СПОСОБ ПОЛУЧЕНИЯ ЛАНТАНИДСОДЕРЖАЩЕГО ЭПОКСИДНОГО ПОЛИМЕРА Российский патент 2020 года по МПК C08L63/00 C08L63/02 H01S3/00 

Описание патента на изобретение RU2715842C1

Изобретение относится к области химии, физики, в частности к составу и способу получения новых металлорганических полимеров, и может быть использовано в оптике и квантовой электронике преимущественно для изготовления волноводов, оптических усилителей, лазеров.

Известен Способ получения лантанидсодержащего эпоксидного полимера [Пат. 2233855 РФ, МКИ7 C08L 63/00. / Л.М. Амирова, В.П. Фомин, Р.Р. Амиров, С.Н. Андрианов (РФ). - заявл. 24.04.2003, опубл. 107.08.2004, БИ N 22]. В качестве эпоксидного соединения использованы глицидиловые эфиры кислот фосфора, и содержащие простые соли лантанида. По данному способу в качестве ионов металла используются La, Lu, Yb, Се, Tb, Gd.

Недостатком данного способа получения является то, что в качестве эпоксидного олигомера можно использовать только глицидиловые эфиры кислот фосфора, что значительно сужает возможности способа получения лантанидсодержащего эпоксидного полимера.

Известен способ получения лантанидсодержащего эпоксидного полимера [Пат. 5135994 США, МКИ5 C08G 59/40. Rare earth containing catalyst for epoxy resin systems / T.J. Anagnostou (США); Rhone-Poulenc Inc. (США). - N 568542, заявл. 15.08.1990, опубл. 04.08.1992, НКИ 525/507], заключающийся в диспергировании раствора карбоксилатов лантанидов в эпоксидном олигомере с последующим его отверждением ангидридами кислот или аминами. В качестве эпоксидного олигомера использовали эпоксидиановые, эпоксифенольные, эпоксиноволачные и циклоалифатические эпоксидные смолы. Содержание ионов лантанидов в композиции невелико и составляет не более 1.3⋅10-5 моль металла на грамм эпоксидной композиции. Отверждение протекает более чем за 1 ч при 130°С.

Недостатком данного способа получения эпоксиполимера, содержащего ионы лантанидов, является малое содержание целевой добавки (иона лантанида), что снижает эффективность люминесценции, а также отсутствие химического связывания ионов лантанидов с цепью полимера, что может привести к диффузии и даже потере ионов лантанидов и, соответственно, снижению качества люминесценции.

Известен способ получения лантанидсодержащего эпоксидного полимера [Castell P. Study of lanthanide Inflates as new curing initiators for DGEBA / P. Castell, M. Galia, A. Serra, J.M. Salla, X. Ramis // Polymer. - 2000. - V. 41, N 24. - P. 8465-8474], заключающийся в гомополимеризации эпоксидного олигомера - диглицидилового эфира дифенилолпропана в присутствии солей лантанидов с трифторметансульфоновой кислотой в качестве катализаторов. Отверждение проводят при температуре 120-200°С.

Недостатками данного способа получения эпоксидного полимера, содержащего лантанидионы, являются: 1) малое содержание целевых ионов лантанидов (соли металлов вводят в количестве менее 5 мас. %); 2) высокая температура отверждения; 3) введенные ионы лантанидов не связаны химически с полимером и могут диффундировать в нем, что приводит к неравномерности их распределения в массе полимера, или вовсе выходить на поверхность, что приводит к потере добавок и снижению люминесценции.

Наиболее близким по технической сущности и достигаемому результату является способ получения лантанидсодержащего эпоксидного полимера, предложенного в качестве основы для изготовления оптических усилителей [Пат. 5657156 США, МКИ6 H01S 3/00. Polymeric optical amplifier doped with lanthanide / F.C.J.M. van Veggel, G.R. Mohlmann (Нидерл.), Akzo Nobel N.V. (Нидерл.). - N 615482, заявл. 15.03.1996, опубл. 12.08.1997, НКИ 359/342]. Указанный способ заключается во введении ионов лантанидов в виде комплексов с лигандами класса гемисферандов в смолы, в том числе эпоксидные, с последующим их отверждением аминными или ангидридными отвердителями.

