Изобретение относится к области нанотехнологии и ветеринарной медицины и микробиологии.
Ранее были известны способы получения микрокапсул солей.
В пат. 2359662 МПК A61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00 опубликован 27.06.2009 Российская Федерация предложен способ получения микрокапсул хлорида натрия с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.
Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин).
Наиболее близким методом является способ, предложенный в пат. 2134967 МПК A01N 53/00, A01N 25/28 опубликован 27.08.1999 Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4: 1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.
Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.
Техническая задача - упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).
Решение технической задачи достигается способом получения нанокапсул сульфата железа (III), отличающийся тем, что в качестве оболочки нанокапсул используется высокоэтерифицированный яблочный пектин при получении нанокапсул методом осаждения нерастворителем с применением хлороформа в качестве осадителя.
Отличительной особенностью предлагаемого метода является получение нанокапсул методом осаждения нерастворителем с использованием хлороформа в качестве осадителя, а также использование высокоэтерифицированного яблочного пектина в качестве оболочки нанокапсул.
Результатом предлагаемого метода являются получение нанокапсул сульфата железа (III) в пектине.
ПРИМЕР 1 Получение нанокапсул сульфата железа (III), соотношение ядро : оболочка 1:3
1 г порошка сульфата железа медленно добавляют в суспензию 3 г высокоэтерифицирированного яблочного пектина в бутаноле, содержащую 0,01 г Е472 с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота, как трехосновная, может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием) в качестве поверхностно-активного вещества при перемешивании 600 об/мин. Далее приливают 7 мл хлороформа. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 4 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 2 Получение нанокапсул сульфата железа (III), соотношение ядро : оболочка 1:1
1 г порошка сульфата железа медленно добавляют в суспензию 1 г высокоэтерифицировванного яблочного пектина в бутаноле, содержащую 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 600 об/мин. Далее приливают 7 мл хлороформа. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 2 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 3 Получение нанокапсул сульфата железа (III), соотношение ядро : оболочка 1:2
1 г порошка сульфата железа медленно добавляют в суспензию 2 г высокоэтерифицированного яблочного петина в бутаноле, содержащую 0,01 г препарата Е472 с в качестве поверхностно-активного вещества при перемешивании 600 об/мин. Далее приливают 7 мл хлороформа. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 3 г порошка нанокапсул. Выход составил 100%.
Получены нанокапсулы сульфата железа (III) с высокими выходами и в течение 15 мин.. Предложенная методика вполне пригодна для применения в промышленных масштабах ввиду минимальных потерь и простоты исполнения.
название | год | авторы | номер документа |
---|---|---|---|
Способ получения нанокапсул сухого экстракта шиповника в пектине | 2016 |
|
RU2636321C1 |
Способ получения нанокапсул семян чиа (Salvia hispanica) в пектине | 2016 |
|
RU2647440C2 |
Способ получения нанокапсул витаминов в пектине | 2017 |
|
RU2654229C1 |
Способ получения нанокапсул бетулина | 2016 |
|
RU2640499C1 |
Способ получения нанокапсул спирулина в пектине | 2016 |
|
RU2672406C2 |
Способ получения нанокапсул танина | 2015 |
|
RU2606589C2 |
Способ получения нанокапсул лекарственных растений, обладающих иммуностимулирующим действием в пектине | 2016 |
|
RU2647437C1 |
Способ получения нанокапсул лекарственных растений, обладающих кардиотоническим действием в пектине | 2016 |
|
RU2642056C2 |
Способ получения нанокапсул сульфата железа (II) в геллановой камеди | 2020 |
|
RU2738077C1 |
Способ получения нанокапсул сульфата железа (III) | 2019 |
|
RU2724890C1 |
Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул сульфата железа (III) в оболочке из высокоэтерифицированного яблочного пектина. Способ характеризуется тем, что массовое соотношение ядро:оболочка составляет 1:1, 1:2 или 1:3, при этом сульфат железа (III) добавляют в суспензию высокоэтерифицированного яблочного пектина в петролбутаноле, содержащую препарат Е472с в качестве поверхностно-активного вещества при перемешивании 600 об/мин, далее приливают хлороформ, полученную суспензию отфильтровывают и сушат при комнатной температуре. Способ обеспечивает упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул и может быть использовано в ветеринарной медицине и микробиологии. 3 пр.
Способ получения нанокапсул сульфата железа (III), характеризующийся тем, что в качестве оболочки нанокапсул используется высокоэтерифицированный яблочный пектин, а в качестве ядра - сульфат железа (III) при массовом соотношении ядро : оболочка 1:1, 1:2 или 1:3, при этом сульфат железа (III) добавляют в суспензию высокоэтерифицированного яблочного пектина в петролебутаноле, содержащую препарат Е472с в качестве поверхностно-активного вещества при перемешивании 600 об/мин, далее приливают хлороформ, полученную суспензию отфильтровывают и сушат при комнатной температуре.
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ СОЛЕЙ МЕТАЛЛОВ В КОНЖАКОВОЙ КАМЕДИ | 2014 |
|
RU2569735C1 |
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ СОЛЕЙ МЕТАЛЛОВ | 2014 |
|
RU2568832C1 |
CN 0100457094 C, 04.02.2009 | |||
SHELAKE S.S | |||
et.al | |||
Formulation and Evaluation of Fenofibrate-loadedNanoparticles by Precipitation Method | |||
Способ получения цианистых соединений | 1924 |
|
SU2018A1 |
Приспособление для нагревания воздуха теплотой отработавшего воздуха | 1924 |
|
SU420A1 |
КОМПОЗИЦИИ И СПОСОБЫ ДЛЯ ДОСТАВКИ ЛЕКАРСТВЕННЫХ СРЕДСТВ | 2009 |
|
RU2496482C2 |
ЧУЕШОВ В.И., Промышленная технология лекарств в 2-х томах, том |
Авторы
Даты
2020-06-26—Публикация
2019-10-28—Подача