Изобретение относится к области металлургии неметаллов, а именно к производству электролитического кремния в виде нановолокон или микроволокон с использованием сырья - диоксида кремния, который подвергается электролизу в хлоридно-фторидном расплаве солей.
Известны способы получения волокнистых наноразмерных (микроразмерных) кремниевых структур из паровой фазы по ПЖК-механизму («пар-жидкость-твердое тело»), когда на поверхности подложки формируются нанокапли сплава кремния с инициирующими металлами (Au, Ag, Cu, Pt, Pd, Ni). При пересыщении сплава по кремнию на поверхности подложки начинает формироваться нановолокно (микроволокно) кремния того же диаметра, что и капля сплава. Наноразмерная (микроразмерная) капля сплава кремния с инициирующим металлом остается на вершине кремниевого нановолокна и поглощает кремний из газовой фазы. [Гиваргизов Е.И. / Рост нитевидных и пластинчатых кристаллов из пара. / Наука, М, 1977, 304 с.].
Известен хлоридный процесс, то есть взаимодействие SiCl4+H2, идущий в температурном диапазоне 900-1050°С [Вагнер Р.С. / в сб. «Монокристаллические волокна и армированные ими материалы», М., «Мир», 1973, с.42].
Известен метод переноса кремния в ампуле с помощью йода (брома), когда источник нагревается до 1100-1200°C, а подложка до 850-1000°C [Сандулова А.В., Богоявленский А.С., Дронюк М.И. / Доклады АН СССР 153, 82 (1963)].
Разработан метод получения нановолокон кремния напылением в вакууме, идущий в интервале температур 500-1000°C [K.Ishiwatari, T.Oka, K.Akiyama / Japan J Apple Phys 6, 1170 (1967)].
Сообщается о получении нановолокон кремния разложением SiH4 в интервале температур 550-900°C [G.A.Bootsma, H.G.Gassen / J. Crystal growth 10, 223 (1971); Majumdar A et al. / Патент США №7569941 от 04.08.2009].
Вышеуказанные методы получения нановолокон (или микроволокон) кремния имеют сложное аппаратурное оформление, для их организации требуются большие капитальные вложения на закупку оборудования и большие эксплуатационные расходы на его эксплуатацию.
Относительно высокие рабочие температуры (за 1000°C) вышеуказанных технологий в сочетании с использованием в процессах химически агрессивных галогенсодержащих газов-носителей кремния, а также необходимость создания в ряде случаев глубокого вакуума предъявляет высокие требования (по качеству и стоимости) к конструкционным материалам, которые можно использовать в установках для эксплуатации вышеуказанных технологий. В конечном итоге это приводит к увеличению себестоимости полученной продукции - нановолокон кремния.
Кроме того, во всех вышеуказанных технологиях получения нановолокон Si используются токсичные кремнийсодержащие газы, которые представляют опасность для окружающей среды. Следовательно, необходимо предусматривать меры (а значит - увеличивать энергозатраты) по предотвращению попадания токсичных веществ в окружающее пространство.
Наконец использование благородных металлов активаторов, в том числе: золота, платины, палладия и др., ведет к неизбежным потерям этих металлов в ходе длительной эксплуатации.
В целом существующие на данный момент технологии получения нановолокон кремния имеют большие удельные энергозатраты на производство одного килограмма элементарного кремния, что, безусловно, увеличивает себестоимость его производства.
При получении тугоплавких металлов и неметаллов существенный выигрыш в затратах энергии на единицу массы при сохранении требуемой чистоты и качества по сравнению с другими металлургическими технологиями дает электролиз из расплавов солей, содержащих растворенный оксид получаемого металла или неметалла. Однако электролитический способ получения нановолокон (или микроволокон) кремния с использованием в качестве сырья оксида кремния не известен. Высокочистый оксид кремния встречается как в природных месторождениях, так и является побочным продуктом переработки ряда видов минерального сырья и его (SiO2) себестоимость относительно низка.
Задача настоящего изобретения заключается в разработке электролитического метода получения кремния нановолокнистой или микроволокнистой структуры с более низкими затратами на оборудование, материалы, электрическую и тепловую энергию.
Поставленная задача решена тем, что в заявляемом способе получения нано- или микрооволокон кремния электролизом диоксида кремния из расплавов солей процесс электролиза SiO2 ведут в расплаве LiF (0÷3) - KCl (10÷50) - KF (5÷50) - K2SiF6 (5÷45) - SiO2 (2÷5). мас.% при температуре 650÷800°C и катодной плотности тока 0,005-1,5 А/см2 с последующим отделением осадка кремния от поверхности катода-подложки и электролита.
