Изобретение относится к области аналоговой микроэлектроники и может быть использовано в качестве повторителя напряжения или двухтактного буферного усилителя в различных микроэлектронных аналоговых устройствах (активных RC-фильтрах, операционных усилителях, драйверах линий связи и т.п.), допускающих работу в условиях воздействия проникающей радиации и низких температур.
Известно значительное количество схем микроэлектронных повторителей напряжения и двухтактных буферных усилителей (БУ), которые реализуются на комплементарных биполярных (BJT) или полевых (КМОП, КНИ, КНС и др.) транзисторах, а также при их совместном включении [1-27].
Ближайшим прототипом заявляемого устройства является повторитель напряжения (фиг. 1), представленный в патенте RU 2711725, фиг. 2, 2020 г. Он содержит вход 1 и выход 2 устройства, первый 3 входной полевой транзистор, сток которого согласован с первой 4 шиной источника питания, второй 5 входной полевой транзисторов, затвор которого подключен ко входу 1 устройства, а сток согласован со второй 6 шиной источника питания, первый 7 и второй 8 выходные полевые транзисторы, объединенные истоки которых соединены с выходом 2 устройства, первый 9 и второй 10 токостабилизирующие резисторы, причем сток первого 7 выходного полевого транзистора связан с первой 4 шиной источника питания, а сток второго 8 выходного полевого транзистора связан со второй 6 шиной источника питания.
Существенный недостаток известного повторителя напряжения (ПН) состоит в том, что статический режим транзисторов его схемы определяется сравнительно большим числом активных и пассивных элементов (шестью транзисторами и двумя резисторами). Это отрицательно сказывается на работе ПН в условиях технологического разброса параметров элементов, который наиболее существенно сказывается на характеристиках ПН в условиях низких температур и радиационных воздействий.
Основная задача предполагаемого изобретения состоит в создании более простого (по числу JFET транзисторов) радиационно-стойкого и низкотемпературного схемотехнического решения ПН на комплементарных полевых транзисторах, обеспечивающего (при высокой линейности амплитудной характеристики) повышенную стабильность статического режима транзисторов и низкий уровень шумов, в том числе при работе в диапазоне низких температур и технологических разбросов параметров элементов.
Решение поставленной задачи достигается тем, что в повторителе напряжения фиг. 1, содержащем вход 1 и выход 2 устройства, первый 3 входной полевой транзистор, сток которого согласован с первой 4 шиной источника питания, второй 5 входной полевой транзисторов, затвор которого подключен ко входу 1 устройства, а сток согласован со второй 6 шиной источника питания, первый 7 и второй 8 выходные полевые транзисторы, объединенные истоки которых соединены с выходом 2 устройства, первый 9 и второй 10 токостабилизирующие резисторы, причем сток первого 7 выходного полевого транзистора связан с первой 4 шиной источника питания, а сток второго 8 выходного полевого транзистора связан со второй 6 шиной источника питания, предусмотрены новые связи – затвор первого 3 входного полевого транзистора соединен со входом 1 устройства, исток второго 5 входного полевого транзистора соединен с затвором первого 7 выходного полевого транзистора и подключен к истоку первого 7 выходного полевого транзистора через первый 9 токостабилизирующий резистор, исток первого 3 входного полевого транзистора соединен с затвором второго 8 выходного полевого транзистора и подключен к истоку второго 8 выходного полевого транзистора через второй 10 токостабилизирующий резистор.
На фиг. 1 представлена схема повторителя напряжения – прототипа.
На фиг. 2 приведена схема заявляемого низкотемпературного и радиационно-стойкого повторителя напряжения на комплементарных полевых транзисторах с управляющим pn-переходом для задач проектирования активных RC-фильтров.
На фиг. 3 показан статический режим ПН фиг. 2 при t=27°C, R1=R2=20 кОм, Rн=∞.
На фиг. 4 представлен статический режим ПН фиг. 2 при t=-197°C, R1=R2=20 кОм, Rн=∞.
