Способ получения волокнистого кремния Российский патент 2020 года по МПК C01B33/23 C30B29/06 C30B29/62 

Описание патента на изобретение RU2717780C1

Изобретение относится к химической технологии получения волокнистого кремния и может найти применение для использования в порошковой металлургии, литий-ионных источниках тока, преобразователях солнечной энергии, полупроводниковых приборах (термоэлектрических преобразователях, тензодатчиках, переключателей и др.).

Известен способ получения волокон кремния с диаметром от 0,05 до 5,0 мкм, включающий получение смеси водных растворов соли кремниевой кислоты формулы M2SiO3x H2O, где M – щелочной металл Na, K, Li и растворимого полимера, выбранного из поливинилового спирта, полиакриловой кислоты, оксида полиэтилена или поливинилпирролидона, в присутствии по крайней мере одного органического наполнителя при постоянном перемешивании и центрифугическим или электростатическим отжимом раствора с последующим прокаливанием при температуре от 300 до 1400°С в течение 30-240 минут со скоростью нагрева 0,5-20°С/мин (патент CZ 306773; МПК B82B 3/00, C01B 33/12, D01D 5/11; 2017 г.).

Недостатками известного способа являются, во-первых, многостадийность, во-вторых, возможное загрязнение конечного продукта вследствие использования соединений щелочного металла и органических соединений.

Наиболее близким по технической сущности является способ получения нано- и микроволокон кремния, включающий восстановление диоксида кремния в расплаве LiF – KCl – KF – K2SiF6 при температуре 650-800°С с использованием электролиза и последующим механическим отделением осадка кремния от подложки-катода (патент RU № 2427526, МПК B82B3/00, 2010 г.).

Недостатками известного способа являются: невысокая производительность ввиду низкого содержания диоксида кремния в расплаве; большая энергоемкость; необходимость утилизации большого количества жидких отходов; загрязнение конечного продукта при его механическом удалении с подложки.

Таким образом, перед авторами стояла задача разработать способ получения волокнистого кремния в одну стадию, позволяющий упростить процесс и обеспечивающий получения конечного продукта высокой чистоты.

Поставленная задача решена в способе получения волокнистого кремния, включающем восстановление диоксида кремния при высокой температуре с использованием фторсодержащего восстановителя, в котором в качестве фторсодержащего восстановителя используют субфторид алюминия, образующийся при взаимодействии алюминия и трифторида алюминия, взятых в массовом соотношении алюминий : трифторид алюминия = 13÷40 : 60÷87, при этом восстановление диоксида кремния, взятого в количестве 15÷65 масс.% от общего количества алюминия и фторида алюминия, осуществляют с предварительным вакуумированием в токе инертного газа со скоростью подачи 0,1÷10,0 см3/мин на каждый 1 см2 поверхности порошка диоксида кремния при температуре 900÷1100°С и давлении 1÷105 Па со скоростью нагрева 1÷10 град/мин.

В настоящее время из патентной и научно-технической литературы не известен способ получения волокнистого кремния с использованием в качестве исходных реагентов диоксида кремния, алюминия и трифторида алюминия в предлагаемых авторами условиях.

Исследования, проведенные авторами, позволили установить, что получение волокнистого кремния с микронным диаметром волокон при восстановлении диоксида кремния субфторидом алюминия:

(1), возможно при использовании в качестве исходных реагентов порошкообразных технически чистого алюминия и трифорида адлюминия, смесь которых в диапазоне температур 900–1100°С при контакте паров трифторида алюминия, сублимирующегося в этом температурном диапазоне, и металлического алюминия образует субфторид алюминия, который восстанавливает диоксид кремния:

(2).

