СПОСОБ ОБНАРУЖЕНИЯ И ПОРАЖЕНИЯ ВОЗДУШНОЙ ЦЕЛИ РАКЕТНЫМ КОМПЛЕКСОМ Российский патент 2020 года по МПК F42B15/10 

Описание патента на изобретение RU2718560C1

Изобретение относится к комплексам противовоздушной обороны мобильных и стационарных объектов.

Известны зенитные ракетные комплексы (РК) противовоздушной обороны (ПВО) с самонаводящимися ракетами, включающие системы обнаружения воздушных целей (ВЦ), целераспределения/целеуказания, запуска ракет, обслуживания, др., которые обеспечивают поражение ВЦ в своей зоне ответственности, - см., например, А.Н. Волжин, Ю.Г. Сизов «Борьба с самонаводящимися ракетами», М., Воениздат, 1983, стр. 40-42, рис. 2.1.

Известно также, что высокоточное наведение зенитных управляемых ракет (ЗУР) на ВЦ наилучшим образом обеспечивается при использовании комбинированных методов, когда на начальном (среднем) участке полета ЗУР применяются максимально помехоустойчивая система наведения, а на конечном участке - головка самонаведения (ГСН). При этом выявляется тенденция перехода к автономному наведению на конечном участке полета ЗУР при минимальном участии наземных средств зенитного комплекса - см., например, «Проектирование зенитных управляемых ракет» под ред. И.С. Голубева, В.Г. Светлова, М., МАИ, 1999, стр. 164. Примером технической реализации данной концепции (комбинированного способа наведения) является ЗУР «Эринт-1» (США) - см. там же, стр. 529-533, рис. 7.24 (ближайший аналог).

Однако ближайший аналог, обеспечивая надежное решение целевой задачи поражения ВЦ, в контексте борьбы с легкими и сверхлегкими беспилотными летательными аппаратами (БЛА) является исключительно нерациональным техническим решением с позиции критерия «эффективность - стоимость». Например, соотношение цены подобного БЛА и ЗУР типа «Эринт» может достигать 1:20000, что абсолютно исключает применение данного зенитного РК против легких и сверхлегких БЛА и их групп.

Технической задачей предлагаемого изобретения является создание способа обнаружения и поражения ВЦ типа тактического БЛА (самолетной, вертолетной или аэростатической схемы массой до 500 кг), обеспечивающего приемлемое соотношение критерия «эффективность - стоимость» для РК противовоздушной обороны (с учетом ценности защищаемого объекта).

Решение указанной технической задачи достигается тем, что, обеспечивая поиск и селекцию ВЦ в зоне ответственности РК, определение координат и скорости ВЦ, расчет точки перехвата для доставки самонаводящегося поражающего элемента (ПЭ), старт и доставку ПЭ в точку перехвата, последующее визирование ВЦ головкой самонаведения ПЭ вплоть до поражения, - поражающий элемент доставляют в точку перехвата по навесной баллистической траектории посредством неуправляемой ракетной ступени (PC), которую отделяют от ПЭ не ниже высоты полета ВЦ, после отделения PC производят развертывание ПЭ в конфигурацию автономного полета, далее осуществляют программное зависание ПЭ на высоте ниже ВЦ либо снижение ПЭ со скоростью не более 10 м/с головной частью вверх, при этом головка самонаведения ПЭ сканирует воздушное пространство выше линии горизонта, последовательно по всем азимутам от 0° до 360° (при единичном обороте) и углу места от линии горизонта до зенита, при обнаружении и селекции ВЦ ГСН выполняет ее захват на сопровождение, а ПЭ посредством собственной двигательной установки (ДУ) выполняет перехват ВЦ с последующим ее поражением. При этом значение момента времени разделения связки PC и ПЭ рассчитывают и вводят в полетное задание изделия перед стартом. Как правило, после разделения с ПЭ ракетная ступень выбрасывает в воздушный поток парашют либо раскладывает лопасти авторотирующего воздушного винта. В ряде случаев зависание и снижение ПЭ осуществляют посредством электрической ДУ с 2-8 воздушными несущими винтами. В ряде случаев ПЭ дополнительно выполняет программное барражирование головной частью вверх на высоте ниже полета ВЦ. Заканчивая барражирование, при отсутствии ВЦ ПЭ осуществляет программную мягкую посадку. Барражирование может также осуществлять ПЭ самолетной схемы. В ряде случаев программное снижение ПЭ осуществляют посредством парашюта или авторотирующего воздушного винта. При этом в некоторых случаях программное зависание ПЭ осуществляют посредством тросовой аэростатической системы, в которой подъемную силу создает воздушный шар-змей (наполняемый газом легче воздуха после разделения ПЭ и PC), в качестве якоря применяют отработавшую PC, а длину троса устанавливают в пределах 20…100 метров. При этом ГСН ПЭ выполняют пассивной оптико-электронной с матричным фотоприемным устройством, а штатную работу ГСН осуществляют в период снижения или в период снижения и после вертикального приземления ПЭ. В ряде случаев ДУ ПЭ выполняют ракетной твердотопливной, с управлением ПЭ по траектории воздушными рулями. Поражение ВЦ производят посредством формирования ПЭ направленного форса огня, либо таранным ударом ПЭ, либо путем запутывания ВЦ в сеть, транспортируемую и развертываемую ПЭ, либо осуществляют ударной волной и поражающими элементами осколочно-фугасной боевой части (БЧ) ПЭ (бортовой картечницы ПЭ), либо поражающими элементами стержневой БЧ ПЭ. В ряде случаев PC и ПЭ соединяют посредством цилиндрического шарнира, при этом в полете PC проворачивают, а ПЭ стабилизируют по крену до момента их разделения.