На фиг. 5 приведена зависимость выходного напряжения (VВых) от входного напряжения (VВх) ПН фиг. 3 при t=27°C и разных сопротивлениях нагрузки (Rн=5 кОм/10 кОм/20 кОм/50 кОм/500 кОм/ ∞).
На фиг. 6 показана зависимость выходного напряжения (VВых) от входного напряжения (VВх) ПН фиг. 4 при t=-197°C и разных сопротивлениях нагрузки (Rн=5 кОм/10 кОм/20 кОм/50 кОм/500 кОм/ ∞).
На фиг. 7 представлена зависимость выходного напряжения ПН фиг. 3 (фиг. 4) от температуры в диапазоне -197°С ÷ +27°С при нулевом входном напряжении (VВх=0В) и сопротивлении нагрузки Rн=∞. При этом использовались компьютерные модели JFET транзисторов, представленные в [28,29].
На фиг. 8 приведена зависимость выходного напряжения ПН фиг. 3 от потока нейтронов в диапазоне Fn=1e13÷1e15 н/см2 при нулевом входном напряжении (VВх=0В) и сопротивлении нагрузки Rн=∞. При этом использовались компьютерные модели JFET транзисторов, представленные в [28,29].
На фиг. 9 показан пример включения заявляемого ПН в структуре фильтра верхних частот.
На фиг. 10 представлен пример включения заявляемого ПН в структуре фильтра нижних частот (ФНЧ) Чебышева 3-го порядка.
На фиг. 11 приведен пример включения заявляемого ПН в структуре ФНЧ Баттеворта 4-го порядка.
На фиг. 12 показан пример включения заявляемого ПН в структуре ФНЧ Бесселя 5-го порядка.
Низкотемпературный и радиационно-стойкий повторитель напряжения на комплементарных полевых транзисторах с управляющим pn-переходом для задач проектирования активных RC-фильтров фиг. 2 содержит вход 1 и выход 2 устройства, первый 3 входной полевой транзистор, сток которого согласован с первой 4 шиной источника питания, второй 5 входной полевой транзисторов, затвор которого подключен ко входу 1 устройства, а сток согласован со второй 6 шиной источника питания, первый 7 и второй 8 выходные полевые транзисторы, объединенные истоки которых соединены с выходом 2 устройства, первый 9 и второй 10 токостабилизирующие резисторы, причем сток первого 7 выходного полевого транзистора связан с первой 4 шиной источника питания, а сток второго 8 выходного полевого транзистора связан со второй 6 шиной источника питания. Затвор первого 3 входного полевого транзистора соединен со входом 1 устройства, исток второго 5 входного полевого транзистора соединен с затвором первого 7 выходного полевого транзистора и подключен к истоку первого 7 выходного полевого транзистора через первый 9 токостабилизирующий резистор, исток первого 3 входного полевого транзистора соединен с затвором второго 8 выходного полевого транзистора и подключен к истоку второго 8 выходного полевого транзистора через второй 10 токостабилизирующий резистор.
При этом на чертеже фиг. 2 двухполюсник 11 моделирует свойства нагрузки, подключаемой к выходу устройства 2.
На фиг. 9 показан пример включения заявляемого ПН в структуре фильтра верхних частот (ФВЧ), содержащего вход 12 и выход 13 ФВЧ, а также частотозадающие конденсаторы 14 и 15, частотозадающие резисторы 16, 17 и заявляемый повторитель напряжения 18.
На фиг. 10 представлен пример включения заявляемого ПН в структуре фильтра нижних частот (ФНЧ) Чебышева 3-го порядка, который содержит вход 19 и выход 20 ФНЧ, частотозадающие конденсаторы 21, 22 и 23, частотозадающие резисторы 24, 25, 26, а также заявляемый повторитель напряжения 27.
