СПОСОБ ОПРЕДЕЛЕНИЯ ПОЛИЦИКЛИЧЕСКИХ АРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ В ПОЧВАХ И ДОННЫХ ОТЛОЖЕНИЯХ Российский патент 2020 года по МПК G01N30/06 G01N30/72 G01N30/02 G01N33/24 

Описание патента на изобретение RU2719578C1

Изобретение относится к области аналитической химии, и может быть использовано при экологическом контроле почв различного типа и донных отложений на содержание полиароматических углеводородов (ПАУ), регламентируемых в качестве приоритетных загрязнителей.

Изобретение относится к охране окружающей среды, а именно к области экоаналитической химии, и может быть использовано при контроле содержания ПАУ в почвах и донных отложениях.

Известен способ определения ПАУ из донных отложений методом газовой хроматографии с масс-спектрометрическим детектированием (ГХ-МС), предполагающий извлечение аналитов твердофазной микроэкстракцией (Rocha М.J. Determination of polycyclic aromatic hydrocarbons in coastal sediments from the Porto Region (Portugal) by Microwave-Assisted Extraction, Followed by SPME And GC-MS / M.J. Rocha, P C. Ferreira, P.A. Reis, C. Cruzeiro, E. Rocha // Journal of Chromatographic Science. 2011. Vol. 49. P. 695-701). Экстракцию ПАУ из воздушно-сухой почвы в ацетон осуществляли с использованием микроволновой обработки. Полученную надосадочную жидкость декантировали и помещали в нее устройство для твердофазной микроэкстракции, содержащее покрытые пленкой из полидиметилсилоксана волокна, для ускорения процесса проводили перемешивание с помощью магнитной мешалки. Затем волокна помещали в термодесорбер и проводили анализ методом ГХ-МС.

Однако малая площадь поверхности контакта экстрагирующей системы и пробы не может обеспечивать эффективного извлечения аналитов из образцов, что приводит к недостаточной чувствительности, в особенности к «тяжелым» ПАУ - предел определения для бенз(а)пирена, бенз(b)флуорантена, пирена составляет 1.2-2.5 мкг/кг. Данным способом за один анализ определяют 16 ПАУ.

Известен способ определения приоритетных ПАУ в образцах донных отложений методом ГХ-ПИД с использованием гомогенной жидкость-жидкостной экстракции (HLLE) (Hassan J. Application of Low Density Homogeneous Liquid-Liquid Extraction Combined with GC for TPH and PAH Determination in Semi-micro Solid Samples / J. Hassan, M. Izadib and S. Homayonnejad // J. Braz. Chem. Soc. 2013. Vol. 24. P. 639-644). Подготовку пробы проводили путем добавления к 0,1 г высушенного образца почвы 10 мл метанола с последующим перемешиванием и центрифугированием при 3500 об/мин в течение 5 минут. Надосадочную жидкость отбирали и добавляли экстрагент - 1 мл н-гексана, - экстракционную смесь тщательно встряхивали. Для расслаивания системы добавляли 4 мл воды. Отбирали из верхнего слоя 500 мкл гексанового экстракта, упаривали в токе азота, перерастворяли в 50 мкл н-гексана и хроматографировали.

Недостатками метода является малая чувствительность (2-60 мкг/кг), обусловленная потерей легких представителей ПАУ при высушивании пробы, а также определение всего 16 аналитов.

Известен способ одновременного определения ПАУ в почве, заключающийся в том, что к 2 г воздушно-сухой навески образца добавляли 30 мл микроэмульсии (МЭ) состава додецилсульфат натрия (ДДСН) / бензол / изопентанол / вода (3/0,8/6/90,2% по мас.) и помещали в ультразвуковую ванну на 10 минут (Толмачева, Н.Г. Применение микроэмульсии для извлечения, концентрирования и определения десяти ПАУ из различных типов почв. / Н.Г. Толмачева, М. Чжан, А.В. Пирогов и др. // Журнал аналитической химии. - 2017. - Т. 72, №6. - С. 515-520). Для расслаивания МЭ после экстракции в ультразвуковой ванне к смеси добавляли избыток (по отношению к ДДСН) сухого хлорида кальция. Отбирали 1 мл экстракта и центрифугировали при 16000 об/мин в течение 3 минут, надосадочную жидкость анализировали методом высокоэффективной жидкостной хроматографии с флуориметрическим детектированием (ВЭЖХ-ФЛД).

Недостатками метода является малая чувствительность, обусловленная потерей легких представителей ПАУ при высушивании пробы, а также определение всего 10 аналитов.

