Способ размагничивания деталей из магнитотвердых материалов Российский патент 2020 года по МПК H01F13/00 

Описание патента на изобретение RU2713505C1

Изобретение относится к электротехнике и может быть использовано в производственном процессе при размагничивании деталей и изделий из магнитотвердых ферромагнитных материалов, для которых нормативной документацией регламентировано проведение магнитного или магнитопорошкового контроля.

Стандартно процесс магнитопорошкового контроля включает в себя намагничивание детали, полив ее магнитной суспензией, визуальный осмотр детали и, при необходимости, его размагничивание [1].

Контроль изделий из ферромагнитных материалов с коэрцитивной силой больше 10 А/см обычно проводят способом остаточной намагниченности, при этом намагничивание осуществляют короткими импульсами магнитного поля (тока) большой амплитуды, достаточной для введения металла в состояние близкое к насыщению.

Чтобы размагнитить объект контроля на него воздействуют последовательностью одиночных импульсов магнитного поля напряженностью Нр чередующейся полярности и убывающей амплитуды [2] (фиг. 1).

Недостатком такого способа размагничивания является невозможность размагничивания материалов с высокой коэрцитивной силой (больше 40…50 А/см), что обусловлено высокой магнитной вязкостью таких материалов [3]. За время действия одиночного импульса магнитного поля обратной полярности не происходит перемагничивания металла до состояния, соответствующего амплитуде этого импульса, так как домены в силу наличия магнитной вязкости не успевают за это время изменить свою ориентацию до максимального для данного импульса магнитного поля положения. Соответственно, размагничивания практически не происходит.

Целью изобретения является разработка способа размагничивания деталей из магнитотвердых материалов.

Поставленная цель достигается тем, что воздействие на размагничиваемую деталь осуществляют последовательностью пачек импульсов магнитного поля одинаковой полярности и амплитуды в пачке, изменяя полярность импульсов на противоположную от пачки к пачке и уменьшая амплитуды импульсов от пачки к пачке, при этом каждая пачка содержит, по меньшей мере, два импульса магнитного поля, и количество импульсов в пачке выбирают пропорционально величине коэрцитивной силы материала детали.

На фиг. 2 показана последовательность импульсов, генерируемая согласно предлагаемой заявке. Каждый последующий импульс в пачке добавляет металлу энергии, необходимой для разворота доменов в одном направлении, компенсируя влияние магнитной вязкости.

Эффективность предложенного метода была проверена при размагничивании длинной детали в виде вала длиной более 2 м и колец подшипников буксового узла, коэрцитивная сила которых Нс была равна 60 и 38 А/см соответственно, и других деталей подвижного состава с коэрцитивной силой Нс от 10 до 15 А/см. Величины Hc конкретных деталей измерялись с помощью коэрцитиметра.

Магнитопорошковый контроль таких деталей проводят, как правило, способом остаточной намагниченности, при двух видах намагничивания - полюсном и циркулярном [1].

На фиг. 3а показана схема полюсного намагничивания вала. Импульсы тока Iн, генерируемые блоком питания установки 1 в режиме намагничивания, подаются на соленоид 2, формирующий импульсы магнитного поля напряженностью Нн. Соленоид, движется вдоль контролируемой детали 3 и намагничивает ее.

На фиг. 3б показано образование магнитных полюсов (N и S) после окончания намагничивания, создающих на поверхности вала напряженность поля, соответствующую остаточной намагниченности Jнач.

Размагничивание таких объектов соленоидом весьма затруднительно и занимает длительное время. Поэтому целесообразно размагничивать длинную деталь пропусканием по ней тока (циркулярно) независимо от того, как она была намагничена.

Проверка эффективности размагничивания предлагаемым способом осуществлялась с помощью магнитопорошковой установки МДС-09 [4], обеспечивающей режимы намагничивания и размагничивания. Для этого в установке имеется специальная программа для формирования блоком питания пачек импульсов тока в процессе размагничивания.

