Изобретение относится к области химии, физики, в частности к составу и способу получения новых металлорганических полимеров, и может быть использовано в оптике и квантовой электронике преимущественно для изготовления волноводов, оптических усилителей, лазеров.
Известен Способ получения лантанидсодержащего эпоксидного полимера [Пат. 2233855 РФ, МКИ7 C08L 63/00. / Л.М. Амирова, В.П. Фомин, Р.Р. Амиров, С.Н. Андрианов (РФ). - заявл. 24.04.2003, опубл. 107.08.2004, БИ N 22]. В качестве эпоксидного соединения использованы глицидиловые эфиры кислот фосфора, и содержащие простые соли лантанида. По данному способу в качестве ионов металла используются La, Lu, Yb, Се, Tb, Gd.
Недостатком данного способа получения является то, что в качестве эпоксидного олигомера можно использовать только глицидиловые эфиры кислот фосфора, что значительно сужает возможности способа получения лантанидсодержащего эпоксидного полимера.
Известен способ получения лантанидсодержащего эпоксидного полимера [Пат. 5135994 США, МКИ5 C08G 59/40. Rare earth containing catalyst for epoxy resin systems / T.J. Anagnostou (США); Rhone-Poulenc Inc. (США). - N 568542, заявл. 15.08.1990, опубл. 04.08.1992, НКИ 525/507], заключающийся в диспергировании раствора карбоксилатов лантанидов в эпоксидном олигомере с последующим его отверждением ангидридами кислот или аминами. В качестве эпоксидного олигомера использовали эпоксидиановые, эпоксифенольные, эпоксиноволачные и циклоалифатические эпоксидные смолы. Содержание ионов лантанидов в композиции невелико и составляет не более 1.3⋅10-5 моль металла на грамм эпоксидной композиции. Отверждение протекает более чем за 1 ч при 130°С.
Недостатком данного способа получения эпоксиполимера, содержащего ионы лантанидов, является малое содержание целевой добавки (иона лантанида), что снижает эффективность люминесценции, а также отсутствие химического связывания ионов лантанидов с цепью полимера, что может привести к диффузии и даже потере ионов лантанидов и, соответственно, снижению качества люминесценции.
Известен способ получения лантанидсодержащего эпоксидного полимера [Castell P. Study of lanthanide Inflates as new curing initiators for DGEBA / P. Castell, M. Galia, A. Serra, J.M. Salla, X. Ramis // Polymer. - 2000. - V. 41, N 24. - P. 8465-8474], заключающийся в гомополимеризации эпоксидного олигомера - диглицидилового эфира дифенилолпропана в присутствии солей лантанидов с трифторметансульфоновой кислотой в качестве катализаторов. Отверждение проводят при температуре 120-200°С.
Недостатками данного способа получения эпоксидного полимера, содержащего лантанидионы, являются: 1) малое содержание целевых ионов лантанидов (соли металлов вводят в количестве менее 5 мас. %); 2) высокая температура отверждения; 3) введенные ионы лантанидов не связаны химически с полимером и могут диффундировать в нем, что приводит к неравномерности их распределения в массе полимера, или вовсе выходить на поверхность, что приводит к потере добавок и снижению люминесценции.
Наиболее близким по технической сущности и достигаемому результату является способ получения лантанидсодержащего эпоксидного полимера, предложенного в качестве основы для изготовления оптических усилителей [Пат. 5657156 США, МКИ6 H01S 3/00. Polymeric optical amplifier doped with lanthanide / F.C.J.M. van Veggel, G.R. Mohlmann (Нидерл.), Akzo Nobel N.V. (Нидерл.). - N 615482, заявл. 15.03.1996, опубл. 12.08.1997, НКИ 359/342]. Указанный способ заключается во введении ионов лантанидов в виде комплексов с лигандами класса гемисферандов в смолы, в том числе эпоксидные, с последующим их отверждением аминными или ангидридными отвердителями.
Недостатком данного способа введения лантанидионов в состав эпоксидного полимера является необходимость предварительного синтеза лигандов типа гемисферандов, а также последующий синтез комплексов лантанидов с гемисферандами. Синтез лигандов и их лантанидных комплексов требует большого количества химических реагентов (в том числе дорогостоящих) и растворителей, а также длителен и трудоемок: занимает от 3 до 10 суток, многостадиен, используются процедуры хроматографической очистки и т.д., то есть является сложным, малоэффективным. Еще одним недостатком данного способа получения полимеров, допированных ионами лантанидов, является малое содержание ионов добавки (менее 0.1 мас. ч.) и химическая несвязанность добавки с полимерной матрицей, что значительно снижает прозрачность и интенсивность люминесценции.
