Область техники
Изобретение относится к способам нанесения сверхтвердых износостойких градиентных покрытий путем короткоимпульсной лазерной наплавки порошковой композиции, нанесенной на металлическую поверхность. Заявленный способ может быть использован для повышения физико-механических свойств функциональных поверхностей эксплуатирующихся при повышенных усталостных, износных, термоциклических нагрузках, например, для повышения ресурса лопаток турбин, посадочных поверхностей роторов турбин, а также повышения антифрикционных свойств поверхностей стальных изделий, работающих в условиях масляного голодания.
Уровень техники
Известен способ получения износостойких сверхтвердых градиентных покрытий, а именно наплавка износостойких покрытий из порошковых материалов на деталях машин с использованием лазерного излучения. Изготовление сверхтвердых, износостойких покрытий на поверхности из порошковых материалов лазерным сплавлением похожи по своим технологическим процессам.
Анализ технологии получения сверхтвердых, износостойких покрытий, а также эффективности предлагаемых технических решений по изготовлению покрытий будем рассматривать в одном ряду.
Известен способ: 1) Способ получения композиционных покрытий методом коаксиальной лазерной оплавки. Формирование твердого, износостойкого покрытия происходит следующим образом: подвергаемые наплавке поверхности детали очищают, промывают и подвергают струйно-абразивной обработке, для придания обеспечивающей адгезию с покрытием шероховатости с последующей обдувкой сжатым воздухом. Очистке и промывке дополнительно подвергают поверхности детали, прилегающие к зоне наплавки. Подготавливают порошковый материал, который затем из двух дозаторов подают на поверхность детали в зону наплавки потоком аргона и выполняют наплавку импульсным лазерным лучом в среде аргона. Из одного дозатора в поток аргона подают армирующий неметаллический дисперсный порошок агломерированного карбида вольфрама WC фракцией 80,0-150,0 мкм, а из другого дозатора - металлический порошок сплава кобальта В3К фракцией 53-106 мкм. Наплавку осуществляют, по крайней мере, в два слоя лазерным лучом мощностью 2 кВт при скорости его перемещения в процессе наплавки 2 м/мин. При наплавке первого слоя порошок карбида вольфрама и порошок сплава кобальта подают в соотношении 1:4, при наплавке второго слоя устанавливают соотношение 1:5. Способ позволяет получать функционально-градиентные износостойкие покрытия с регулируемой твердостью по толщине.
Недостатками данного изобретения являются: 1) многостадийность нанесения покрытия; 2) использование крупных частиц порошковой композиции, затрудняет контроль пористости и прочности покрытия; 3) отсутствие возможности контролирования толщины наносимого покрытия; 3) сложность обеспечения равномерности по толщине и плотности исходной порошковой композиции.
Кроме того, в изобретении [1] используются порошковые композиции, не позволяющие получать покрытия с высокими физико-механическими свойствами, в частности, твердосплавное покрытие на основе карбида вольфрама обладает максимальной твердостью не выше 4000 кгс/мм2, рабочая температура эксплуатации не превышает 600°С., что не соответствует характеристикам сверхтвердых покрытий.
В способе [1] подача порошка материала производится коаксиальным методом, который характеризуется повышенным расходом присадочного материала, а также требует систему управления за точной дозировкой подачи порошкового материала. С целью транспортировки порошкового материала используют защитный газ аргон, который подается в зону обработки через специальные каналы, что требует высокого расхода дорогостоящего газа (25-30 л/мин).
Для повышения адгезионной прочности покрытия в способе [1] предлагается производить предварительную струйно-абразивную обработку с целью получения шероховатой поверхности (Rz 20), что повышает себестоимость нанесения покрытия.
В качестве источники энергии используют непрерывное лазерное излучение мощностью 2 кВт. Непрерывное лазерное излучение сложно поддается регулированию при дозированной передаче тепла, что приводит к отсутствию контроля за процессами структурообразования в покрытии.
В способе [1] толщина покрытий составляет от 500 до 2000 мкм, что негативно влияет на стойкость покрытия при эксплуатации в условиях высоких динамических и циркуляционных нагрузках.
Раскрытие изобретения
Задачей настоящего изобретения является разработка способа получения сверхтвердых, износостойких градиентных покрытий с низким коэффициентом трения.
Задачи, решаемые настоящим способом:
- обеспечение контроля структурообразования покрытия;
- получение градиентных покрытий за одну обработку;
- упрощение технологического процесса нанесения покрытия;
- получение сверхтвердой структуры покрытия.
Эти задачи решаются методом нанесения порошковой суспензии на поверхность стальной подложки методами пневмораспыления, окунанием в суспензию, или нанесением кистью, валиком с последующим короткоимпульсным лазерным оплавлением в защитной камере в защитной среде, например, аргона. Предварительно поверхность подложки подвергается механической очистке или предварительной лазерной маркировке с целью удаления окисных пленок и нежелательных примесей. Порошковую композицию подготавливают в виде суспензии, которую наносят на обрабатываемую часть изделия тонким слоем, затем с помощью лазерного короткоимпульсного излучения оплавляют, при этом используют порошковую смесь следующего состава (по массе):
При предполагаемом содержании в порошковой суспензии компонентов достигаются требуемые характеристики покрытия, благодаря тому, что компоненты карбида и нитрида бора обеспечивают высокую механическую прочность, а наличие графитовых включений повышает антифрикционные свойства.