Недостатком данного способа введения лантанидионов в состав эпоксидного полимера является необходимость предварительного синтеза лигандов типа гемисферандов, а также последующий синтез комплексов лантанидов с гемисферандами. Синтез лигандов и их лантанидных комплексов требует большого количества химических реагентов (в том числе дорогостоящих) и растворителей, а также длителен и трудоемок: занимает от 3 до 10 суток, многостадиен, используются процедуры хроматографической очистки и т.д., то есть является сложным, малоэффективным. Еще одним недостатком данного способа получения полимеров, допированных ионами лантанидов, является малое содержание ионов добавки (менее 0.1 мас. ч.) и химическая несвязанность добавки с полимерной матрицей, что значительно снижает прозрачность и интенсивность люминесценции.

Технической проблемой, на решение которой направлено заявляемое изобретение является создание простого и технологичного способа получения лантанидсодержащего эпоксидного полимера с высокими люминесцентными свойствами.

Техническим результатом изобретения является создание высокоэффективного способа получения лантанидсодержащего эпоксидного полимера путем повышения интенсивности люминесцентных свойств за счет повышения содержания ионов лантанидов.

Технический результат достигается тем, что в способе получения лантанидсодержащего эпоксидного полимера, заключающемся в смешении компонентов, в состав которых входят эпоксидная смола, лантанидсодержащая добавка и отвердитель, новым является то, что в качестве лантанидсодержашей добавки используют аминомодифицированные наночастицы диоксида кремния с комплексами тербия или иттербия, при этом соотношение компонентов выбирают исходя из стехиометрического соотношения смолы к отвердителю и к наночастицам, и составляет, мас. ч.:

эпоксидная смола 100 отвердитель 21-94 лантанидсодержащая добавка 0,5-10.

Технический результат достигается тем, что в качестве эпоксидной смолы используют эпоксидиановую смолу.

Технический результат достигается тем, что в качестве эпоксидной смолы используют эпоксиноволачную смолу.

Технический результат достигается тем, что компоненты смешивают в три этапа, в следующей последовательности: на первом этапе, к определенному количеству в заданном интервале 0,5-10 мас. ч. аминомодифицированных наночастиц диоксида кремния с комплексами тербия или иттербия добавляют 10 массовых частей эпоксидной смолы, смесь растирают до получения высокодиспергированного порошка и термообрабатывают при температуре 100-200°С для удаления влаги и проведения химического сшивания аминогрупп частиц, аминомодифицированных наночастиц диоксида кремния с комплексами тербия или иттербия, с эпоксидными группами эпоксидной смолы, далее на втором этапе, к полученному высокодиспергированному порошку добавляют 20 массовых частей эпоксидной смолы и тщательно растирают до получения практически прозрачной массы, на третьем этапе, к полученной массе постепенно добавляют остаток эпоксидной смолы 70 мас. ч., тщательно перемешивают и добавляют расчетное количество отвердителя в пределах заданного, исходя из эпоксидного числа смолы и стехиометрического коэффициента отвердителя.

Новизна:

Предложенная технология получения лантанидсодержащего эпоксидного полимера является менее затратной, менее трудоемкой, то есть высокоэффективной благодаря использованию в качестве лантанидсодержащей добавки аминомодифицированных наночастиц диоксида кремния с комплексами тербия или иттербия при заданном соотношении компонентов, мас. ч. эпоксидной смолы, лантанидсодержащей добавки и отвердителя, а в результате предложенного техпроцесса позволяет полностью удалить влагу и получить высокодиспергированный порошок, химически сшить частицы его с полимерной матрицей и получить прозрачный полимер, тем самым повышая интенсивность люминесценции.

Осуществление способа получения лантанидсодержащего эпоксидного полимера.

Способ получения лантанидсодержащего эпоксидного полимера может быть осуществлен менее трудоемко в три этапа, благодаря которым можно добиться наиболее равномерного распределения частиц в эпоксидной матрице, осуществить их химическое вшивание в матрицу и получить полимер с высокой прозрачностью и интенсивностью люминесценции, повышая эффективность способа.

1) На первом этапе к определенному количеству (в заданном интервале 0,5-10 мас. ч.) аминомодифицированных наночастиц диоксида кремния с комплексами тербия или иттербия добавляют 10 массовых частей эпоксидной смолы, смесь растирают до получения высокодиспергированного порошка и термообрабатывают при температуре 100-200°С для удаления влаги и проведения химического сшивания аминогрупп частиц (аминомодифицированных наночастиц диоксида кремния с комплексами тербия или иттербия) с эпоксидными группами эпоксидной смолы;

2) Далее, на втором этапе к полученному высокодиспергированному порошку добавляют 20 массовых частей эпоксидной смолы и тщательно растирают до получения практически прозрачной массы;

3) На третьем этапе к полученной массе постепенно добавляют остаток эпоксидной смолы 70 мас. ч., тщательно перемешивают и добавляют расчетное количество отвердителя. Количество отвердителя рассчитывают исходя из эпоксидного числа смолы и стехиометрического коэффициента отвердителя. Отверждение производят по рекомендуемым в литературе режимам для данных композиций.