На фиг. 11 приведен пример включения заявляемого ПН в структуре ФНЧ Баттеворта 4-го порядка, который содержит вход 28 и выход 39 устройства, частотозадающие резисторы 29, 30, 31 и 32, частотозадающие конденсаторы 33, 34, 35, 36, а также заявляемые повторители напряжения 37 и 38.
На фиг. 12 показан пример включения заявляемого ПН в структуре ФНЧ Бесселя 5-го порядка, содержащего вход 40 и выход 53 устройства, частотозадающие резисторы 41, 42, 43, 44, 45 и частотозадающие конденсаторы 46, 47, 48, 49, 50. В качестве буферных усилителей 51 и 52 в данной схеме могут использоваться заявляемые повторители напряжения.
Рассмотрим работу ПН фиг. 2 с учетом результатов моделирования его характеристик, показанных на чертежах фиг. 5 – фиг. 8.
В статическом режиме при большом сопротивлении нагрузки 11 токи истоков первого 7 выходного и второго 5 входного полевых транзисторов, а также первого 3 входного и второго 8 выходного полевых транзисторов определяются формулами
(1)
(2)
где R9, R10 – сопротивления соответствующих первого 9 и второго 10 токостабилизирующих резисторов,
Uзи.i - напряжение затвор-исток i-го полевого транзистора при заданном токе истока.
Из формул (1) и (2) следует, что статические режимы первого 3 и второго 5 входных полевых транзисторов могут устанавливаться независимо друг от друга вторым 10 первым 9 токостабилизирующими резисторами. При этом статическое напряжение на выходе 2 устройства (при идентичных стоко-затворных характеристиках транзисторов с p- и n–каналами) близко к нулю:
(3)
В практических схемах ПН из-за разности пороговых напряжений транзисторов с p- и n-каналами в схеме фиг.2 выходное напряжение (так называемое напряжение смещения нуля ПН Uсм) лежит в диапазонах единиц-десятков милливольт. При этом численные значения Uсм могут устанавливаться, в зависимости от диапазона внешних воздействий, за счет рационального выбора сопротивлений R9 и R10.
Если входное напряжение в схеме фиг. 2 получает положительное приращение, то ток в нагрузке 11 также получает положительное приращение за счет увеличения тока истока первого 7 выходного полевого транзистора.
При отрицательных входных напряжениях приращение тока в двухполюснике нагрузки 11 обеспечивается за счет увеличения тока истока второго 8 выходного полевого транзистора.
Как следует из графиков фиг. 5 и фиг. 6, заявляемый повторитель напряжения обеспечивает (при больших сопротивлениях нагрузки 11) максимальные выходные напряжения, близкие к напряжениям на первой 4 и второй 6 шинах питания, в т.ч. в криогенном диапазоне температур (фиг. 7). При этом, как следует из графиков фиг. 8, заявляемая схема ПН работоспособна в широком диапазоне изменения потока нейтронов.
Компьютерное моделирование показывает, что предлагаемый ПН может найти применение в низкотемпературных радиационно-стойких аналоговых устройствах. Примеры его использования в задачах проектирования низкотемпературных радиационно-стойких активных RC-фильтров приведены на чертежах фиг. 9 – фиг. 12. При этом за счет соответствующего выбора частотозадающих резисторов и конденсаторов в представленных выше схемах фильтров реализуются различные амплитудно-частотные характеристики (фильтров Чебышева, Баттерворта и Бесселя).
Таким образом, заявляемое устройство имеет существенные преимущества в сравнении с прототипом.
БИБЛИОГРАФИЧЕСКИЙ СПИСОК
1. Патент US 6.215.357, fig. 3, 2001 г.
2. Патент US 5.351.012, 1994 г.
3. Патент US 5.973.534, 1999 г.
4. Патент US 5.197.124, fig. 25, 1993 г.
5. Патент US 7.764.123, fig. 3, 2010 г.
6. Патент US № 6.268.769 fig.3, 2001 г.
7. Патент US № 6.420.933, 2002 г.