Наиболее близким аналогом - прототипом к заявляемому способу является способ, заключающийся в том, что 0,2 г высушенного образца почвы переносили в виалу на 10 мл, добавляли 2 мл ацетонитрила, встряхивали на вортексе 2 мин со скоростью 2800 об/мин и затем центрифугировали 5 мин со скоростью 3000 об/мин (Vortex-assisted extraction combined with dispersive liquid-liquid microextraction for the determination of polycyclic aromatic hydrocarbons in sediment by high performance liquid chromatography. Geng Leng Guibin Lui, Yong Chen, Hui Yin, Dezhong Dan. J. Sep. Sci. 2012, 00, 1-9). Раствор декантировали в виалу на 5 мл и вводили 1 мл смеси, содержащей 5 мл дистиллированной воды, 80 мкл дихлорметана и 1 мл ацетонитрила для дисперсионной жидкость-жидкостной микроэкстракции (DLLME), центрифугировали 5 мин со скоростью 3000 об/мин. В стеклянную виалу отбирали 100 мкл экстракта, упаривали в токе азота, перерастворяли сухой остаток в 40 мкл ацетонитрила и хроматографировали методом ВЭЖХ-ФЛД.

Однако данный способ обладает недостаточной чувствительностью к определяемым ПАУ- нижние пределы определения варьируются в диапазоне от 2,3 до 6,8 мкг/кг, что обусловлено потерей аналитов на этапах высушивания образцов и смены растворителя для ВЭЖХ-анализа. Одновременно этим способом определяют 15 ПАУ.

Техническим результатом предложенного способа является повышение селективности, чувствительности определения и увеличение количества определяемых веществ путем оптимизации условий пробоподготовки и использования ГХ-МС метода анализа.

Для достижения технического результата при хромато-масс-спектрометрическом определении ПАУ в режиме мониторинга заданных ионов в образцах почв и донных отложений с использованием техники DLLME к навеске образца добавляют 500 мкл ацетонитрила и осуществляют извлечение аналитов с помощью ультразвукового воздействия в течение 5 минут. Затем центрифугируют 10 мин. со скоростью 10000 об/мин, надосадочную жидкость декантируют, добавляют 3 мл воды и 550 мкл смеси для DLLME, состоящей из 50 мкл хлороформа и 500 мкл ацетонитрила, полученную трехкомпонентную систему встряхивают в течение 1 мин, центрифугируют 10 мин. со скоростью 3000 об/мин., полученный экстракт хроматографируют, используя колонку ZB-5ms длиной 60 м, внутренним диаметром 0.25 мм с привитой фазой 5%-полисиларилен-95%-диметилполисилоксан толщиной пленки 0.25 мкм.

Общими признаками с прототипом являются:

- центрифугирование на этапе предварительного извлечения ПАУ из образца;

- использование ацетонитрила в качестве диспергирующего растворителя;

- центрифугирование для эффективного разделения трехкомпонентной системы на этапе микроэкстракции.

Отличительными признаками заявляемого способа от прототипа являются:

- использование ультразвуковой обработки на этапе извлечения ПАУ из почвы;

- центрифугирование со скоростью 10000 об/мин после извлечения ПАУ в ацетонитрил;

- использование 40-50 мкл хлороформа в качестве экстрагента для микроэкстракции;

- центрифугирование трехкомпонентной смеси на этапе микроэкстракции в течение 10 мин;

- детектирование хлороформного экстракта;

- использование метода ГХ-МС для определения ПАУ в почвах и донных отложениях;

- использование капиллярной колонки длиной 60 м, внутренним диаметром 0.25 мм с привитой фазой 5%-полисиарилен+95%-диметилполисилоксан толщиной пленки 0.25 мкм.

На фиг. 1 - зависимость степени извлечения ПАУ из образцов от длительности ультразвуковой обработки экстракта: а) бенз(а)пирен, б) флуорен, в) хризен; на фиг. 2 - хроматограмма модельной смеси 20 полиароматических углеводородов; на фиг. 3 - хроматограмма хлороформного экстракта образца песка п. Сахара.