В качестве эпоксидной смолы использовали эпоксидиановые смолы марок: NPEL-128 (Nan Ya Corp., Тайвань), DER-331(DOW Chemical Company), эпоксиноволачные смолы марок DER-354, DEN-431 (Dow Chemical Company). Все смолы представляли собой прозрачные бесцветные жидкости разной вязкости. В качестве отвердителя использовали; отвердитель на основе модифицированного циклоалифатического амина ХТ-444 (ТУ 2494-644-11131395-2007), моноцианэтилдиэтилентриамин УП-0633М (ТУ 6-05-1863-78), ангидридные отвердители: изометилтетрагидрофталевый ангидрид (изо-МТГФА, ТУ 6-09-3321-73), метилгексагидрофталевый ангидрид (МГГФА). В качестве катализатора отверждения при использовании ангидридных отвердителей брали промышленный катализатор 2-метилимидазол (2МИ). В качестве РЗЭ-содержащей добавки использовали аминомодифицированные наночастицы диоксида кремния с комплексами тербия (Mukhametshina, A.R. Luminescent silica nanoparticles for sensing acetylcholinesterase-catalyzed hydrolysis of acetylcholine / A.R. Mukhametshina, S.V. Fedorenko, I.V. Zueva, K.A. Petrov, P. Masson, I.R. Nizameev, A.R. Mustafina, O.G. Sinyashin // Biosens. Bioelectron. - 2016. - V. 77. - P. 871-878). Аминомодифицированные наночастицы диоксида кремния предварительно высушивали при температурах 100-200°С для удаления влаги.

В таблице 1 представлены примеры составов предлагаемых лантанидсодержащих эпоксидных полимеров,

Спектры люминесценции снимали на приборе Perkin Elmer LS при длинах волн возбуждения 310-320 нм, в диапазоне от 450 до 650 нм при щели 2,5 нм. Скорость сканирования составляла 200 нм/мин, шаг сканирования - 1 нм. Температуру стеклования и модуль упругости определяли методом динамического механического анализа на приборе DMA 242 Е (NETZSCH) при скорости нагрева 5 К/мин. Показатель преломления жидких и отвержденных образцов снимали на рефрактометре ИРФ-22. Спектры пропускания определяли с помощью УФ-спектрофотометра UVmini 1240 (SHIMADZU, Япония).

В таблице 2 представлены свойства получаемых эпоксидных полимеров. На рисунке 1 представлен спектр люминесценции отвержденного полимера на основе эпоксидной смолы NPEL-128, отвердителя ХТ-444, аминомодифицированных наночастиц диоксида кремния с комплексами тербия.

Как видно из таблицы 2, предлагаемый эпоксидный полимер (примеры 1-16) имеет удовлетворительные термомеханические свойства и хорошую прозрачность. Спектр 1 демонстрирует то, что отвержденные эпоксидные полимеры при введении аминомодифицированных силикатных наночастиц, допированных тербием, проявляют люминесцентные свойства.

Пример 1. К 10 массовым частям наночастиц добавляют 10 массовых частей эпоксиноволачной смолы DER-354 и растирают до получения высокодиспергированного порошка. Полученный порошок термообрабатывают при температуре 100-200°С для удаления влаги и химического сшивания с полимерной матрицей. К полученному высокодиспергированному порошку добавляют 20 массовых частей эпоксидной смолы и тщательно растирают в ступке до получения практически прозрачной массы. К полученной массе постепенно добавляют остаток эпоксидной смолы (70 мас. ч.), тщательно перемешивают и добавляют 93 массовых частей отвердителя МГГФА и 2 мас. ч. катализатора. Полученную композицию отверждают по следующему режиму: 100°С - 1 час, 130°С - 0,5 часа, - 170°С - 0,5 часа.

