Изобретение относится к композиционным материалам (КМ) на основе чистых высокомолекулярных соединений и/или их смесей.
Традиционной технологией получения КМ, содержащих наполнители различного типа, является метод механического смешения сухих компонентов или в расплаве полимера. Использовать сверхвысокомолекулярный полиэтилен СВМПЭ для смешения в расплаве невозможно из-за очень высокой вязкости его расплава - СВМПЭ плавится, но не течет.
КМ на основе СВМПЭ, полученные методом сухого смешения, известны. Так, в патенте CN1504495A от 29.22.2002 повествуется о высокомолекулярном КМ, состоящего из свехвысокомолекулярного фторированного этилен-пропиленового сополимера с добавлением полиэтилена. Данный КМ получают путем совместного мокрого измельчения в коллоидной мельнице всех компонентов до 40-80 мкм., далее полученный порошок сушат и подвергают последующей переработке. Причем содержание фторированного этилен-пропиленового сополимера в патенте достигает не менее 40 масс. %. Данный КМ имеет повышенные характеристики механической прочности и твердости, что положительно влияет на расширение его области применения. К недостаткам данного материала можно отнести высокую хладотекучесть, о чем говорят и сами авторы, а также недостаточную износостойкость материала. Также к недостаткам можно отнести низкий предел текучести материала из-за высокого содержания фракции сомономеров, а также производительность метода коллоидного смешения/дробления, данный метод подходит для лабораторного применения и очень плохо масштабируется до больших объемов, что приведет к значительному повышению себестоимости материалов.
В патенте CN85100490B от 10.10.1985 предложено добавление перфторированного сополимера тетрафторэтилена и гексафторпропилена к политетрафторэтилену в количестве от 0,1 до 99 масс. %. Добавлением сополимеров к обычному фторопласту авторы снижают начальную хладотекучесть фторопласта, а для повышения износостойкости конечного КМ в примерах показана возможность добавления сверхвысокомолекулярного полиэтилена в количестве 40 массовых процентов. Представленные КМ получают путем совместного мокрого измельчения в коллоидной мельнице всех компонентов до 40-80 мкм., далее полученный порошок сушат и направляют на переработку. Несмотря на попытку авторов снизить начальную хладотекучесть фторопласта путем введения в него методом смешения фторированных этилен-пропиленовых сополимеров, недостатком данного материала все также является несоизмеримо большая пластическая деформация КМ из-за свойств исходной матрицы полимера. Данные сополимеры необходимо входить в полимер на этапе начального синтеза, а не механического смешения. Еще одним недостатком будет являться низкая ударная вязкость материала, особенно при содержании любого из наполнителей свыше 10 масс. %. Так, при содержании СВМПЭ в матрице КМ в количестве 40 % удастся значительно повысить износостойкость, но, поскольку отсутствует физико-химическое взаимодействие между матрицами полимеров, то такое повышение содержания СВМПЭ приведет к понижению ударной вязкости общей матрицы КМ.
В патенте USO05577777A от 26 ноября 1996 года авторы предлагают рецептуру КМ для обжимного фитинга на шланги сверхвысокого давления. Полимерный обжимной фитинг состоит из основы - фторопласта и различных наполнителей, в данном случае стекловолокна различной природы в количестве от 5 до 25 масс. %. В приведенных в патенте примерах и описаниях материала на основе фторопласта отсутствует добавление СВМПЭ в качестве третьего наполнителя. И, напротив, авторы патента утверждают, что в случае использования их детали из СВМПЭ, деталь лучше использовать из чистого СВМПЭ без какого-либо наполнителя. Недостатком предложенных формул КМ в случае с фторопластовой матрицей является низкая характеристики ударная вязкость, износостойкость, обусловленные высоким содержанием стекловолокна и низкой износоустойчивостью начальной матрицы полимера, а, в случае с чистым СВМПЭ, недостатком будет являться повышенная ползучесть материала, так как в системе на данную деталь будет воздействовать постоянное распирающее давление.