На фиг. 1-5 представлены принципиальные схемы реализации предложенного технического решения (концепция «воздушного минирования»). Приняты обозначения:

1 - воздушная цель типа легкого тактического БЛА (самолетной, вертолетной или аэростатической схемы);

2 - пусковая установка (ПУ) для базирования и запуска «воздушных мин»;

3 - траектория полета БЛА высотой НВЦ;

4 - точка разделения стартово-разгонной неуправляемой ракетной ступени и поражающего элемента (в сборе);

5 - стартово-разгонная PC;

6 - парашют;

7 - ПЭ ракетного типа;

8 - диаграмма приема излучения бортовой ГСН ПЭ;

9 - точка максимально допустимого снижения ПЭ без штатной посадки на земную поверхность;

10 - траектория ПЭ в направлении ВЦ при реализации режима самонаведения;

11 - точка мягкой посадки на земную поверхность;

12 - авторотирующий воздушный винт;

13 - посадочная опора (устройство);

14 - ПЭ типа мультикоптер;

15 - точка выстрела бортовой картечницы ПЭ;

16 - траектория захода на посадку ПЭ многократного применения;

17 - ПЭ самолетного типа;

18 - воздушный шар-змей;

19 - трос длиной, при которой для расчетного значения скорости ветра реализуется заданная высота зависания шара-змея Hmin.

Функционирование вариантов устройств в рамках предложенного технического решения осуществляется следующим образом (фиг. 1-5). Пуск изделия по обнаруженной и идентифицированной ВЦ-БЛА поз. 1 в зоне ответственности РК производится посредством ПУ поз. 2. Полет изделия на стартовом участке траектории производится в рассчитанную РК упрежденную точку перехвата (с учетом прогнозной траектории движения поз. 3 БЛА поз. 1) посредством стартово-разгонной ракетной ступени поз. 5, при этом разделение поражающего элемента (в сборе) и PC производится в точке поз. 4 (значение момента времени разделения PC и ПЭ вводят перед стартом в качестве полетного задания). Следует отметить, что баллистическая траектория изделия от ПУ поз. 2 до точки перехвата принципиально является навесной (не настильной), что связано с необходимостью учета времени проведения процессов разделения ПЭ и PC, стабилизации, воздушного торможения, вертикализации ГСН до начала ее работы в штатном режиме поиска ВЦ-БЛА поз. 1 в верхней полусфере на относительно простых фонах неба. Отработавшая PC поз. 5 после разделения опускается на землю, как правило, на парашюте поз. 6 либо авторотирующем воздушном винте поз. 12 (на схеме не показано), что позволяет минимизировать ущерб от ее падения (в т.ч. в плотной городской застройке).