Технической проблемой, на решение которой направлено заявляемое изобретение является создание простого и технологичного способа получения лантанидсодержащего эпоксидного полимера с высокими люминесцентными свойствами.
Техническим результатом изобретения является создание высокоэффективного способа получения лантанидсодержащего эпоксидного полимера путем повышения интенсивности люминесцентных свойств за счет повышения содержания ионов лантанидов.
Технический результат достигается тем, что в способе получения лантанидсодержащего эпоксидного полимера, заключающемся в смешении компонентов, в состав которых входят эпоксидная смола, лантанидсодержащая добавка и отвердитель, новым является то, что в качестве лантанидсодержашей добавки используют аминомодифицированные наночастицы диоксида кремния с комплексами тербия или иттербия, при этом соотношение компонентов выбирают исходя из стехиометрического соотношения смолы к отвердителю и к наночастицам, и составляет, мас. ч.:
Технический результат достигается тем, что в качестве эпоксидной смолы используют эпоксидиановую смолу.
Технический результат достигается тем, что в качестве эпоксидной смолы используют эпоксиноволачную смолу.
Технический результат достигается тем, что компоненты смешивают в три этапа, в следующей последовательности: на первом этапе, к определенному количеству в заданном интервале 0,5-10 мас. ч. аминомодифицированных наночастиц диоксида кремния с комплексами тербия или иттербия добавляют 10 массовых частей эпоксидной смолы, смесь растирают до получения высокодиспергированного порошка и термообрабатывают при температуре 100-200°С для удаления влаги и проведения химического сшивания аминогрупп частиц, аминомодифицированных наночастиц диоксида кремния с комплексами тербия или иттербия, с эпоксидными группами эпоксидной смолы, далее на втором этапе, к полученному высокодиспергированному порошку добавляют 20 массовых частей эпоксидной смолы и тщательно растирают до получения практически прозрачной массы, на третьем этапе, к полученной массе постепенно добавляют остаток эпоксидной смолы 70 мас. ч., тщательно перемешивают и добавляют расчетное количество отвердителя в пределах заданного, исходя из эпоксидного числа смолы и стехиометрического коэффициента отвердителя.
Новизна:
Предложенная технология получения лантанидсодержащего эпоксидного полимера является менее затратной, менее трудоемкой, то есть высокоэффективной благодаря использованию в качестве лантанидсодержащей добавки аминомодифицированных наночастиц диоксида кремния с комплексами тербия или иттербия при заданном соотношении компонентов, мас. ч. эпоксидной смолы, лантанидсодержащей добавки и отвердителя, а в результате предложенного техпроцесса позволяет полностью удалить влагу и получить высокодиспергированный порошок, химически сшить частицы его с полимерной матрицей и получить прозрачный полимер, тем самым повышая интенсивность люминесценции.
Осуществление способа получения лантанидсодержащего эпоксидного полимера.
Способ получения лантанидсодержащего эпоксидного полимера может быть осуществлен менее трудоемко в три этапа, благодаря которым можно добиться наиболее равномерного распределения частиц в эпоксидной матрице, осуществить их химическое вшивание в матрицу и получить полимер с высокой прозрачностью и интенсивностью люминесценции, повышая эффективность способа.
1) На первом этапе к определенному количеству (в заданном интервале 0,5-10 мас. ч.) аминомодифицированных наночастиц диоксида кремния с комплексами тербия или иттербия добавляют 10 массовых частей эпоксидной смолы, смесь растирают до получения высокодиспергированного порошка и термообрабатывают при температуре 100-200°С для удаления влаги и проведения химического сшивания аминогрупп частиц (аминомодифицированных наночастиц диоксида кремния с комплексами тербия или иттербия) с эпоксидными группами эпоксидной смолы;
2) Далее, на втором этапе к полученному высокодиспергированному порошку добавляют 20 массовых частей эпоксидной смолы и тщательно растирают до получения практически прозрачной массы;
3) На третьем этапе к полученной массе постепенно добавляют остаток эпоксидной смолы 70 мас. ч., тщательно перемешивают и добавляют расчетное количество отвердителя. Количество отвердителя рассчитывают исходя из эпоксидного числа смолы и стехиометрического коэффициента отвердителя. Отверждение производят по рекомендуемым в литературе режимам для данных композиций.