Отличием от известного способа [1] получения сверхтвердых покрытий является метод короткоимпульсной лазерной обработки с длительностью импульса от 20-200 нс. В результате действия коротких импульсов происходит сверхбыстрый лазерный нагрев локального участка порошкового слоя до температур свыше 3500°С и последующем скоростном отводе тепла вглубь металлической подложки, при этом время одного цикла «нагрев-охлаждение» может составлять величину 10-7 с. В результате развития высоких температур на поверхности металлической подложки инициируются химические реакции взаимодействия компонентов порошковой композиции с материалом подложки, что обеспечивает высокую адгезионную прочность покрытия. Малая длительность лазерного воздействия на обрабатываемую поверхность приводит к получению однородного покрытия с низкой шероховатостью, как это показано на Фиг. 1. На Фиг. 1 после травления поперечного шлифа покрытия на подложке из никелевого сплава хорошо видно, что формируется равномерное по толщине покрытие (40 мкм), при этом на границе с подложкой формируется переходной слой, обеспечивающий атомное взаимодействие и высокую адгезионную прочность. Кроме этого особенности короткоимпульсной лазерной обработки создают возможность образования градиентного по химическому и фазовому составу покрытия. Таким образом, использование ВЛС приводит к существенному улучшению условий соединения покрытия с металлической подложкой.
Нижеследующий пример иллюстрирует способ по изобретению, но не ограничивает его.
Пример 1. В качестве изделия выбрали штамп для обработки нержавеющей листовой стали размерами рабочей поверхности 40×5 мм, выполненного из штамповой стали X12. Сверхтвердое функциональное покрытие наносили следующим образом: рабочую поверхность штампа обработали пескоструйной обработкой с использованием белого электрокорунда 25А дисперсностью 10-40 мкм. Обработку производили в специальной камере при давлении сжатого воздуха 0,3-0,4 МПа. На обработанную поверхность наносили слой порошковой композиции методом пневмораспыления в закрытой камере, до достижения толщины порошкового слоя 40-50 мкм. Порошковую композицию готовили следующего состава (по массе):
Для формирования суспензии предварительно перемешанную порошковую композицию смешали с 2% раствором канифоли в этиловом спирте.
Нанесенный порошковый слой на поверхности штампа подвергли выдержке в камере для пневораспыления, с целью полного испарения спирта из порошкового слоя в течение 1 минуты. Штамп с нанесенным порошковым слоем установили в защитную камеру, расположенной на рабочем столе лазерной установки. В качестве лазерной установки использовали генератор, вырабатывающий импульсное излучение с частотой импульса от 10-200 кГц, длительностью импульса 100 нс. Защитную камеру продували аргоном в течение 20 сек, для удаления воздуха при расходе газа аргона 5-10 л/ч. В дальнейшем порошковый слой обрабатывался с следующими режимами: скорость сканирования 50 мм/с, шаг сканирования 0,8 мм, частота импульса 80 кГц. Сканирование поверхности производили перпендикулярно длине рабочей поверхности штампа. Обработку производили один раз достижением толщины покрытия 15-25 мкм. Шероховатость поверхности нанесенного функционального сверхтвердого покрытия без дополнительной механической обработки составила Ra 3.2, при твердости поверхностного слоя 16 ГПа.
Испытания штампов с нанесенными покрытиями показали, что срок службы штампа увеличилась на 45%. При этом качество среза листового металла по параметру шероховатости и сминания улучшилось на 20%. Микроскопические исследования показали, что в области режущих кромок не наблюдались деформации поверхности, формирование микротрещин, а также отслоения от поверхности штампа.
Пример 2. Обработка, описанная в примере 1, проведена дважды, то есть нанесено двухслойное покрытие. Твердость поверхностного слоя составила 43 ГПа.
Таким образом, заявленный способ по изобретению позволяет получить сверхтвердые функциональные покрытия с повышенной стойкостью к абразивному и тепловому изнашиванию, высокой ударной прочностью и может быть использовано для повышения стойкости металлорежущих инструментов, для увеличения термостойкости лопаток турбин, улучшению трибологических свойств узлов трения, эксплуатирующийся в условиях отсутствия смазки.