Стабилизация, вертикализация и воздушное торможение поражающего элемента могут, в зависимости от принятой схемы и конструктивно-компоновочных особенностей, осуществляться различным образом. Например, на фиг. 1 приведен вариант программного спуска ПЭ ракетного типа поз. 7 с помощью парашюта поз. 6 головной частью вверх со скоростью снижения не более 10 м/с. При этом пассивная оптико-электронная ГСН ПЭ осуществляет сканирование воздушного пространства в границах диаграммы приема излучения поз. 8: выше линии горизонта, последовательно по всем азимутам от 0° до 360° (при единичном обороте) и углу места от линии горизонта до зенита (местной вертикали). Диаграмма приема излучения бортовой ГСН поз. 8, в зависимости от принятой схемы и конструктивных особенностей устройств воздушного торможения, может иметь «мертвую зону» (например, в околозенитной области за счет ее экранирования куполом парашюта поз. 6). Следует отметить, что высота НВЦ полета ВЦ-БЛА поз. 1 должна превышать высоту траектории ПЭ поз. 7 в период штатной работы бортовой ГСН.

При обнаружении и селекции ВЦ-БЛА поз. 1 - ГСН ПЭ выполняет ее захват на автоматическое сопровождение. Поражающий элемент поз. 7 посредством собственной ракетной ДУ перемещается из положения не ниже точки максимально допустимого парашютного снижения поз. 9 (вариант без штатной посадки ПЭ на земную поверхность) в точку перехвата ВЦ по траектории доразгона поз. 10 (с реализацией при этом режима самонаведения и управлением ПЭ посредством воздушных рулей). Поражение ВЦ-БЛА поз. 1 может осуществляться ПЭ, например, посредством формирования направленного форса огня (термическая деструкция планера, бортового оборудования и аппаратуры БЛА поз. 1), таранным ударом и/или подрывом осколочно-фугасной БЧ, путем поражения элементами стержневой БЧ либо бортовой картечницы, в ряде случаев - путем запутывания БЛА в сеть, транспортируемую и развертываемую ПЭ.

На фиг. 2 приведен вариант программного спуска ПЭ ракетного типа поз. 7 с помощью авторотирующего воздушного винта поз. 12 головной частью вверх со скоростью снижения не более 10 м/с. Циклограмма работы бортового оборудования ПЭ в целом соответствует предыдущему варианту. Дополнительно ПЭ поз. 7 оборудован посадочным устройством поз. 13 для мягкой посадки на земную поверхность в точке поз. 11 и последующей вертикализации головки самонаведения. В данном варианте бортовая оптико-электронная ГСН ПЭ осуществляет сканирование воздушного пространства в верхней полусфере как на этапе спуска, так и после мягкой посадки (в пределах ресурса бортовой системы электропитания). После выявления ВЦ-БЛА поз. 1 ПЭ поз. 7 стартует на перехват ВЦ непосредственно с земли.

На фиг. 3 представлен вариант ПЭ поз. 14 типа мультикоптер. Зависание на высоте менее НВЦ в данном случае осуществляют, например, посредством электрической ДУ с 2-8 воздушными винтами. Энергообеспечение такой ДУ можно производить от бортовых электрических аккумуляторов, ампульных или термохимических батарей. Данный вариант позволяет «воздушной мине» дополнительно реализовать режим барражирования (программного либо с управлением по оптическому или радиоканалу от соответствующей аппаратуры РК), что многократно расширяет возможности ПВО при противодействии БЛА. Увеличиваются время прикрытия и защищаемое пространство, могут быть реализованы схемы многократного применения ПЭ поз. 14, например, с обстрелом цели бортовой картечницей в точке поз. 15 (в т.ч. несколькими залпами) и последующим выходом ПЭ поз. 14 по траектории поз. 16 на посадку в точку приземления поз. 11.

Аналогичные задачи (кроме зависания) может выполнять вариант изделия с ПЭ самолетного типа поз. 17 (см. фиг. 4, показан ПЭ поз. 17 однократного применения).

На фиг. 5 представлен вариант изделия на базе аэростатических принципов штатного функционирования в режиме обнаружения ВЦ поз. 1 с последующим доразгоном по траектории поз. 10 ракетного ПЭ поз. 7. В данном случае отработавшая PC поз. 5 после разделения с ПЭ поз. 7 в точке поз. 4 дополнительно выполняет роль наземного «якоря» (в точке поз. 11). «Якорь» посредством легкого синтетического троса поз. 19 удерживает воздушный шар-змей поз. 18 с вертикализованным ПЭ поз. 7. При этом в безветрие основную роль в аэростатическом поддержании играет подъемная сила легкого (легче воздуха, например, гелия или водорода) газа внутри оболочки, а в случае значительных ветровых нагрузок - подъемная сила от несущей конфигурации типа однообъемный «воздушный змей». И в том, и в другом случае высота подъема шара-змея поз. 18 соответствует HminВЦ для штатной работы ГСН, что обеспечивается длиной троса поз. 19 в пределах 20…100 метров.