В качестве эпоксидной смолы использовали эпоксидиановые смолы марок: NPEL-128 (Nan Ya Corp., Тайвань), DER-331(DOW Chemical Company), эпоксиноволачные смолы марок DER-354, DEN-431 (Dow Chemical Company). Все смолы представляли собой прозрачные бесцветные жидкости разной вязкости. В качестве отвердителя использовали; отвердитель на основе модифицированного циклоалифатического амина ХТ-444 (ТУ 2494-644-11131395-2007), моноцианэтилдиэтилентриамин УП-0633М (ТУ 6-05-1863-78), ангидридные отвердители: изометилтетрагидрофталевый ангидрид (изо-МТГФА, ТУ 6-09-3321-73), метилгексагидрофталевый ангидрид (МГГФА). В качестве катализатора отверждения при использовании ангидридных отвердителей брали промышленный катализатор 2-метилимидазол (2МИ). В качестве РЗЭ-содержащей добавки использовали аминомодифицированные наночастицы диоксида кремния с комплексами тербия (Mukhametshina, A.R. Luminescent silica nanoparticles for sensing acetylcholinesterase-catalyzed hydrolysis of acetylcholine / A.R. Mukhametshina, S.V. Fedorenko, I.V. Zueva, K.A. Petrov, P. Masson, I.R. Nizameev, A.R. Mustafina, O.G. Sinyashin // Biosens. Bioelectron. - 2016. - V. 77. - P. 871-878). Аминомодифицированные наночастицы диоксида кремния предварительно высушивали при температурах 100-200°С для удаления влаги.
В таблице 1 представлены примеры составов предлагаемых лантанидсодержащих эпоксидных полимеров,
Спектры люминесценции снимали на приборе Perkin Elmer LS при длинах волн возбуждения 310-320 нм, в диапазоне от 450 до 650 нм при щели 2,5 нм. Скорость сканирования составляла 200 нм/мин, шаг сканирования - 1 нм. Температуру стеклования и модуль упругости определяли методом динамического механического анализа на приборе DMA 242 Е (NETZSCH) при скорости нагрева 5 К/мин. Показатель преломления жидких и отвержденных образцов снимали на рефрактометре ИРФ-22. Спектры пропускания определяли с помощью УФ-спектрофотометра UVmini 1240 (SHIMADZU, Япония).
В таблице 2 представлены свойства получаемых эпоксидных полимеров. На рисунке 1 представлен спектр люминесценции отвержденного полимера на основе эпоксидной смолы NPEL-128, отвердителя ХТ-444, аминомодифицированных наночастиц диоксида кремния с комплексами тербия.
Как видно из таблицы 2, предлагаемый эпоксидный полимер (примеры 1-16) имеет удовлетворительные термомеханические свойства и хорошую прозрачность. Спектр 1 демонстрирует то, что отвержденные эпоксидные полимеры при введении аминомодифицированных силикатных наночастиц, допированных тербием, проявляют люминесцентные свойства.
Пример 1. К 10 массовым частям наночастиц добавляют 10 массовых частей эпоксиноволачной смолы DER-354 и растирают до получения высокодиспергированного порошка. Полученный порошок термообрабатывают при температуре 100-200°С для удаления влаги и химического сшивания с полимерной матрицей. К полученному высокодиспергированному порошку добавляют 20 массовых частей эпоксидной смолы и тщательно растирают в ступке до получения практически прозрачной массы. К полученной массе постепенно добавляют остаток эпоксидной смолы (70 мас. ч.), тщательно перемешивают и добавляют 93 массовых частей отвердителя МГГФА и 2 мас. ч. катализатора. Полученную композицию отверждают по следующему режиму: 100°С - 1 час, 130°С - 0,5 часа, - 170°С - 0,5 часа.
По своим технико-экономическим преимуществам, по сравнению с известными аналогами, заявленный способ получения лантанидсодержащих эпоксидных полимеров, является высокоэффективным благодаря упрощению состава и технологии его получения, позволяющего снизить его трудоемкость и многостадийность, а также возможность получения лантанидсодержащего полимера с более высоким содержанием ионов лантанидов и в процессе технологии - удаления влаги и получения высокодиспергированного порошка, в результате чего химическое сшивание лантанидсодержащих частиц с полимерной матрицей позволяет повысить люминесцентные свойства, то есть интенсивность люминесценции, что исключает их диффузию и потерю, а в конечном итоге обеспечивает стабильную люминесценцию.