При этом способ характеризуется тем, в качестве катода-подложки используют графит, серебро или другие инертные по отношению к кремнию (при условиях электролиза) материалы. В качестве материала, содержащего кремний, используют диоксид кремния, полученный при переработке серпентинита или из отходов кварцевого стекла.
Заявляемый способ можно охарактеризовать как электролитический способ получения нановолокнистых (или микроволокнистых) осадков кремния, в котором в качестве электролита используется оксидно-фторидно-хлоридный расплав солей. Температурный интервал, а также интервал катодных плотностей тока, при которых ведут процесс, является оптимальным для электролитического выделения кристаллических нановолокнистых (или микроволокнистых) электролитических осадков элементарного Si. Нижние и верхние пределы технических параметров заявляемого способа были получены экспериментальным путем на основе опытных исследований и анализа результатов экспериментов.
Предлагаемый способ предполагает извлечение из ванны катодного осадка вместе с катодом, что обеспечивает возможность электролитического получения наноструктурных (или микроструктурных) волокон кремния при отсутствии непосредственного контакта поверхности фазы элементарного кремния с газовой фазой над расплавом при повышенной температуре в ходе процесса электролиза. Как результат окисление поверхности кремния при температуре электролиза остаточными окислителями из атмосферы затрудняется, что способствует получению нановолокон (или микроволокон) кремния высокого качества. Предлагаемый способ электролиза не требует организации инертной атмосферы над расплавом, что упрощает и удешевляет конструкцию и эксплуатацию электролизера для получения нановолокон (микроволокон) кремния из оксидно-хлоридно-фторидного расплава. Необходимость в вакуумной системе в конструкции электролизера отпадает.
Техническим результатом заявленного способа является получение нановолокнистого (или микроволокнистого) кремния высокого качества и с требуемой волокнистой структурой, при относительно простом аппаратурном оформлении процесса.
Пример 1. Электролиз проводили в расплаве, состоящем из 37,8 мас.% хлорида калия, 30,9 мас.% фторида калия и 31,3 мас.% гексафторсиликата калия с добавлением 3 мас.% SiO2 (тонкодисперсный осажденный кремнезем производства ОАО «Асбестовский магниевый завод») на графитовых катодах-подложках, с катодной плотностью тока 0,025÷0,25 А/см2 при температурах 700÷750°C. Осадок механически отделяли от поверхности катода-подложки и отмывали от электролита. Выделившийся на катоде осадок имеет вид прямолинейных цилиндрических волокон диаметром от 100 до 300 нм и длиной до 40 мкм.
Пример 2. Электролиз проводили в расплаве, состоящем из 38,7 мас.% хлорида калия, 24,6 мас.% фторида калия и 35,7 мас.% гексафторсиликата калия с добавлением 3 мас.% SiO2 (тонкодисперсный осажденный кремнезем производства ОАО «Асбестовский магниевый завод») на графитовых электродах-подложках. Катодную плотностью тока варьировали от 0,02 до 0,03 А/см2. Температуру процесса поддерживали 750÷800°C. Осадок механически отделяли от поверхности катода-подложки и отмывали от электролита. Выделившийся на катоде осадок состоял из волокон кремния диаметром от 300 до 1000 нм и длиной до 1 мкм в зависимости от условий процесса.
Пример 3. Электролиз проводили в расплаве, состоящем из 2,5 мас.% фторида лития, 42,4 мас.% хлорида калия, 36,6 мас.% фторида калия и 18,5 мас.% гексафторсиликата калия с добавлением 3 мас.% SiO2 (тонкодисперсный осажденный кремнезем производства ОАО «Асбестовский магниевый завод») на графитовых электродах-подложках. Катодная плотность тока 0,015 А/см2. Температуру процесса поддерживали 650÷700°C. Осадок механически отделяли от поверхности катода-подложки и отмывали от электролита. Выделившийся на катоде осадок состоял из волокон кремния диаметром от 50 до 500 нм и длиной до 100 мкм в зависимости от условий процесса.
Пример 4. Электролиз проводили в расплаве, состоящем из 44,8 мас.% хлорида калия, 28,5 мас.% фторида калия и 26,7 мас.% гексафторсиликата калия с добавлением 2 мас.% SiO2 (тонкодисперсный осажденный кремнезем производства ОАО «Асбестовский магниевый завод») на серебряных электродах-подложках. Катодная плотность тока 0,020 А/см2. Температуру процесса поддерживали 650÷700°C. Осадок механически отделяли от поверхности катода-подложки и отмывали от электролита. Выделившийся на катоде осадок состоял из волокон кремния диаметром от 300 до 500 нм и длиной до 10 мкм в зависимости от условий процесса.