В работе российских ученых «Wear Resistance of Composites Based on Hybrid UHMWPE-PTFE Matrix: Mechanical and Tribotechnical Properties of the Matrix» комплексно исследованы КМ на основе СВМПЭ с добавлением фторопласта в количестве от 1 до 40 масс. %. Несмотря на большую проделанную работу и полученные положительные результаты по увеличению физико-механических и трибологических характеристик, недостатками представленных материалов будет являться низкая хладотекучесть материала, величина которой будет возрастать с увеличением степени наполнения матрицы СВМПЭ фторопластом.
Наиболее близким к предлагаемому способу получения, заявляемого КМ на основе СВМПЭ является способ получения КМ описанный в работе Китайских ученых «Friction and wear characteristics of ultra high molecular weight polyethylene (UHMWPE) composites containing glass fibers and carbon fibers under dry and water-lubricated conditions». В способе-прототипе получали КМ с 10 масс. % молотого стекловолокна длиной 40 мкм (толщина 10 мкм, соотношение L\D = 4). Наполнитель смешивали с полимерной матрицей СВМПЭ в высокоскоростной ножевой мельнице, полученный порошок подвергался сначала компактированию при давлении 40 МПа при комнатной температуре, а затем полученную таблетку прессовали при 200°С с приложенным давлением 10 МПа/см2. Недостатком материала является возросший коэффициент трения при сухом трении-скольжении по сравнению с ненаполненным СВМПЭ. Еще одним недостатком КМ является его недостаточная прочность, так как молотое стекловолокно оказывает недостаточное модифицирующее влияние на комплекс физико-механических характеристик, а при долговременном истирании КМ в трибосистеме частички наполнителя окажутся оголенными на поверхности полимерной матрицы, что отрицательно скажется на износе контактирующего с КМ контртела, что в некоторых случаях полностью недопустимо.
Недостатком ранее известных композиций является низкое сопротивление долговременной пластической деформации на холоде.
Задачей изобретения является разработка предлагаемого КМ на основе СВМПЭ (вариантов) обладающего улучшенными физико-механическими, износостойкими свойствами, а также материала, имеющего повышенное сопротивление долговременной пластической деформации на холоде, при одновременной наименьшей степени влияния на износ контртел при долговременном нахождении КМ в трибосистемах. Предложенный состав КМ объединяет весь комплекс свойств разработанных ранее композитов.
Технический результат изобретения состоит в улучшении физико-механических, износостойких свойств, а также получении материала, имеющего повышенное сопротивление долговременной пластической деформации на холоде, при одновременной наименьшей степени влияния на износ контртел при долговременном нахождении КМ в трибосистемах.
Указанный технический результат достигается за счет следующего состава КМ. Получение заявляемого продукта ведется путем смешения исходного полимера/полимеров с неорганическими наполнителями. В основу КМ входит сверхвысокомолекулярный полиэтилен с молекулярной массой 1-9 млн, к основе КМ добавляются наполнители в следующих концентрациях: короткорубленное стекловолокно длиной от 0,1 до 12 мм аппретированное или без аппрета в количестве от 0,1 до 30 масс. %.; фторопласт в количестве от 0,1 до 20 масс. % и все его разновидности, глицеринмоностеарат в чистом виде в количестве от 0,001 до 10 масс. %. Основа - сверхвысокомолекулярный полиэтилен, количество варьируется в пределах от 40 до 99,799 массовых %.
Использование именно сверхвысокомолекулярного полиэтилена в качестве основного матричного полимера позволяет улучшить такие характеристики КМ, как: износостойкость, ударопрочность, коэффициент трения, а разнообразие неорганических материалов и добавки других полимерных матриц позволяют создавать КМ с заданными, еще более улучшенными функциональными свойствами. Изобретение может быть использовано при производстве полимерных материалов широкого назначения, применяемых в машиностроении, горнодобывающей, автомобильной, химической, аэрокосмической отраслях.
СВМПЭ имеет молекулярную массу не менее 1·106.
Смешение компонентов системы возможно любыми полупромышленными и промышленными методами получения КМ, которыми можно получить равномерное распределение наполнителей в матрице СВМПЭ.
Пример 1. (наполнители: стекловолокно, фторопласт, глицеринмоностеарат).