На фиг. 4 показана схема размагничивания вала. Одиночные импульсы и пачки импульсов тока размагничивания амплитудой Ip с блока размагничивания 1 через силовые провода 2 пропускались через деталь 3.

На фиг. 5 показана схема намагничивания и размагничивания колец подшипников. На кольцо 3 навит соленоид из гибкого кабеля 2, подключаемый к блоку питания 1, который переключался в соответствующий режим.

В ходе эксперимента детали сначала намагничивались соленоидом (полюсное намагничивание) [1] по схемам на фиг. 3 и 5 до начальной намагниченности Jнач, потом детали размагничивались по схеме на фиг. 4 сначала одиночными импульсами (n=1), затем пачками, содержащими от двух до шести импульсов (n=2…6). Количество импульсов в пачках при размагничивании выбиралось из расчета 1 импульс на каждые 10 А/см коэрцитивной силы. Амплитуда импульсов от пачки к пачке уменьшалась от максимального значения до нуля по линейному закону. Размагничивание проводилось до достижения остаточной намагниченностью Jост регламентируемого [1] значения 5 А/см и менее. Начальная и остаточная намагниченности на поверхности деталей после намагничивания и размагничивания измерялись магнитометром.

Данные эксперимента приведены в таблице 1.

Пробелы в таблице 1 означают, что, поскольку величина Jост стала меньше 5 А/см, дальнейшее размагничивание с большим количеством импульсов в пачке не имело смысла.

Таким образом, эксперимент показал эффективность размагничивания деталей из магнитотвердых материалов пачками импульсов магнитного поля, а также необходимость выбирать количество импульсов в пачке пропорционально величине коэрцитивной силы материала детали.

Литература

1. ГОСТ Р 56512-2015. Контроль неразрушающий. Магнитопорошковый метод. Типовые технологические процессы. М.: Стандартинформ, 2016, 121 с.

2. Способ размагничивания ферромагнитных тел. Авторское свидетельство СССР №1443038. - Опубл. 07.12.1988 г., Бюллетень изобретений №45. - с. 207.

3. Мишин Д.Д. Магнитные материалы: Учеб. пособие для вузов. - М.: Высш. шк., 1991. - 384 с.

4. Чуприн А.В., Шарин П.А., Чуприн В.А., Сосницкая Т.А. Магнитопорошковый контроль деталей сложной формы в процессе эксплуатации // В мире неразрушающего контроля, 2016, т. 19, №2, с. 73-75.

Похожие патенты RU2713505C1

название год авторы номер документа
Способ магнитопорошкового контроля 1979
  • Шелихов Геннадий Степанович
  • Александров Анатолий Григорьевич
SU789728A1
Способ контроля физико-механических свойств изделий из ферромагнитных материалов 1990
  • Шерман Давид Григорьевич
  • Яворович Светлана Ивановна
  • Шифрин Александр Моисеевич
SU1826051A1
СПОСОБ ИМПУЛЬСНОГО МАГНИТНОГО КОНТРОЛЯ ТЕМПЕРАТУРЫ ОТПУСКА ИЗДЕЛИЙ ИЗ СРЕДНЕУГЛЕРОДИСТЫХ СТАЛЕЙ 2008
  • Матюк Владимир Федорович
  • Бурак Вероника Анатольевна
  • Делендик Михаил Николаевич
RU2376592C1
МАГНИТОПОРОШКОВЫЙ ДЕФЕКТОСКОП 2017
  • Дриндрожик Анатолий Константинович
RU2653121C1
Устройство для определения механических свойств ферромагнитных изделий 1984
  • Вальд Александр Александрович
  • Остапенко Владимир Дмитриевич
SU1226261A1
СПОСОБ И УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ РЕЛАКСАЦИОННОЙ КОЭРЦИТИВНОЙ СИЛЫ И РЕЛАКСАЦИОННОЙ НАМАГНИЧЕННОСТИ ПРОТЯЖЕННЫХ ИЗДЕЛИЙ ИЗ ФЕРРОМАГНИТНЫХ МАТЕРИАЛОВ 2016
  • Новиков Виталий Федорович
  • Радченко Александр Васильевич
  • Устинов Валерий Петрович
  • Чуданов Владимир Евгеньевич
  • Муратов Камиль Рахимчанович
RU2627122C1
Способ испытания образцов магнитотвердых материалов 1981
  • Спиридонов Роберт Владимирович
  • Ягола Григорий Калистратович
SU974314A1
Способ измерения коэрцитивной силы 1977
  • Прудвиблох Игорь Алексеевич
  • Филюшин Борис Сергеевич
SU773543A1
УСТРОЙСТВО РАЗМАГНИЧИВАНИЯ МАГИСТРАЛЬНЫХ ТРУБОПРОВОДОВ 2005
  • Шелихов Геннадий Степанович
  • Лозовский Владислав Николаевич
  • Красильников Виктор Алексеевич
  • Бондал Александр Геннадьевич
RU2285254C1
Устройство для разбраковки деталей из магнитномягких материалов по величине коэрцитивной силы 1981
  • Татаринов Вадим Георгиевич
SU1019382A1