8. Патент US № 5.223.122, 1993 г.
9. Патентная заявка US № 2004/0196101, 2004 г.
10. Патентная заявка US № 2005/0264358 fig.1, 2005 г.
11. Патентная заявка US № 2002/0175759, 2002 г.
12. Патент US № 5.049.653 fig.8, 1991 г.
13. Патент US № 4.837.523, 1989 г.
14. Патент US № 5.179.355, 1993 г.
15. Патент Японии JP 10.163.763, 1991 г.
16. Патент Японии JP 10.270.954, 1992 г.
17. Патент US № 5.170.134 fig.6, 1992 г.
18. Патент US № 4.540.950, 1985 г.
19. Патент US № 4.424.493, 1984 г.
20. Патент Японии JP 6310950, 2018 г.
21. Патент US № 5.378.938, 1995 г.
22. Патент US № 4.827.223, 1989 г.
23. Патент US № 6.160.451, 2000 г.
24. Патент US № 4.639.685, 1987 г.
25. А.св. СССР 1506512, 1986 г.
26. Патент US № 5.399.991, 1995 г.
27. Патент US № 6.542.032, 2003 г.
28. Элементная база радиационно-стойких информационно-измерительных систем: монография / Н.Н. Прокопенко, О.В. Дворников, С.Г. Крутчинский; под общ. ред. д.т.н. проф. Н.Н. Прокопенко; ФГБОУ ВПО «Южно-Рос. гос. ун-т экономики и сервиса». - Шахты: ФГБОУ ВПО «ЮРГУЭС», 2011. - 208 с.
29. O. V. Dvornikov, V. L. Dziatlau, N. N. Prokopenko, K. O. Petrosiants, N. V. Kozhukhov and V. A. Tchekhovski. The accounting of the simultaneous exposure of the low temperatures and the penetrating radiation at the circuit simulation of the BiJFET analog interfaces of the sensors // 2017 International Siberian Conference on Control and Communications (SIBCON), Astana, Kazakhstan, 2017, pp. 1-6. DOI: 10.1109/SIBCON.2017.7998507.
название | год | авторы | номер документа |
---|---|---|---|
АНТИАЛАЙЗИНГОВЫЙ ФИЛЬТР НИЗКИХ ЧАСТОТ СЕМЕЙСТВА SALLEN-KEY С МАЛЫМ НАПРЯЖЕНИЕМ СМЕЩЕНИЯ НУЛЯ ДЛЯ РАБОТЫ С БЫСТРОДЕЙСТВУЮЩИМИ АНАЛОГО-ЦИФРОВЫМИ ПРЕОБРАЗОВАТЕЛЯМИ | 2022 |
|
RU2782454C1 |
ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ С ПАРАФАЗНЫМ ВЫХОДОМ ДЛЯ АКТИВНЫХ RC-ФИЛЬТРОВ, РАБОТАЮЩИХ В УСЛОВИЯХ ВОЗДЕЙСТВИЯ ПОТОКА НЕЙТРОНОВ И НИЗКИХ ТЕМПЕРАТУР | 2020 |
|
RU2724921C1 |
АРСЕНИД-ГАЛЛИЕВЫЙ ВЫХОДНОЙ КАСКАД УСИЛИТЕЛЯ МОЩНОСТИ | 2021 |
|
RU2767976C1 |
Буферный усилитель для работы при низких температурах | 2018 |
|
RU2687161C1 |
БИПОЛЯРНО-ПОЛЕВОЙ БУФЕРНЫЙ УСИЛИТЕЛЬ ДЛЯ РАБОТЫ ПРИ НИЗКИХ ТЕМПЕРАТУРАХ | 2018 |
|
RU2670777C9 |
ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ НА ОСНОВЕ «ПЕРЕГНУТОГО» КАСКОДА И КОМПЛЕМЕНТАРНЫХ ПОЛЕВЫХ ТРАНЗИСТОРОВ | 2022 |
|
RU2773907C1 |
ДИФФЕРЕНЦИАЛЬНЫЙ УСИЛИТЕЛЬ НА ПОЛЕВЫХ ТРАНЗИСТОРАХ С УПРАВЛЯЮЩИМ P-N ПЕРЕХОДОМ | 2021 |
|
RU2766861C1 |
БИПОЛЯРНО-ПОЛЕВОЙ БУФЕРНЫЙ УСИЛИТЕЛЬ | 2018 |
|
RU2677401C1 |
ДИФФЕРЕНЦИАЛЬНЫЙ УСИЛИТЕЛЬ НА АРСЕНИД-ГАЛЛИЕВЫХ ПОЛЕВЫХ ТРАНЗИСТОРАХ | 2021 |
|
RU2770912C1 |
ПРЕЦИЗИОННЫЙ ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ ДЛЯ РАДИАЦИОННО-СТОЙКОГО БИПОЛЯРНО-ПОЛЕВОГО ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА | 2014 |
|
RU2571569C1 |