В качестве объектов исследования были выбраны: почва, песок, донные отложения Азовского моря и Курчанского лимана. При изучении зависимости степени извлечения полиаренов в ацетонитрил от времени обработки ультразвуком установлено, что для максимального извлечения ПАУ достаточно 10 минутного воздействия при стандартной рабочей частоте 35 кГц для почв различного состава и донных отложений (фиг. 1). Исследована стабильность трехкомпонентной системы с различными хлорорганическими растворителями в качестве экстрагента - хлороформом, дихлорметаном, четыреххлористым углеродом. Установлено, что использование хлороформа позволяет получить стабильную и воспроизводимую экстракционную смесь с максимальной степенью извлечения при использовании техники DLLME. При варьировании объема экстрагента от 25 до 100 мкл отмечено, что степень извлечения сопоставима для объемов от 40 до 100 мкл, что позволяет использовать наименьший объем в диапазоне от 40 до 50 мкл для целей концентрирования. Использование объема менее 40 мкл не позволяет получить воспроизводимую трехкомпонентную систему, поэтому оптимальный объем для разработанного способа принят равным 50 мкл.

Экспериментально установлено, что для получения экстракционной системы - образования стабильной хлороформной капли на дне пробирки - необходимым условием является строгое соблюдение соотношения ацетонитрил : вода. Кроме того, установлено, что для объема хлороформа, равного 50 мкл это соотношение должно быть 1:3 соответственно. Оптимальным является общий объем ацетонитрила 1 мл с учетом того, что 0,5 мл добавляют к образцу в начале и при скорости центрифугирования 10000 об/мин обеспечивают высокую степень седиментации для последующего эффективного отделения надосадочной жидкости в указанном объеме. Остальные 0,5 мл ацетонитрила добавляются в систему ацетонитрил : вода : хлороформ в качестве диспергатора на стадии проведения микроэкстракции для разработанной трехкомпонентной системы. Было экспериментально установлено, что масса навески должна быть равна 0,5-1 г. При меньших значениях массы навеска становится непредставительной, увеличение - приводит к необходимости использования большего количества ацетонитрила, что нарушает стабильность трехкомпонентной системы.

Экспериментально выявлено, что центрифугирование менее 10 минут при скорости 3000 об/мин не обеспечивает четкого расслоения водно-ацетонитрильной фазы и хлороформа, содержащего аналиты - хлороформный экстракт, что приводит к нестабильности системы и невоспроизводимым результатам. Для максимально полного осаждения хлороформного экстракта необходимо проводить центрифугирование в течение 10 мин. При этом дальнейшее увеличение времени центрифугирования не оказывает влияния на результаты определения.

Оптимизированы условия хроматографического разделения и масс-спектрометрического детектирования ПАУ с использованием государственных стандартных образцов индивидуальных веществ (фиг. 2). Экспериментально подобраны условия температурного режима при условии использования колонки ZB-5ms длиной 60 м с привитой фазой 5%-полисиарилен+95%-диметилполисилоксан при скорости потока газа-носителя 1.35 мл/мин. и температурном программировании термостата: 60°С/1 мин - нагрев 15°С/мин. - 170°С/3 мин. - нагрев 10°С/мин. - 280°С/8 мин - нагрев 10°С/мин - 290°С/25 мин. Ионизация осуществлялась электронным ударом, детектирование определяемых веществ проводили в режиме мониторинга заданных ионов (SIM). Определены времена удерживания каждого индивидуального вещества и проведено сопоставление с библиотечными масс-спектрами баз NIST и WILLEY (табл. 1). Общее время анализа - 56 мин.

Для определения пределов обнаружения к образцам почвы, не содержащим определяемых аналитов, добавляли 10 и 25 мкл модельного раствора смеси 20 ПАУ с концентрацией каждого 10 нг/мл, что при пересчете на массу навески составляет 0,2 мкг/кг и 0,5 мкг/кг. Проводили пробоподготовку и анализировали полученные хлороформные экстракты методом ГХ-МС. Достоверно удалось определить концентрацию 0,5 мкг/кг для каждого ПАУ (табл. 1).

Пример конкретного выполнения.

Исследуемый образец песка п. Сахара взвешивают на аналитических весах и берут образец массой 0,5 г и помещают в центрифужную пробирку на 2 мл. К навеске добавляют 500 мкл ацетонитрила и помещают в ультразвуковую ванну на 5 мин. Затем пробу центрифугируют 10 мин со скоростью 10000 об/мин. Надосадочную жидкость декантируют в стеклянную центрифужную пробирку на 10 мл и добавляют 3 мл дистиллированной воды. В отдельном флаконе готовят экстракционную смесь, смешивая 50 мкл хлороформа и 500 мкл ацетонитрила, затем отбирают и вводят ее в пробирку с пробой, встряхивают и центрифугируют 10 мин со скоростью 3000 об/мин. Из хлороформного экстракта, образующегося на дне пробирки, отбирают 2 мкл для анализа методом ГХ-МС, используя колонку ZB-5ms длиной 60 м, внутренним диаметром 0.25 мм с привитой фазой 5%-полисиларилен-95%-диметилполисилоксан толщиной пленки 0.25 мкм.