В высокоскоростной смеситель гравитационного типа загружаются 80 кг - 80 масс. % СВМПЭ с молекулярной массой 9 млн., рубленое стекловолокно длиной 5 мм в количестве 10 кг - 10 масс. %, порошок фторопласта в количестве 8 кг - 8 масс. %, порошок глицеринмоностеарата 2 кг - 2 масс. %. После загрузки компонентов смеситель закрывается и включается на перемешивание. После перемешивания смесь выгружают и засыпают в пресс-форму для дальнейшей переработки.
Пример 2 (наполнители: стекловолокно, фторопласт, глицеринмоностеарат).
В высокоскоростной смеситель гравитационного типа загружаются 65 кг - 69,15 масс. % СВМПЭ с молекулярной массой 4 млн, рубленое стекловолокно длиной 1 мм в количестве 21 кг - 22,34 масс. % , порошок фторопласта в количестве 1 кг - 1,06 масс. %, порошок глицеринмоностеарата 7 кг - 7,45 масс. %. После загрузки компонентов смеситель закрывается и включается на перемешивание. После перемешивания смесь выгружают и засыпают в пресс-форму для дальнейшей переработки.
Пример 3 (наполнители: стекловолокно, фторопласт, глицеринмоностеарат).
В высокоскоростной жидкостный смеситель 78 кг - 78 масс. % СВМПЭ с молекулярной массой 7,5 млн, рубленое стекловолокно длиной 12 мм в количестве 2 кг - 2 масс. %, порошок фторопласта в количестве 10 кг - 10 масс. %, порошок глицеринмоностеарата 10 кг - 10 масс. %. После загрузки компонентов смеситель закрывается и включается на перемешивание. После перемешивания смесь выливают из смесителя, просушивают в вакуумном шкафу и засыпают в пресс-форму для дальнейшей переработки.
Пример 4 (наполнители: стекловолокно, фторопласт, глицеринмоностеарат).
В высокоскоростной смеситель гравитационного типа загружаются 65 кг - 76,12 масс. % СВМПЭ с молекулярной массой 3 млн, рубленое стекловолокно длиной 3 мм в количестве 0,2 кг - 0,23 масс. %, порошок фторопласта в количестве 20 кг - 23,42 масс. %, порошок глицеринмоностеарата 0,2 кг - 0,23 масс. %. После загрузки компонентов смеситель закрывается и включается на перемешивание. После перемешивания смесь выгружают и засыпают в пресс-форму для дальнейшей переработки.
Пример 5 (наполнители: стекловолокно, фторопласт, глицеринмоностеарат).
В высокоскоростной жидкостный смеситель загружаются 42 кг - 42 масс. % СВМПЭ с молекулярной массой 3 млн, рубленое стекловолокно длиной 3 мм в количестве 28 кг - 28 масс. %, порошок фторопласта в количестве 20 кг - 20 масс. %, порошок глицеринмоностеарата 10 кг - 10 масс. %. После загрузки компонентов смеситель закрывается и включается на перемешивание. После перемешивания смесь выливают из смесителя, просушивают в вакуумном шкафу и засыпают в пресс-форму для дальнейшей переработки.
Примеры 6-8
Образцы КМ на основе СВМПЭ, содержащего в качестве наполнителя стекловолокно, фторопласт, глицеринмоностеарат получают аналогично примерам 1, 2.
Таким образом, заявляемый состав КМ состоит из основной полимерной матрицы и трех различных наполнителей. КМ с заявленными процентами введения наполнителей обеспечивает высокие характеристики по сопротивлению долговременной статической нагрузке на образец, а также гарантирует высокий уровень физико-механических, морозостойких, ударопрочных, триботехнических и износостойких свойств получаемого композиционного материала.
Свойства Образцов КМ, полученные заявленными методами 1-8 представлены в таблице 1.
Таблица 1. Физико-механические, износостойкие, триботехнические свойства заявляемых композиционных материалов, полученных способом 1-8.