При этом получение волокон микронного размера чистого кремния возможно только при соблюдении параметров и условий проведения процесса, предлагаемых авторами. Так при меньшем массовом соотношении алюминий : трифторид алюминия наблюдается загрязнение конечного продукта трифторидом алюминия При большем массовом соотношении алюминий : трифторид алюминия наблюдается значительное снижение образующихся волокон кремния. Содержание диоксида кремния, взятого более, чем 65 масс.% от общего количества алюминия и фторида алюминия, не приводит к дальнейшему увеличению выхода реакции, содержание диоксида кремния, взятого менее, чем 15 масс.% от общего количества алюминия и фторида алюминия, ведет к образованию металлического алюминия при разложении субфторида алюминия в низкотемпературной зоне. Существенное влияние на достигаемый результат оказывают и параметры проведения процесса. Так при температуре ниже 900°С, давлении ниже 1 Па и скорости подачи инертного газа менее 0,1 см3/мин не наблюдается образование субфторида алюминия. При температуре выше 1100°С, давлении выше 105Па и скорости подачи инертного газа более 10 см3/мин наблюдается коррозия конструкционных материалов. Получение волокнистого кремния предлагаемым способом предполагает использование газообразных продуктов в реакционной зоне, что обусловливает необходимость вакуумирования и проведение процесса в токе инертного газа, однако это позволяет достичь желаемого технического результата: получение микроволокон кремния высокой чистоты в одну стадию.

На фиг.1 изображен снимок микроволокон кремния, сделанный на электронном микроскопе MIRA TESCAN 3.

На фиг.2 изображены микроволокна кремния, полученные на поверхности алундовой емкости.

На фиг.3 изображена дифрактограмма полученных микроволокон кремния.

Предлагаемый способ получения волокнистого кремния заключается в следующем: порошкообразные металлический алюминий и трифторид алюминия, взятые в массовом соотношении алюминий : трифторид алюминия = 13÷40:60÷87, загружают в виде смеси в открытую емкость, в отдельную открытую емкость загружают диоксид кремния или материал, содержащий SiO2, при этом количество SiO2 равно 15÷65 масс.% от общего количества алюминия и фторида алюминия. Обе емкости располагают в реакторе. После чего реактор вакуумируют, заполняют инертным газом (например, аргоном) и нагревают до температур 900–1100°С со скоростью 1 – 10 град/мин. Процесс ведут при давлении в интервале от 1 до 105 Па и скорости потока инертного газа в интервале от 0,1 до 10 см3/мин на каждый 1 см2 поверхности порошка диоксида кремния в течение 1,5-2,0 часов. Конечный продукт аттестован на рентгеновском дифрактометре PANalitical XPert PRO MRD и электронном микроскопе Mira 3 Tescan.

Образующийся кремний формирует волокнистую структуру на поверхности открытой емкости из алунда без непосредственного контакта с загрузкой исходного диоксида кремния и получившегося в результате реакции оксида алюминия. Трифторид алюминия конденсируется в низкотемпературной зоне реактора и может быть использован повторно.

Полученный по предлагаемому способу продукт представляет собой волокна кремния с диаметром от 0,01 мкм до 24 мкм, как изображено на фиг. 1.

Предлагаемый способ иллюстрируется следующими примерами.

Пример 1.

Берут 1,6 г металлического алюминия в чушке и 10,7 г порошка трифторид алюминия, что соответствует массовому соотношению алюминий : трифторид алюминия = 13:87, загружают в виде смеси в емкость, в отдельную емкость загружают 1,8 г порошка диоксида кремния, при этом количество диоксида кремния равно 15 масс. % от общего количества алюминия и фторида алюминия. Обе емкости располагают в реакторе. После чего реактор вакуумируют, заполняют аргоном и нагревают до температур 900°С со скоростью 1 град/мин. Процесс ведут при давлении 1 Па и скорости потока инертного газа 0,3 см3/мин при площади поверхности оксида кремния 3 см2 в течение 1,5 часов.

На поверхности алундовой емкости были получены микроволокна кремния, как изображено на фиг. 2. Рентгенофазовый анализ показал наличие пиков кремния с кристаллической решеткой Fd3m и параметром решетки а = 5,429(8) Ǻ (фиг. 3).

Пример 2.

Берут 4,8 г металлического алюминия в чушке и 7,2 г порошка трифторид алюминия, что соответствует массовому соотношению алюминий : трифторид алюминия = 40:60, загружают в виде смеси в емкость, в отдельную емкость загружают 7,8 г порошка диоксида кремния, при этом количество диоксида кремния равно 65 масс. % от общего количества алюминия и фторида алюминия. Обе емкости располагают в реакторе. После чего реактор вакуумируют, заполняют аргоном и нагревают до температур 1100°С со скоростью 10 град/мин. Процесс ведут при давлении 105 Па и скорости потока инертного газа 30 см3/мин при площади поверхности оксидом кремния 3 см2 в течение 2,0 часов.