Далее проводят обработку полученных данных с применением программного обеспечения GCMS-solution (Shimadzu, Япония) (фиг. 3; табл. 2).

Благодаря повышенной селективности и чувствительности предлагаемого способа, удалось обнаружить и количественно определить содержание в образце указанных в табл. 2 ПАУ. По способу, предложенному в прототипе, нижняя граница определения составляет, мкг/кг: флуорен - 4,0; фенантрен - 4,2; флуорантен - 5,3; пирен - 6,5, и обнаружить в данном образце указанные ПАУ не удастся. Кроме того, он не предполагает определение бифенила.

Результаты экспериментальных исследований и приведенный пример подтверждают достижение технического результата:

- благодаря исключению стадии высушивания образца перед анализом, применению меньшего количества экстрагента, и центрифугированию трехкомпонентной смеси на этапе микроэкстракции в течение 10 мин. удалось получить стабильную и воспроизводимую экстракционную систему, а также повысить чувствительность определения;

- разделение и однозначное идентифицирование изомерных ПАУ стало возможным благодаря подобранным условиям хроматографирования - использование капиллярной колонки длиной 60 м с привитой фазой 5%-полисиарилен+95%-диметилполисилоксан, моноквадрупольного масс-спектрометрического детектора «Shimadzu GCMS-QP2020».

Заявляемые отличительные признаки позволяют исследовать образцы почв и донных отложений на содержание 20 полиаренов, увеличив полноту извлечения аналитов из образцов и снизив пределы определения ПАУ до 0.5 мкг/кг. Применение ГХ-МС позволяет исключить стадию смены растворителя и, благодаря масс-спектрометрическому детектированию по выделенным ионам, надежно идентифицировать определяемые компоненты в сложной матрице природных объектов.

Предлагаемый способ является новым, обладает изобретательским уровнем и может широко использоваться для экоаналитического мониторинга ПАУ.

Похожие патенты RU2719578C1

название год авторы номер документа
Способ определения гидроксилированных полициклических ароматических углеводородов в моче 2023
  • Алексеенко Антон Николаевич
  • Журба Ольга Михайловна
  • Шаяхметов Салим Файзыевич
  • Меринов Алексей Владимирович
RU2814310C1
Способ определения производных стероидных гормонов в моче 2021
  • Дмитриева Екатерина Владимировна
  • Темердашев Азамат Зауалевич
  • Азарян Алиса Андреевна
RU2764363C1
Способ подготовки пробы мочи для определения монометилфталата, моноэтилфталата, монобутилфталата, монобензилфталата, моноэтилгексилфталата методом высокоэффективной жидкостной хроматографии/масс-спектрометрии 2019
  • Зайцева Нина Владимировна
  • Уланова Татьяна Сергеевна
  • Карнажицкая Татьяна Дмитриевна
  • Пермякова Татьяна Сергеевна
RU2687738C1
СПОСОБ ОПРЕДЕЛЕНИЯ МИКОТОКСИНОВ В ПРОДУКТАХ ЖИВОТНОГО И РАСТИТЕЛЬНОГО ПРОИСХОЖДЕНИЯ 2012
  • Амелин Василий Григорьевич
  • Третьяков Алексей Викторович
  • Карасева Надежда Михайловна
  • Никешина Татьяна Борисовна
  • Абраменкова Ольга Игоревна
RU2514828C2
Способ подготовки проб мочи на принципах мицеллярной экстракции для определения содержания адреналина 2022
  • Булатов Андрей Васильевич
  • Вах Кристина Степановна
  • Каспер Светлана Васильевна
RU2800474C1
Способ подготовки проб цельного и сухого молока для определения в них химических загрязнителей 2021
  • Булатов Андрей Васильевич
  • Шишов Андрей Юрьевич
  • Шакирова Фируза Миратовна
RU2774814C1
Способ определения массовых концентраций фенола и пирокатехина в крови методом высокоэффективной жидкостной хроматографии 2022
  • Зайцева Нина Владимировна
  • Уланова Татьяна Сергеевна
  • Карнажицкая Татьяна Дмитриевна
  • Старчикова Мария Олеговна
  • Зверева Лада Александровна
RU2786509C1
Способ качественного и количественного колориметрического определения формальдегида в молоке 2022
  • Булатов Андрей Васильевич
  • Тимофеева Ирина Игоревна
  • Кочеткова Мария Андреевна
RU2795470C1
СПОСОБ ОПРЕДЕЛЕНИЯ ОСТАТОЧНЫХ КОЛИЧЕСТВ ТРИФЕНИЛМЕТАНОВЫХ КРАСИТЕЛЕЙ В МЫШЕЧНОЙ ТКАНИ РЫБ 2015
  • Сорокин Александр Валерьевич
  • Комаров Александр Анатольевич
  • Нестеренко Ирина Сергеевна
  • Панин Александр Николаевич
RU2578974C1
Способ количественного определения салицилатов в плазме крови 2016
  • Абаимов Денис Александрович
  • Сариев Абрек Куангалиевич
  • Танашян Маринэ Мовсесовна
  • Шабалина Алла Анатольевна
  • Теленкова Надежда Григорьевна
  • Спавронская Лариса Рафаиловна
RU2622996C1