название | год | авторы | номер документа |
---|---|---|---|
Технология получения заготовок из порошков композиционных материалов на основе сверхвысокомолекулярного полиэтилена | 2020 |
|
RU2761336C1 |
Полимерный нанокомпозиционный материал триботехнического назначения с ориентированной структурой | 2015 |
|
RU2625454C2 |
АНТИФРИКЦИОННАЯ ПОЛИМЕРНАЯ КОМПОЗИЦИЯ С ТЕРМОРАСШИРЕННЫМ ГРАФИТОМ | 2013 |
|
RU2535216C1 |
КОМПОЗИЦИОННЫЙ ИЗНОСОСТОЙКИЙ МАТЕРИАЛ НА ОСНОВЕ СВЕРХВЫСОКОМОЛЕКУЛЯРНОГО ПОЛИЭТИЛЕНА (СВМПЭ) | 2008 |
|
RU2381242C2 |
Композиционный износостойкий материал | 2022 |
|
RU2784232C1 |
Экструдируемый антифрикционный композит на основе сверхвысокомолекулярного полиэтилена | 2017 |
|
RU2674019C1 |
ПОЛИМЕРНЫЙ МАТЕРИАЛ С УЛУЧШЕННЫМИ ПРОЧНОСТНЫМИ СВОЙСТВАМИ | 2014 |
|
RU2552112C1 |
КОМПОЗИЦИОННЫЙ МАСЛОБЕНЗОСТОЙКИЙ ИЗНОСО-МОРОЗОСТОЙКИЙ МАТЕРИАЛ | 2008 |
|
RU2437903C2 |
Порошковый композиционный материал на основе сверхвысокомолекулярного полиэтилена для 3D-печати методом селективного лазерного спекания (варианты) и способ его получения (варианты) | 2023 |
|
RU2817083C1 |
Композиционный материал на основе сверхвысокомолекулярного полиэтилена, модифицированного пластификатором | 2023 |
|
RU2816004C1 |
Изобретение относится к композиционным материалам (КМ) на основе чистых высокомолекулярных соединений и/или их смесей. Композиционный материал (КМ) на основе сверхвысокомолекулярного полиэтилена (СВМПЭ) с молекулярной массой 1-9 млн, имеет следующий состав, мас.%: СВМПЭ с молекулярной массой 1-9 млн - от 40 до 99,799; короткорубленное стекловолокно длиной от 0,1 до 12 мм, аппретированное или без аппрета, - от 0,1 до 30; фторопласт - от 0,1 до 20; глицеринмоностеарат в чистом виде – от 0,001 до 10. Изобретение обеспечивает получение композиционного материала с улучшенными физико-механическими, износостойкими свойствами, а также повысить сопротивление долговременной пластической деформации на холоде при одновременной наименьшей степени влияния на износ контртел при долговременном нахождении КМ в трибосистемах. 1 з.п. ф-лы, 1 табл., 8 пр.
1. Композиционный материал (КМ) на основе сверхвысокомолекулярного полиэтилена (СВМПЭ) для использования в трибосистемах, отличающийся тем, что в основу КМ входит СВМПЭ с молекулярной массой 1-9 млн, при этом композиционный материал имеет следующий состав, мас.%: СВМПЭ с молекулярной массой 1-9 млн от 40 до 99,799; короткорубленное стекловолокно длиной от 0,1 до 12 мм, аппретированное или без аппрета, от 0,1 до 30; фторопласт - от 0,1 до 20; глицеринмоностеарат в чистом виде от 0,001 до 10.
2. Композиционный материал по п. 1, отличающийся тем, что СВМПЭ имеет молекулярную массу не менее 1⋅106.
УПЛОТНЕНИЕ (ВАРИАНТЫ) И СПОСОБ ЕГО ФОРМИРОВАНИЯ | 2010 |
|
RU2532477C2 |
АНТИФРИКЦИОННЫЙ КОМПОЗИЦИОННЫЙ ПОЛИМЕРНЫЙ МАТЕРИАЛ | 2013 |
|
RU2540572C2 |
CN 85100490 A 10.10.1985 | |||
Способ записи голографического оптического элемента для определения формы поверхности | 1987 |
|
SU1504495A1 |
СПОСОБ ОБРАБОТКИ ПОВЕРХНОСТИ ФТОРСОДЕРЖАЩЕЙ РЕЗИНЫ | 2014 |
|
RU2580722C1 |
Авторы
Даты
2020-04-14—Публикация
2019-10-28—Подача