Список источников, принятых во внимание при составлении заявки
1. RU(11) 2503740(13) С2 С23С 4/12 (2006.01) B23K 26/34 Заявлено: 18.10.2011. Опубликовано: 10.01.2014 Описание изобретения к патенту РФ. Способ получения композиционных покрытий методом коаксиальной лазерной оплавки;
название | год | авторы | номер документа |
---|---|---|---|
Способ получения износостойкого антифрикционного покрытия на подложке из стали, никелевого или титанового сплава | 2023 |
|
RU2826632C1 |
СПОСОБ ВОССТАНОВЛЕНИЯ РАБОЧЕЙ ФАСКИ КЛАПАНА ГАЗОРАСПРЕДЕЛИТЕЛЬНОГО МЕХАНИЗМА ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ | 2021 |
|
RU2772481C1 |
Способ получения функциональных антифрикционных покрытий для подшипниковых сопряжений турбокомпрессоров ДВС на основе металлокерамических соединений с низким коэффициентом трения | 2024 |
|
RU2826114C1 |
СПОСОБ ЛАЗЕРНОГО ЛЕГИРОВАНИЯ ИНСТРУМЕНТАЛЬНОЙ СТАЛИ ПОРОШКАМИ КАРБИДА БОРА И АЛЮМИНИЯ | 2022 |
|
RU2786263C1 |
Способ получения стойкого композиционного покрытия на металлических деталях | 2020 |
|
RU2752403C1 |
Способ формирования антифрикционного покрытия с помощью автоматизированного устройства подачи порошкового материала в зону лазерной обработки | 2017 |
|
RU2652335C1 |
Способ получения многослойного композитного покрытия | 2016 |
|
RU2625618C1 |
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННЫХ ПОКРЫТИЙ МЕТОДОМ КОАКСИАЛЬНОЙ ЛАЗЕРНОЙ ОПЛАВКИ | 2011 |
|
RU2503740C2 |
СПОСОБ ФОРМИРОВАНИЯ ГРАДИЕНТНОГО ПОКРЫТИЯ МЕТОДОМ ЛАЗЕРНОЙ НАПЛАВКИ | 2018 |
|
RU2683612C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ПОКРЫТИЯ НА ИЗДЕЛИИ МЕТОДОМ ПОСЛОЙНОГО ЛАЗЕРНОГО СИНТЕЗА | 2010 |
|
RU2443506C2 |
Изобретение относится к способу формирования сверхтвердых износостойких покрытий. Покрытие наносят на поверхность стальной подложки путем короткоимпульсного лазерного оплавления порошковой обмазки за одну обработку. На поверхность стальной подложки наносят слой порошковой суспензии толщиной 15-100 мкм методами пневмораспыления, окунанием в суспензию или нанесением кистью, валиком. В качестве порошковой композиции используют порошковую смесь следующего состава, мас.%: карбид бора В4С - основа; нитрид бора BN - 0-60%; графит ГИИ-А - 0-20%. Технический результат при использовании этого способа заключается в получении сверхтвердого износостойкого покрытия с низким коэффициентом трения толщиной в пределах 10-50 мкм за одну обработку, обладающего градиентностью свойств по толщине. Микротвердость поверхности покрытия составляет HV 1600-4300, жаростойкость 900°С, коэффициент трения со смазкой 0,03-0,04, коэффициент трения без смазки 0,1-0,2. 2 з.п. ф-лы, 1 ил.
1. Способ формирования на поверхности стальных изделий сверхтвердого износостойкого покрытия с низким коэффициентом трения, включающий нанесение порошковой обмазки и последующее короткоимпульсное лазерное оплавление, при этом используют порошкообразную композицию, содержащую, мас. %:
которые наносят на подложку из стали, никелевых или титановых сплавов, а короткоимпульсную лазерную обработку ведут в контролируемой газовой среде аргона.
2. Способ по п. 1, отличающийся тем, что порошковая композиция содержит порошки с дисперсностью 1-10 мкм карбида бора, нитрида бора и графита.
3. Способ по п. 1, отличающийся тем, что лазерное оплавление осуществляют короткоимпульсным лазерным излучением с длительностью импульса не более 200 нс с обеспечением формирования устойчивых соединений и фаз, повышающих адгезию и твердость покрытия.
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННЫХ ПОКРЫТИЙ МЕТОДОМ КОАКСИАЛЬНОЙ ЛАЗЕРНОЙ ОПЛАВКИ | 2011 |
|
RU2503740C2 |
ПОРОШКОВАЯ КОМПОЗИЦИОННАЯ СМЕСЬ ДЛЯ ЛАЗЕРНОЙ НАПЛАВКИ НА МЕТАЛЛИЧЕСКУЮ ПОДЛОЖКУ | 2013 |
|
RU2542922C2 |
Способ формирования антифрикционного покрытия с помощью автоматизированного устройства подачи порошкового материала в зону лазерной обработки | 2017 |
|
RU2652335C1 |
СПОСОБ ПОЛУЧЕНИЯ СВЕРХТВЕРДОГО МАТЕРИАЛА НА ОСНОВЕ КАРБИДА БОРА | 2001 |
|
RU2209799C2 |
CN 101667538 B, 10.10.2012 | |||
US 20180154443 A1, 07.06.2018 | |||
US 6544599 B1, 08.04.2003 | |||
СПОСОБ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ ПАНЦИРЕЙ РАКООБРАЗНЫХ ГИДРОБИОНТОВ | 1999 |
|
RU2179816C2 |
KR 20040031700 A, 13.04.2004. |
Авторы
Даты
2020-04-14—Публикация
2019-03-05—Подача