Иллюстрации к изобретению RU 2 719 578 C1

Реферат патента 2020 года СПОСОБ ОПРЕДЕЛЕНИЯ ПОЛИЦИКЛИЧЕСКИХ АРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ В ПОЧВАХ И ДОННЫХ ОТЛОЖЕНИЯХ

Изобретение относится к области аналитической химии и может быть использовано при экологическом контроле почв различного типа и донных отложений на содержание полиароматических углеводородов (ПАУ). Способ хромато-масс-спектрометрического определения ПАУ в режиме мониторинга заданных ионов в образцах почв и донных отложений с использованием техники дисперсионной жидкость-жидкостной микроэктракции (DLLME) с предварительным извлечением ПАУ из твердых образцов в ацетонитрил, в котором на этапе извлечения аналитов из твердых образцов массой 0.5 - 1 г в ацетонитрил объемом 500 мкл, используют ультразвуковую обработку в течение 5 минут, после чего центрифугируют 10 мин со скоростью 10000 об/мин, полученную надосадочную жидкость декантируют, добавляют 3 мл воды и 550 мкл смеси для DLLME, состоящей из 50 мкл хлороформа и 500 мкл ацетонитрила, полученную трехкомпонентную систему встряхивают в течение 1 мин, центрифугируют 10 мин со скоростью 3000 об/мин, и полученный экстракт хроматографируют, используя капиллярную колонку ZB-5ms длиной 60 м, внутренним диаметром 0.25 мм с привитой фазой 5%-полисиларилен-95%-диметилполисилоксан толщиной пленки 0.25 мкм и моноквадрупольный масс-спек-трометрический детектор «Shimadzu GCMS-QP2020». Изобретение обеспечивает повышение селективности, чувствительности определения и увеличение количества определяемых веществ путем оптимизации условий пробоподготовки и использования ГХ-МС метода анализа. 2 табл., 3 ил.

Формула изобретения RU 2 719 578 C1

Способ хромато-масс-спектрометрического определения полициклических ароматических углеводородов (ПАУ) в режиме мониторинга заданных ионов в образцах почв и донных отложений с использованием техники дисперсионной жидкость-жидкостной микроэктракции (DLLME) с предварительным извлечением ПАУ из твердых образцов в ацетонитрил, отличающийся тем, что на этапе извлечения аналитов из твердых образцов массой 0.5 - 1 г в ацетонитрил объемом 500 мкл, используют ультразвуковую обработку в течение 5 минут, после чего центрифугируют 10 мин со скоростью 10000 об/мин, полученную надосадочную жидкость декантируют, добавляют 3 мл воды и 550 мкл смеси для DLLME, состоящей из 50 мкл хлороформа и 500 мкл ацетонитрила, полученную трехкомпонентную систему встряхивают в течение 1 мин, центрифугируют 10 мин со скоростью 3000 об/мин, и полученный экстракт хроматографируют, используя капиллярную колонку ZB-5ms длиной 60 м, внутренним диаметром 0.25 мм с привитой фазой 5%-полисиларилен-95%-диметилполисилоксан толщиной пленки 0.25 мкм и моноквадрупольный масс-спек-трометрический детектор «Shimadzu GCMS-QP2020».

Документы, цитированные в отчете о поиске Патент 2020 года RU2719578C1

Leng, G., Lui, G., Chen, Y., Yin, H., & Dan, D
Vortex-assisted extraction combined with dispersive liquid-liquid microextraction for the determination of polycyclic aromatic hydrocarbons in sediment by high performance liquid chromatography
Journal of Separation Science, 35(20), 2012, 2796-2804
Konstantinova E.Yu
et al
Bulletin of the Tomsk

RU 2 719 578 C1

Авторы

Червонная Татьяна Артемовна

Мусорина Татьяна Артемовна

Темердашев Зауаль Ахлоович

Даты

2020-04-21Публикация

2019-05-20Подача