На поверхности алундовой емкости были получены волокна кремния. Рентгенофазовый анализ показал наличие пиков кремния с кристаллической решеткой Fd3m.

Пример 3.

Берут 2,4 г металлического алюминия в чушке и 7,2 г порошка трифторид алюминия, что соответствует массовому соотношению алюминий : трифторид алюминия = 25:75, загружают в виде смеси в емкость, в отдельную емкость загружают шамотную пластину массой 8,8 г и содержанием диоксида кремния 47 мас. %, при этом количество диоксида кремния равно 43 масс. % от общего количества алюминия и фторида алюминия. Обе емкости располагают в реакторе. После чего реактор вакуумируют, заполняют аргоном и нагревают до температур 900°С со скоростью 5 град/мин. Процесс ведут при давлении 1 Па и скорости потока инертного газа 0,3 см3/мин при площади поверхности оксида кремния 3 см2 в течение 1,5 часов.

На поверхности алундовой емкости были получены микроволокна кремния. Рентгенофазовый анализ показал наличие пиков кремния с кристаллической решеткой Fd3m.

Таким образом, авторами предлагается способ получения волокнистого кремния, позволяющий получать микроволокна кремния высокой чистоты в одну стадию. Дополнительным положительным эффектом является возможность маштабирования способа с целью использования в промышленном производстве.

Похожие патенты RU2717780C1

название год авторы номер документа
Способ получения анодного материала для литий-ионных аккумуляторов 2023
  • Кудякова Валерия Сергеевна
  • Шишкин Роман Александрович
RU2812230C1
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА НИТРИДА АЛЮМИНИЯ 2005
  • Афонин Юрий Дмитриевич
  • Бекетов Аскольд Рафаилович
  • Бекетов Дмитрий Аскольдович
  • Черный Никита Львович
RU2312060C2
АЭРОГЕЛЕВЫЙ КОМПОЗИТ С ВОЛОКНИСТЫМ ВАТИНОМ 2001
  • Степаниан Кристофер Дж.
  • Гулд Джордж
  • Бегаг Редун
RU2310702C2
СПОСОБ ПОЛУЧЕНИЯ НАНО- И МИКРОВОЛОКОН КРЕМНИЯ ЭЛЕКТРОЛИЗОМ ДИОКСИДА КРЕМНИЯ ИЗ РАСПЛАВОВ СОЛЕЙ 2010
  • Чемезов Олег Владимирович
  • Батухтин Виктор Павлович
  • Аписаров Алексей Петрович
  • Исаков Андрей Владимирович
  • Зайков Юрий Павлович
RU2427526C1
СПОСОБЫ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА АРОМАТИЗАЦИИ 2017
  • Ву, Ан-Хсианг
RU2736760C1
НОСИТЕЛЬ КАТАЛИЗАТОРА, СПОСОБ ЕГО ПОЛУЧЕНИЯ, СУСПЕНЗИЯ ДЛЯ ИСПОЛЬЗОВАНИЯ ПРИ ЕГО ПОЛУЧЕНИИ, КАТАЛИЗАТОР И ЕГО ПРИМЕНЕНИЕ ДЛЯ ПОЛУЧЕНИЯ ПЕРОКСИДА ВОДОРОДА 2001
  • Делльве Анна-Карин
  • Токарз Бозена
  • Нюстрем Матс
RU2215578C2
СПОСОБ ПОЛУЧЕНИЯ ДИОКСИДА ЦИРКОНИЯ 2013
  • Алексейко Леонид Николаевич
  • Гончарук Владимир Кириллович
  • Масленникова Ирина Григорьевна
RU2539581C1
ПОРОШОК СПЛАВА НА ОСНОВЕ УРАНА, СОДЕРЖАЩЕГО МОЛИБДЕН, ПРИГОДНЫЙ ДЛЯ ИЗГОТОВЛЕНИЯ ЯДЕРНОГО ТОПЛИВА И МИШЕНЕЙ, ПРЕДНАЗНАЧЕННЫХ ДЛЯ ИЗГОТОВЛЕНИЯ РАДИОИЗОТОПОВ 2011
  • Аллену, Жером
  • Шаролле, Франсуа
  • Бротьер, Мерил
  • Илти, Ксавье
  • Тугэ, Оливье
  • Пастюрель, Матье
  • Ноэль, Анри
RU2584837C2
СПОСОБ ПОЛУЧЕНИЯ НИТЕВИДНОГО НИТРИДА АЛЮМИНИЯ 1996
  • Афонин Юрий Дмитриевич
  • Бекетов Аскольд Рафаилович
  • Жукова Людмила Михайловна
  • Панюшкин Альберт Константинович
  • Проскуряков Леонид Дмитриевич
RU2106298C1
ШИХТА ДЛЯ ПОЛУЧЕНИЯ НИТРИДА АЛЮМИНИЯ 1997
  • Афонин Юрий Дмитриевич
  • Бекетов Аскольд Рафаилович
  • Бекетов Дмитрий Аскольдович
  • Бисеров Александр Георгиевич
  • Зайков Юрий Павлович
  • Сысоев Анатолий Васильевич
RU2136587C1