Изобретение относится к области аналоговой микроэлектроники. Технический результат: создание простого радиационно-стойкого и низкотемпературного схемотехнического решения повторителя напряжения на комплементарных полевых транзисторах, обеспечивающего повышенную стабильность статического режима транзисторов и низкий уровень шумов, в том числе при работе в диапазоне низких температур и технологических разбросов параметров элементов. Для этого предложен низкотемпературный и радиационно-стойкий повторитель напряжения на комплементарных полевых транзисторах с управляющим pn-переходом для задач проектирования активных RC-фильтров, у которого по сравнению с прототипом затвор первого (3) входного полевого транзистора соединен с входом (1) устройства, исток второго (5) входного полевого транзистора соединен с затвором первого (7) выходного полевого транзистора и подключен к истоку первого (7) выходного полевого транзистора через первый (9) токостабилизирующий резистор, исток первого (3) входного полевого транзистора соединен с затвором второго (8) выходного полевого транзистора и подключен к истоку второго (8) выходного полевого транзистора через второй (10) токостабилизирующий резистор. 12 ил.
Низкотемпературный и радиационно-стойкий повторитель напряжения на комплементарных полевых транзисторах с управляющим pn-переходом для задач проектирования активных RC-фильтров, содержащий вход (1) и выход (2) устройства, первый (3) входной полевой транзистор, сток которого согласован с первой (4) шиной источника питания, второй (5) входной полевой транзистор, затвор которого подключен ко входу (1) устройства, а сток согласован со второй (6) шиной источника питания, первый (7) и второй (8) выходные полевые транзисторы, объединенные истоки которых соединены с выходом (2) устройства, первый (9) и второй (10) токостабилизирующие резисторы, причем сток первого (7) выходного полевого транзистора связан с первой (4) шиной источника питания, а сток второго (8) выходного полевого транзистора связан со второй (6) шиной источника питания, отличающийся тем, что затвор первого (3) входного полевого транзистора соединен со входом (1) устройства, исток второго (5) входного полевого транзистора соединен с затвором первого (7) выходного полевого транзистора и подключен к истоку первого (7) выходного полевого транзистора через первый (9) токостабилизирующий резистор, исток первого (3) входного полевого транзистора соединен с затвором второго (8) выходного полевого транзистора и подключен к истоку второго (8) выходного полевого транзистора через второй (10) токостабилизирующий резистор.
Быстродействующий выходной каскад аналоговых микросхем на комплементарных полевых транзисторах с управляющим p-n переходом для работы при низких температурах | 2019 |
|
RU2711725C1 |
ПОВТОРИТЕЛЬ НАПРЯЖЕНИЯ | 1992 |
|
RU2078397C1 |
ПОВТОРИТЕЛЬ НАПРЯЖЕНИЙ | 1990 |
|
SU1799220A1 |
US 4777392 A1, 11.10.1988. |
Авторы
Даты
2020-06-17—Публикация
2020-03-13—Подача