В ряде случаев PC поз. 5 и ПЭ (поз. 7, либо поз. 14, либо поз. 17 в стартовой конфигурации) соединяют посредством цилиндрического шарнира, что позволяет осуществлять проворот PC поз. 5 по крену с требуемой угловой скоростью (таким образом улучшается кучность PC), но ПЭ при этом стабилизируют по крену (что минимизирует время переходных процессов для работы ГСН ПЭ).

Применение предложенного технического решения позволит в обозримой перспективе обеспечить оборону объектов и группировок (в т.ч. подвижных) от легких беспилотных летательных аппаратов наземными РК с оптимизацией критерия «эффективность - стоимость» по расходуемым компонентам.

Похожие патенты RU2718560C1

название год авторы номер документа
СПОСОБ ФОРМИРОВАНИЯ ИЗОБРАЖЕНИЯ ЦЕЛИ ДЛЯ ОБЕСПЕЧЕНИЯ ПРИМЕНЕНИЯ ТАКТИЧЕСКИХ УПРАВЛЯЕМЫХ РАКЕТ С ОПТИКО-ЭЛЕКТРОННОЙ ГОЛОВКОЙ САМОНАВЕДЕНИЯ 2021
  • Каплин Александр Юрьевич
  • Степанов Михаил Георгиевич
RU2776005C1
МОДУЛЬНЫЕ САМОЛЕТЫ-ВЕРТОЛЕТЫ ДЛЯ КОРАБЕЛЬНЫХ АВИАЦИОННО-РАКЕТНЫХ СИСТЕМ 2020
  • Дуров Дмитрий Сергеевич
RU2750586C1
СПОСОБ ПОРАЖЕНИЯ ЦЕЛИ ВРАЩАЮЩИМСЯ БАЛЛИСТИЧЕСКИМ РЕАКТИВНЫМ СНАРЯДОМ 1999
  • Ефремов Г.А.
  • Бурганский А.И.
  • Хомяков М.А.
  • Лавренов А.Н.
  • Большаков М.В.
RU2158411C1
СПОСОБ ПОРАЖЕНИЯ ПОДВИЖНОЙ ЦЕЛИ УПРАВЛЯЕМЫМ СНАРЯДОМ С АКТИВНОЙ СИСТЕМОЙ НАВЕДЕНИЯ И ДОРАЗГОННЫМ ДВИГАТЕЛЕМ 1999
  • Ефремов Г.А.
  • Мельников В.Ю.
  • Раскин В.Х.
  • Царев В.П.
RU2151370C1
СПОСОБ ПОРАЖЕНИЯ ЦЕЛИ СВЕРХЗВУКОВОЙ КРЫЛАТОЙ РАКЕТОЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2014
  • Асатуров Сергей Михайели
  • Измалкин Олег Сергеевич
  • Матросов Андрей Викторович
RU2569971C1
Способ перехвата летательных аппаратов самонаводящейся электроракетой 2018
  • Бендерский Геннадий Петрович
  • Иванов Константин Александрович
  • Фоменко Андрей Александрович
  • Хаметов Рустам Саидович
RU2685597C1
КОМПЛЕКС АВИАЦИОННЫЙ РАЗВЕДЫВАТЕЛЬНО - ПОРАЖАЮЩИЙ 2019
  • Дуров Дмитрий Сергеевич
RU2725563C1
АВИАЦИОННО-РАКЕТНАЯ УДАРНАЯ СИСТЕМА 2019
  • Дуров Дмитрий Сергеевич
RU2721803C1
КОМПЛЕКС АВИАЦИОННО-РАКЕТНЫЙ АДАПТИВНЫЙ 2019
  • Дуров Дмитрий Сергеевич
RU2720569C1
Способ поражения цели сверхзвуковой крылатой ракетой и сверхзвуковая крылатая ракета для его осуществления 2016
  • Асатуров Сергей Михайели
  • Леонов Александр Георгиевич
  • Матросов Андрей Викторович
RU2644962C2