Иллюстрации к изобретению RU 2 713 505 C1

Реферат патента 2020 года Способ размагничивания деталей из магнитотвердых материалов

Изобретение относится к электротехнике и может быть использовано в производственном процессе при размагничивании деталей и изделий из магнитотвердых ферромагнитных материалов, для которых нормативной документацией регламентировано проведение магнитного или магнитопорошкового контроля. Технический результат состоит в повышении эффективности. Воздействие на размагничиваемую деталь осуществляют последовательностью пачек импульсов магнитного поля одинаковой полярности и амплитуды в пачке, изменяя полярность импульсов на противоположную от пачки к пачке и уменьшая амплитуды импульсов от пачки к пачке. Каждая пачка содержит, по меньшей мере, два импульса магнитного поля, и количество импульсов в пачке выбирают пропорционально величине коэрцитивной силы материала детали. 5 ил., 1 ил.

Формула изобретения RU 2 713 505 C1

Способ размагничивания деталей из магнитотвердых материалов путем воздействия на размагничиваемую деталь разнополярным убывающим по амплитуде импульсным магнитным полем,

отличающийся тем, что воздействие на размагничиваемую деталь осуществляют последовательностью пачек импульсов магнитного поля одинаковой полярности и амплитуды в пачке, изменяя полярность импульсов на противоположную от пачки к пачке и уменьшая амплитуды импульсов от пачки к пачке, при этом каждая пачка содержит, по меньшей мере, два импульса магнитного поля и количество импульсов в пачке выбирают пропорционально величине коэрцитивной силы материала детали.

Документы, цитированные в отчете о поиске Патент 2020 года RU2713505C1

Машина для развешивания и наполнения мешков сыпучим материалом 1929
  • Изли А. Марш
SU43399A1
Способ размагничивания ферромагнитных тел 1987
  • Мороз Роман Романович
SU1443038A1
СПОСОБ РАЗМАГНИЧИВАНИЯ КРУПНОГАБАРИТНЫХ ИЗДЕЛИЙ 1999
  • Новожилов А.П.
  • Быстров В.А.
  • Карасев А.С.
  • Усов Г.О.
RU2157014C1
Способ размагничивания ферромагнитных тел и устройство для его осуществления 1981
  • Антонов Валерий Георгиевич
  • Гордон Владимир Иосифович
SU1007137A1
Способ размагничивания ферромагнитной детали 1983
  • Козлов Роберт Федорович
SU1112417A1
DE 1589511 A, 30.07.1970.

RU 2 713 505 C1

Авторы

Шарин Петр Алексеевич

Чуприн Александр Владимирович

Чуприн Владимир Александрович

Сосницкая Татьяна Андреевна

Даты

2020-02-05Публикация

2019-08-22Подача