По своим технико-экономическим преимуществам, по сравнению с известными аналогами, заявленный способ получения лантанидсодержащих эпоксидных полимеров, является высокоэффективным благодаря упрощению состава и технологии его получения, позволяющего снизить его трудоемкость и многостадийность, а также возможность получения лантанидсодержащего полимера с более высоким содержанием ионов лантанидов и в процессе технологии - удаления влаги и получения высокодиспергированного порошка, в результате чего химическое сшивание лантанидсодержащих частиц с полимерной матрицей позволяет повысить люминесцентные свойства, то есть интенсивность люминесценции, что исключает их диффузию и потерю, а в конечном итоге обеспечивает стабильную люминесценцию.

Справочный материал к заявке «Способ получения лантанидсодержащего эпоксидного полимера»

Похожие патенты RU2715842C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ЛАНТАНИДСОДЕРЖАЩЕГО ЭПОКСИДНОГО ПОЛИМЕРА 2003
  • Амирова Л.М.
  • Фомин В.П.
  • Амиров Р.Р.
  • Андрианов С.Н.
RU2233855C1
Эпоксидное связующее, препрег на его основе и изделие, выполненное из него. 2021
  • Гребенева Татьяна Анатольевна
  • Панина Наталия Николаевна
  • Баторова Юлия Александровна
  • Чурсова Лариса Владимировна
  • Голиков Егор Ильич
  • Кутергина Ирина Юрьевна
  • Байков Игорь Николаевич
RU2773075C1
ЭПОКСИДНАЯ ПОРОШКОВАЯ КОМПОЗИЦИЯ ДЛЯ ПОКРЫТИЙ 1994
  • Павлович Л.Б.(Ru)
  • Прудкай Петр Андреевич
RU2129137C1
Полимерная композиция для изготовления сотовых панелей 2016
  • Зенитова Любовь Андреевна
  • Кияненко Елена Анатольевна
  • Фенюк Эдуард Олегович
RU2661575C1
ТЕРМОРЕАКТИВНОЕ СВЯЗУЮЩЕЕ 2020
  • Каблов Евгений Николаевич
  • Ткачук Анатолий Иванович
  • Гуревич Яков Михайлович
  • Москвитина Клавдия Николаевна
  • Курносов Артем Олегович
  • Колпачков Егор Дмитриевич
RU2749720C1
ЭПОКСИДНАЯ КОМПОЗИЦИЯ 2013
  • Амиров Рустэм Рафаэльевич
  • Андрианова Кристина Александровна
  • Амирова Ляйсан Рустэмовна
  • Бурилов Александр Романович
RU2542234C2
Эпоксидная композиция 2016
  • Косолапов Алексей Федорович
  • Баль Марина Богдановна
  • Селезнев Вячеслав Александрович
  • Иванова Анна Константиновна
  • Савин Виктор Васильевич
  • Красильникова Вера Витальевна
RU2618557C1
Эпоксидное связующее 2017
  • Шатров Владимир Борисович
  • Стрельников Владимир Николаевич
  • Шайдурова Галина Ивановна
  • Федосеев Михаил Степанович
  • Антипин Вячеслав Евгеньевич
RU2666438C1
СОСТАВ ДЛЯ ПОЛУЧЕНИЯ СВЯЗУЮЩЕГО ДЛЯ ПРЕПРЕГОВ, СПОСОБ ИЗГОТОВЛЕНИЯ СВЯЗУЮЩЕГО, ПРЕПРЕГ И СПОСОБ ИЗГОТОВЛЕНИЯ ПАНЕЛИ ИЗ ПОЛИМЕРНОГО КОМПОЗИЦИОННОГО МАТЕРИАЛА 2014
  • Шокин Геннадий Игоревич
  • Шершак Павел Викторович
  • Андрюнина Марина Алексеевна
  • Рябовол Дмитрий Юрьевич
  • Вересов Алексей Владимирович
RU2559495C1
ЭЛЕКТРООСАЖДАЕМЫЕ ПОКРЫТИЯ, ВКЛЮЧАЮЩИЕ ЛАНТАНИДЫ, ДЛЯ ПРИМЕНЕНИЯ НА АЛЮМИНИЕВЫХ ПОДЛОЖКАХ 2011
  • Пеффер,Робин,М.
  • Ракиевич,Эдвард,Ф.
RU2539121C2

Иллюстрации к изобретению RU 2 715 842 C1

Реферат патента 2020 года СПОСОБ ПОЛУЧЕНИЯ ЛАНТАНИДСОДЕРЖАЩЕГО ЭПОКСИДНОГО ПОЛИМЕРА