Иллюстрации к изобретению RU 2 718 560 C1

Реферат патента 2020 года СПОСОБ ОБНАРУЖЕНИЯ И ПОРАЖЕНИЯ ВОЗДУШНОЙ ЦЕЛИ РАКЕТНЫМ КОМПЛЕКСОМ

Изобретение относится к комплексам противовоздушной обороны мобильных и стационарных объектов. Технический результат – повышение эффективности обнаружения и поражения воздушной цели. Способ обнаружения и поражения воздушной цели ракетным комплексом включает поиск и селекцию воздушной цели - ВЦ в зоне ответственности ракетного комплекса – РК. Для этого определяют координаты и скорость ВЦ, рассчитывают точки упреждения для перехвата ВЦ самонаводящимся поражающим элементом - ПЭ, обеспечивают старт и доставку ПЭ в точку перехвата. Визируют ВЦ с помощью головки самонаведения - ГСН ПЭ вплоть до механического поражения ВЦ. ПЭ доставляют в точку перехвата по навесной баллистической траектории посредством неуправляемой ракетной ступени – PC. Эту ступень отделяют от ПЭ не ниже высоты полета ВЦ. После отделения PC производят развертывание ПЭ в конфигурацию автономного полета. Далее осуществляют программное зависание ПЭ на высоте ниже ВЦ либо снижение ПЭ со скоростью не более 10 м/с головной частью вверх. При этом с помощью головки самонаведения ПЭ сканируют воздушное пространство выше линии горизонта последовательно по всем азимутам от 0° до 360° при единичном обороте и углу места от линии горизонта до зенита. При обнаружении и селекции ВЦ с помощью ГСН выполняют ее захват на сопровождение. С помощью ПЭ с собственной двигательной установкой - ДУ выполняют перехват ВЦ с последующим ее поражением. 17 з.п. ф-лы, 5 ил.

Формула изобретения RU 2 718 560 C1

1. Способ обнаружения и поражения воздушной цели ракетным комплексом, включающий поиск и селекцию воздушной цели - ВЦ в зоне ответственности ракетного комплекса - РК, определение координат и скорости ВЦ, расчет точки упреждения для перехвата ВЦ самонаводящимся поражающим элементом - ПЭ, старт и доставку ПЭ в точку перехвата, визирование ВЦ с помощью головки самонаведения - ГСН ПЭ вплоть до механического поражения ВЦ, отличающийся тем, что ПЭ доставляют в точку перехвата по навесной баллистической траектории посредством неуправляемой ракетной ступени - PC, которую отделяют от ПЭ не ниже высоты полета ВЦ, после отделения PC производят развертывание ПЭ в конфигурацию автономного полета, далее осуществляют программное зависание ПЭ на высоте ниже ВЦ либо снижение ПЭ со скоростью не более 10 м/с головной частью вверх, при этом с помощью головки самонаведения ПЭ сканируют воздушное пространство выше линии горизонта последовательно по всем азимутам от 0° до 360° при единичном обороте и углу места от линии горизонта до зенита, при обнаружении и селекции ВЦ с помощью ГСН выполняют ее захват на сопровождение, а с помощью ПЭ с собственной двигательной установкой - ДУ выполняют перехват ВЦ с последующим ее поражением.

2. Способ обнаружения и поражения ВЦ РК по п. 1, отличающийся тем, что значение момента времени разделения связки PC и ПЭ рассчитывают и вводят на борт связки перед стартом.

3. Способ обнаружения и поражения ВЦ РК по п. 1, отличающийся тем, что PC после разделения с ПЭ выбрасывает в воздушный поток парашют либо раскладывает лопасти воздушного винта.

4. Способ обнаружения и поражения ВЦ РК по п. 1, отличающийся тем, что зависание и снижение ПЭ осуществляют посредством электрической ДУ с 2-8 воздушными винтами.

5. Способ обнаружения и поражения ВЦ РК по п. 4, отличающийся тем, что с применением ПЭ дополнительно выполняют программное барражирование головной частью вверх на высоте ниже полета ВЦ.

6. Способ обнаружения и поражения ВЦ РК по п. 5, отличающийся тем, что при отсутствии ВЦ заканчивают барражирование и осуществляет программную мягкую посадку ПЭ.

7. Способ обнаружения и поражения ВЦ РК по п. 1, отличающийся тем, что барражирование осуществляет ПЭ самолетной схемы.

8. Способ обнаружения и поражения ВЦ РК по п. 1, отличающийся тем, что программное снижение ПЭ осуществляют посредством парашюта или авторотирующего воздушного винта.