Пример 5. Электролиз проводили в расплаве, состоящем из 47,4 мас.% хлорида калия, 35.1 мас.% фторида калия и 17.5 мас.% гексафторсиликата калия с добавлением 3.5 мас.% SiO2 (лом кварцевого стекла) на графитовых электродах-подложках. Катодная плотность тока 1,5 А/см2. Температуру процесса поддерживали 650÷750°C. Осадок механически отделяли от поверхности катода-подложки и отмывали от электролита. Выделившийся на катоде осадок состоял из волокон кремния диаметром от 300 до 500 нм и длиной до 10 мкм в зависимости от условий процесса.
Таким образом, приведенные данные подтверждают, что совокупность заявленных признаков способа позволяет получать электролитические микро- или нановолокна кремния, которые характеризуются содержанием основного компонента (кремния) >99,9 мас.%.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ КРЕМНИЯ НАНО- ИЛИ МИКРОВОЛОКНИСТОЙ СТРУКТУРЫ | 2009 |
|
RU2399698C1 |
Способ электролитического получения кремния из расплавленных солей | 2020 |
|
RU2751201C1 |
ЭЛЕКТРОХИМИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ СПЛОШНЫХ СЛОЕВ КРЕМНИЯ | 2012 |
|
RU2491374C1 |
Электролитический способ получения кремния из расплавленных солей | 2021 |
|
RU2775862C1 |
Электролитический способ получения наноразмерного кремния из иодидно-фторидного расплава | 2022 |
|
RU2778989C1 |
Способ электроосаждения сплошных осадков кремния из расплавленных солей | 2022 |
|
RU2795477C1 |
Способ электролитического получения микроразмерных пленок кремния из расплавленных солей | 2022 |
|
RU2797969C1 |
Способ электролитического получения кремния из расплавленных солей | 2021 |
|
RU2760027C1 |
Расплав для электролитического получения металлического кремния | 1987 |
|
SU1546515A1 |
Электрохимический способ получения микрокристаллического порошка кремния | 2018 |
|
RU2671206C1 |
Изобретение относится к производству электролитического кремния в виде нановолокон или микроволокон с использованием сырья - диоксида кремния. Сущность изобретения: способ получения нано- или микрооволокон кремния характеризуется тем, что процесс электролиза SiO2 ведут в расплаве LiF (0÷3) - KCl (10÷50) - KF (5÷50) - K2SiF6 (5÷45) - SiO2 (2-5) мас.% при температуре 650÷800°С и катодной плотности тока 0,005-1,5 А/см2 с последующим отделением осадка кремния от поверхности катода-подложки и электролита. Техническим результатом изобретения является получение нановолокнистого или микроволокнистого кремния высокого качества и с требуемой волокнистой структурой, при относительно простом аппаратурном оформлении процесса. 4 з.п. ф-лы.
1. Способ получения нано- или микроволокон кремния электролизом диоксида кремния из расплавов солей, характеризующийся тем, что процесс ведут в расплаве LiF (0÷3) - KCl (10÷50) - KF (5÷50) - K2SiF6 (5÷45) - SiO2 (2÷5) мас.% при температуре 650÷800°С и катодной плотности тока 0,005-1,5 А/см2 на электропроводном катоде-подложке из материала, слабо взаимодействующего с кремнием при рабочей температуре процесса с последующим отделением осадка кремния от поверхности катода-подложки и электролита.
2. Способ по п.1, характеризующийся тем, что процесс ведут на электропроводном катоде-подложке из графита.
3. Способ по п.1, характеризующийся тем, что процесс ведут на электропроводном катоде-подложке из серебра.
4. Способ по п.1, характеризующийся тем, что электролизу подвергают диоксид кремния, полученный при переработке серпентинита.
5. Способ по п.1, характеризующийся тем, что электролизу подвергают диоксид кремния, полученный из отходов кварцевого стекла.
СПОСОБ ПОЛУЧЕНИЯ КРЕМНИЕВЫХ НАНОСТРУКТУР | 2001 |
|
RU2192689C1 |
СПОСОБ ПОЛУЧЕНИЯ РЕГУЛЯРНЫХ СИСТЕМ НАНОРАЗМЕРНЫХ НИТЕВИДНЫХ КРИСТАЛЛОВ КРЕМНИЯ | 2007 |
|
RU2336224C1 |
US 6846474 B2, 25.01.2005 | |||
US 7569941 B2, 04.08.2009. |
Авторы
Даты
2011-08-27—Публикация
2010-06-01—Подача