Справочный материал к заявке «Способ получения лантанидсодержащего эпоксидного полимера»
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ ЛАНТАНИДСОДЕРЖАЩЕГО ЭПОКСИДНОГО ПОЛИМЕРА | 2003 |
|
RU2233855C1 |
Эпоксидное связующее, препрег на его основе и изделие, выполненное из него. | 2021 |
|
RU2773075C1 |
ЭПОКСИДНАЯ ПОРОШКОВАЯ КОМПОЗИЦИЯ ДЛЯ ПОКРЫТИЙ | 1994 |
|
RU2129137C1 |
Полимерная композиция для изготовления сотовых панелей | 2016 |
|
RU2661575C1 |
ТЕРМОРЕАКТИВНОЕ СВЯЗУЮЩЕЕ | 2020 |
|
RU2749720C1 |
ЭПОКСИДНАЯ КОМПОЗИЦИЯ | 2013 |
|
RU2542234C2 |
Модифицированная полимерная композитная арматура | 2023 |
|
RU2826026C1 |
Эпоксидное связующее | 2017 |
|
RU2666438C1 |
Эпоксидная композиция | 2016 |
|
RU2618557C1 |
СОСТАВ ДЛЯ ПОЛУЧЕНИЯ СВЯЗУЮЩЕГО ДЛЯ ПРЕПРЕГОВ, СПОСОБ ИЗГОТОВЛЕНИЯ СВЯЗУЮЩЕГО, ПРЕПРЕГ И СПОСОБ ИЗГОТОВЛЕНИЯ ПАНЕЛИ ИЗ ПОЛИМЕРНОГО КОМПОЗИЦИОННОГО МАТЕРИАЛА | 2014 |
|
RU2559495C1 |
Изобретение относится к области химии, физики и касается способа получения новых металлорганических полимеров, конкретно эпоксидных полимеров, и может быть использовано в оптике и квантовой электронике, преимущественно для изготовления волноводов, оптических усилителей, лазеров. Получают лантанидсодержащий эпоксидный полимер смешением эпоксидной смолы с аминомодифицированными наночастицами диоксида кремния с комплексами тербия или иттербия (лантанидсодержащая добавка) и отвердителем при соотношении компонентов исходя из стехиометрического соотношения смолы к отвердителю и к наночастицам (мас.ч.): эпоксидная смола - 100, лантанидсодержащая добавка - 0,5-10, отвердитель - 21-94. В качестве эпоксидной смолы используют, например, эпоксидиановую смолу или эпоксиноволачную смолу. Изобретение позволяет повысить содержание ионов лантанидов и получить эпоксидный полимер с высокими люминесцентными свойствами. 3 з.п. ф-лы, 1 ил., 2 табл., 1 пр.
1. Способ получения лантанидсодержащего эпоксидного полимера, заключающийся в смешении компонентов, в состав которых входят эпоксидная смола, лантанидсодержащая добавка и отвердитель, отличающийся тем, что в качестве лантанидсодержащей добавки используют аминомодифицированные наночастицы диоксида кремния с комплексами тербия или иттербия, при этом соотношение компонентов выбирают исходя из стехиометрического соотношения смолы к отвердителю и к наночастицам, и оно составляет, мас.ч.:
2. Способ по п. 1, отличающийся тем, что в качестве эпоксидной смолы используют эпоксидиановую смолу.
3. Способ по п. 1, отличающийся тем, что в качестве эпоксидной смолы используют эпоксиноволачную смолу.
4. Способ по п. 1, отличающийся тем, что компоненты эпоксидной смолы, лантанидсодержащей добавки и отвердителя смешивают в три этапа, в следующей последовательности: на первом этапе к определенному количеству в заданном интервале 0,5-10 мас.ч. аминомодифицированных наночастиц диоксида кремния с комплексами тербия или иттербия добавляют 10 мас.ч. эпоксидной смолы, смесь растирают до получения высокодиспергированного порошка и термообрабатывают при температуре 100-200°С для удаления влаги и проведения химического сшивания аминогрупп частиц, аминомодифицированных наночастиц диоксида кремния с комплексами тербия или иттербия, с эпоксидными группами эпоксидной смолы, далее на втором этапе к полученному высокодиспергированному порошку добавляют 20 мас.ч. эпоксидной смолы и тщательно растирают до получения практически прозрачной массы, на третьем этапе к полученной массе постепенно добавляют остаток эпоксидной смолы 70 мас.ч., тщательно перемешивают и добавляют расчетное количество отвердителя в пределах заданного исходя из эпоксидного числа смолы и стехиометрического коэффициента отвердителя.
СПОСОБ ПОЛУЧЕНИЯ ЛАНТАНИДСОДЕРЖАЩЕГО ЭПОКСИДНОГО ПОЛИМЕРА | 2003 |
|
RU2233855C1 |
US 5657156 A, 12.08.1997 | |||
СТРУКТУРНО-ОКРАШЕННЫЙ ЭПОКСИДНЫЙ ПОЛИМЕР | 1999 |
|
RU2171268C2 |
Наномодифицированный эпоксидный композит | 2017 |
|
RU2661583C1 |
Наполненная эпоксидная композиция | 2016 |
|
RU2640519C1 |
Авторы
Даты
2020-03-03—Публикация
2019-10-04—Подача