9. Способ обнаружения и поражения ВЦ РК по п. 1, отличающийся тем, что программное зависание ПЭ осуществляют посредством тросовой аэростатической системы.

10. Способ обнаружения и поражения ВЦ РК по п. 9, отличающийся тем, что в тросовой аэростатической системе подъемную силу создает воздушный шар в конфигурации однообъемного воздушного змея, который наддувают газом легче воздуха после разделения ПЭ и PC, в качестве якоря применяют отработавшую PC, а длину троса устанавливают в пределах 20…100 метров.

11. Способ обнаружения и поражения ВЦ РК по п. 1, отличающийся тем, что ГСН ПЭ выполнена пассивной оптико-электронной с матричным фотоприемным устройством, при этом работу ГСН осуществляют в период снижения или в период снижения и после вертикального приземления ПЭ.

12. Способ обнаружения и поражения ВЦ РК по п. 1, отличающийся тем, что ДУ ПЭ выполнена ракетной твердотопливной, с управлением ПЭ по траектории воздушными рулями.

13. Способ обнаружения и поражения ВЦ РК по п. 1, отличающийся тем, что поражение ВЦ ПЭ производит посредством формирования направленного форса огня.

14. Способ обнаружения и поражения ВЦ РК по п. 1, отличающийся тем, что поражение ВЦ ПЭ производит таранным ударом.

15. Способ обнаружения и поражения ВЦ РК по п. 1, отличающийся тем, что поражение ВЦ производят путем запутывания ее в сеть, транспортируемую и развертываемую ПЭ.

16. Способ обнаружения и поражения ВЦ РК по п. 1, отличающийся тем, что поражение ВЦ осуществляют ударной волной и поражающими элементами осколочно-фугасной боевой части ПЭ либо бортовой картечницы ПЭ.

17. Способ обнаружения и поражения ВЦ РК по п. 1, отличающийся тем, что поражение ВЦ производят элементами стержневой боевой части ПЭ.

18. Способ обнаружения и поражения ВЦ РК по п. 1, отличающийся тем, что PC и ПЭ соединяют посредством цилиндрического шарнира, при этом в полете PC проворачивают, а ПЭ стабилизируют по крену до момента их разделения.

Документы, цитированные в отчете о поиске Патент 2020 года RU2718560C1

ГОЛУБЕВ И
С
И др., Проектирование зенитных управляемых ракет, Москва, МАИ, 1999, с
Электрический быстродействующий затвор для аппарата, передающего изображения на расстояние 1921
  • Гедройц Н.А.
  • Кузин С.С.
SU529A1
СПОСОБ ПУСКА РАКЕТ ДЛЯ ПОДВИЖНЫХ ПУСКОВЫХ УСТАНОВОК 2012
  • Безяев Виктор Степанович
  • Новосельцев Олег Фомич
  • Пархоменко Олег Леонидович
  • Сидорова Татьяна Алексеевна
RU2504725C2
СПОСОБ КОМАНДНОГО НАВЕДЕНИЯ ЛЕТАТЕЛЬНОГО АППАРАТА НА НАЗЕМНЫЕ ЦЕЛИ 2009
  • Верба Владимир Степанович
  • Гандурин Виктор Александрович
  • Забелин Игорь Владимирович
  • Меркулов Владимир Иванович
  • Садовский Петр Алексеевич
RU2408846C1
0
SU183669A1
Способ вывода вращающейся по углу крена ракеты с гироскопом направления в зону захвата цели головкой самонаведения и система для его осуществления 2017
  • Гусев Андрей Викторович
  • Морозов Владимир Иванович
  • Недосекин Игорь Алексеевич
  • Минаков Владимир Михайлович
  • Леонова Елена Львовна
  • Гранкин Алексей Николаевич
RU2659622C1
US 4568040 A1, 02.02.1986.

RU 2 718 560 C1

Авторы

Леонов Александр Георгиевич

Большаков Михаил Валентинович

Иванов Илья Александрович

Костромин Никита Сергеевич

Кулаков Александр Валерьевич

Лавренов Александр Николаевич

Петухов Роман Андреевич

Рундаев Дмитрий Сергеевич

Свирин Николай Степанович

Луканин Евгений Владимирович

Зарецкий Максим Владимирович

Рыльщиков Александр Петрович

Даты

2020-04-08Публикация

2019-07-16Подача