Изобретение относится к области химии, физики и касается способа получения новых металлорганических полимеров, конкретно эпоксидных полимеров, и может быть использовано в оптике и квантовой электронике, преимущественно для изготовления волноводов, оптических усилителей, лазеров. Получают лантанидсодержащий эпоксидный полимер смешением эпоксидной смолы с аминомодифицированными наночастицами диоксида кремния с комплексами тербия или иттербия (лантанидсодержащая добавка) и отвердителем при соотношении компонентов исходя из стехиометрического соотношения смолы к отвердителю и к наночастицам (мас.ч.): эпоксидная смола - 100, лантанидсодержащая добавка - 0,5-10, отвердитель - 21-94. В качестве эпоксидной смолы используют, например, эпоксидиановую смолу или эпоксиноволачную смолу. Изобретение позволяет повысить содержание ионов лантанидов и получить эпоксидный полимер с высокими люминесцентными свойствами. 3 з.п. ф-лы, 1 ил., 2 табл., 1 пр.

Формула изобретения RU 2 715 842 C1

1. Способ получения лантанидсодержащего эпоксидного полимера, заключающийся в смешении компонентов, в состав которых входят эпоксидная смола, лантанидсодержащая добавка и отвердитель, отличающийся тем, что в качестве лантанидсодержащей добавки используют аминомодифицированные наночастицы диоксида кремния с комплексами тербия или иттербия, при этом соотношение компонентов выбирают исходя из стехиометрического соотношения смолы к отвердителю и к наночастицам, и оно составляет, мас.ч.:

эпоксидная смола 100 лантанидсодержащая добавка 0,5-10 отвердитель 21-94

2. Способ по п. 1, отличающийся тем, что в качестве эпоксидной смолы используют эпоксидиановую смолу.

3. Способ по п. 1, отличающийся тем, что в качестве эпоксидной смолы используют эпоксиноволачную смолу.

4. Способ по п. 1, отличающийся тем, что компоненты эпоксидной смолы, лантанидсодержащей добавки и отвердителя смешивают в три этапа, в следующей последовательности: на первом этапе к определенному количеству в заданном интервале 0,5-10 мас.ч. аминомодифицированных наночастиц диоксида кремния с комплексами тербия или иттербия добавляют 10 мас.ч. эпоксидной смолы, смесь растирают до получения высокодиспергированного порошка и термообрабатывают при температуре 100-200°С для удаления влаги и проведения химического сшивания аминогрупп частиц, аминомодифицированных наночастиц диоксида кремния с комплексами тербия или иттербия, с эпоксидными группами эпоксидной смолы, далее на втором этапе к полученному высокодиспергированному порошку добавляют 20 мас.ч. эпоксидной смолы и тщательно растирают до получения практически прозрачной массы, на третьем этапе к полученной массе постепенно добавляют остаток эпоксидной смолы 70 мас.ч., тщательно перемешивают и добавляют расчетное количество отвердителя в пределах заданного исходя из эпоксидного числа смолы и стехиометрического коэффициента отвердителя.

Документы, цитированные в отчете о поиске Патент 2020 года RU2715842C1

СПОСОБ ПОЛУЧЕНИЯ ЛАНТАНИДСОДЕРЖАЩЕГО ЭПОКСИДНОГО ПОЛИМЕРА 2003
  • Амирова Л.М.
  • Фомин В.П.
  • Амиров Р.Р.
  • Андрианов С.Н.
RU2233855C1
US 5657156 A, 12.08.1997
СТРУКТУРНО-ОКРАШЕННЫЙ ЭПОКСИДНЫЙ ПОЛИМЕР 1999
  • Амирова Л.М.
  • Ганиев М.М.
  • Прохоров А.А.
  • Сахабиева Э.В.
RU2171268C2
Наномодифицированный эпоксидный композит 2017
  • Абдрахманов Фарид Хабибуллович
  • Бекетов Игорь Валентинович
  • Койтов Станислав Анатольевич
  • Мельников Владимир Николаевич
  • Сафронов Александр Петрович
RU2661583C1
Наполненная эпоксидная композиция 2016
  • Ситников Петр Александрович
  • Белых Анна Геннадьевна
  • Васенева Ирина Николаевна
  • Рябков Юрий Иванович
RU2640519C1

RU 2 715 842 C1

Авторы

Андрианова Кристина Александровна

Амирова Лилия Миниахмедовна

Нуртдинов Азат Ситдикович

Амиров Рустэм Рафаэльевич

Федоренко Светлана Викторовна

Мухаметшина Алсу Рустэмовна

Мустафина Асия Рафаэльевна

Гайфутдинов Амир Марсович

Даты

2020-03-03Публикация

2019-10-04Подача