектории ЗТТ, например I-й ЗТТ(1)01, у01) и II-й ЗТТ(2)02, у02), при этом координаты исходной (первой) ЗТТ(1) соответствуют координатам точки ЗТД в момент начала движения судна по ЗТД, координаты каждой следующей ЗТТ(i) определяются как координаты точки пересечения двух кривых, а именно кривой ЗТД, заданной аналитически в координатной системе X0,Y0 в виде функции у0=f(х0) и дуги окружности заданного радиуса R(i) с центром, расположенным в предыдущей ЗТТ(i), при этом значение радиуса R(i) указанной окружности рассчитывается для каждой отдельной ЛП(i) исходя из кривизны ЗТД на данном этапе движения, размерных характеристик судна и скорости его движения, наличие полученных указанным способом данных позволяет осуществлять движение судна по ЗТД в несколько этапов, количество которых n определяется количеством секущих кривой ЗТД, определяющих положения ЛП(i) при движении судна от ЗТТ(i) до ЗТТ(i+1) до окончания движения по ЗТД:

I-й этап - выход судна в первую ЗТТ (ЗТТ(1)), выбираем исходную (первую) ЗТТ(1), т.е. точку выхода судна на ЗТД, определяем её координаты 01, у01) в неподвижной координатной системе X0,Y0, зная координаты ЦТ судна в неподвижной координатной системе G(x0G, y0G) на момент начала движения для выхода на ЗТД и координаты первой ЗТТ(1)01, у01) определяем начальное положение ЛП, по которой судно начинает движение для выхода в первую ЗТТ(1), при этом положение этой ЛП на плоскости X0,Y0 будет меняться в процессе сближения судна с первой ЗТТ(1), так как будет меняться положение ЦТ судна в процессе его движения в первую ЗТТ(1), в процессе движения судна в первую ЗТТ(1) по рассчитанной ЛП, управление судном осуществляется по отклонениям dF, dA носовой F(xF, yF) и кормовой А(xA, yA) точек судна от заданной ЛП,

II-й этап - движение по ЛП(1), до момента прихода в первую ЗТТ(1) рассчитываем первый радиус окружности R(1) с центром в первой ЗТТ(1) (в данном случае центр окружности имеет координаты х01, у01) и определяем координаты следующей ЗТТ(2)02, у02), как точки пересечения дуги окружности радиусом R(1) с кривой ЗТД, строим первую секущую кривой ЗТД, то есть первую линию пути ЛП(1), которая будет проходить через первую ЗТТ(1) и вторую ЗТТ(2), являющуюся точкой пересечения дуги окружности заданного радиуса R(1) и кривой ЗТД,

моментом окончания сближения судна с первой ЗТТ(1), равно как и моментом начала движения судна по первой линии пути ЛП(1), является момент выхода носовой точки F на первую линию пути ЛП(1), этот момент фиксируется выполнением условия равенства нулю расстояния dF от носовой точки судна F до линии пути ЛП(1), аналогичным образом определяется (фиксируется) момент начала движения по всем следующим ЛП(i), алгоритм управления движением судна по ЗТД на всех следующих этапах аналогичный алгоритму, применяемому на II-м этапе. При этом выходом судна с ЗТД считается момент прихода его ЦТ в ЗТТ(n).

2. Способ по п. 1, отличающийся тем, что положение заданной точки, с которой происходит сближение на I-м этапе определяется координатами исходной точки ЗТД, т.е. заданной точки траектории ЗТТ(1)01, у01).

3. Способ по п. 1, отличающийся тем, что на каждом этапе движения по ЗТД задают текущую пути ЛП(i) в координатной системе X0,Y0, положение которой, как секущей кривой ЗТД на данном этапе движения судна по ЗТД, определяется координатами двух заданных точек траектории ЗТТ, например исходной ЗТТ(1)01, у01) и следующей ЗТТ(2)02, у02), являющейся точкой пересечения дуги окружности заданного радиуса R(1), величина которого зависит от кривизны ЗТД на данном этапе движения, размерных характеристик судна и скорости его движения, и кривой ЗТД на данном участке движения судна по ЗТД.

4. Способ по п. 1, отличающийся тем, что движение судна по ЗТД осуществляется в несколько (n) этапов, из которых:

I-й этап - выход судна в первую заданную точку траектории ЗТТ(1);

II-й и следующие этапы - движение по ЛП(i), положение которых задаётся как описано в п. 3.

Документы, цитированные в отчете о поиске Патент 2020 года RU2713434C1

СПОСОБ УПРАВЛЕНИЯ ДВИЖЕНИЕМ ОБЪЕКТА ПРИ ВЫПОЛНЕНИИ ИМ СБЛИЖЕНИЯ С ДРУГИМ ПОДВИЖНЫМ ОБЪЕКТОМ 2006
  • Юдин Юрий Иванович
  • Пашенцев Сергей Владимирович
RU2356784C2
Способ управления движущимся судном 2015
  • Юдин Юрий Иванович
  • Власов Александр Валентинович
  • Кайченов Александр Вячеславович
  • Висков Андрей Юрьевич
RU2615849C1
Очиститель-погрузчик, например к свеклокомбайнам 1959
  • Кравченко А.С.
  • Ральченко Г.Я.
  • Юков В.П.
SU125961A1
СТАН ДЛЯ НАКАТЫВАНИЯ ЗУБЬЕВ КОНИЧЕСКИХ КОЛЕС 1989
  • Фомичев Л.Ф.
  • Гороховский А.М.
  • Трофилеев Е.Н.
RU2013178C1

RU 2 713 434 C1

Авторы

Юдин Юрий Иванович

Дабижа Борис Вячеславович

Висков Андрей Юрьевич

Даты

2020-02-05Публикация

2019-04-03Подача