Иллюстрации к изобретению RU 2 717 780 C1

Реферат патента 2020 года Способ получения волокнистого кремния

Изобретение относится к химической технологии получения волокнистого кремния и может найти применение для использования в порошковой металлургии, литий-ионных источниках тока, преобразователях солнечной энергии, полупроводниковых приборах, таких как термоэлектрические преобразователи, тензодатчики и переключатели. Волокнистый кремний получают восстановлением диоксида кремния при высокой температуре с использованием фторсодержащего восстановителя, в качестве которого используют субфторид алюминия, образующийся при взаимодействии алюминия и трифторида алюминия, взятых в массовом соотношении алюминий : трифторид алюминия = 13÷40:60÷87, при этом восстановление диоксида кремния, взятого в количестве 15÷65 мас. % от общего количества алюминия и фторида алюминия, осуществляют с предварительным вакуумированием в токе инертного газа со скоростью подачи 0,1÷10,0 см3/мин на каждый 1 см2 поверхности порошка диоксида кремния при температуре 900÷1100°С и давлении 1÷10 Па со скоростью нагрева 1÷10 град/мин. Изобретение позволяет получать микроволокна кремния высокой чистоты в одну стадию. 3 ил., 3 пр.

Формула изобретения RU 2 717 780 C1

Способ получения волокнистого кремния, включающий восстановление диоксида кремния при высокой температуре с использованием фторсодержащего восстановителя, отличающийся тем, что в качестве фторсодержащего восстановителя используют субфторид алюминия, образующийся при взаимодействии алюминия и трифторида алюминия, взятых в массовом соотношении алюминий : трифторид алюминия = 13÷40:60÷87, при этом восстановление диоксида кремния, взятого в количестве 15÷65 мас.% от общего количества алюминия и фторида алюминия, осуществляют с предварительным вакуумированием в токе инертного газа со скоростью подачи 0,1÷10,0 см3/мин на каждый 1 см2 поверхности порошка диоксида кремния при температуре 900÷1100°С и давлении 1÷105 Па со скоростью нагрева 1÷10 град/мин.

Документы, цитированные в отчете о поиске Патент 2020 года RU2717780C1

СПОСОБ ПОЛУЧЕНИЯ НАНО- И МИКРОВОЛОКОН КРЕМНИЯ ЭЛЕКТРОЛИЗОМ ДИОКСИДА КРЕМНИЯ ИЗ РАСПЛАВОВ СОЛЕЙ 2010
  • Чемезов Олег Владимирович
  • Батухтин Виктор Павлович
  • Аписаров Алексей Петрович
  • Исаков Андрей Владимирович
  • Зайков Юрий Павлович
RU2427526C1
US 9546094 B2, 17.01.2017
CN 103482628 A, 01.01.2014
JP 2013011012 A, 17.01.2013.

RU 2 717 780 C1

Авторы

Шишкин Роман Александрович

Кудякова Валерия Сергеевна

Даты

2020-03-25Публикация

2019-10-22Подача