СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ СОЛЕЙ МЕТАЛЛОВ Российский патент 2015 года по МПК A61K33/00 A61K47/36 A61K9/50 A61K9/51 A61J3/07 B01J13/02 B82B3/00 

Описание патента на изобретение RU2568832C1

Изобретение относится к области нанотехнологии и ветеринарии.

Ранее были известны способы получения микрокапсул солей.

В пат. 2359662, МПК А61К 009/56, A61J 003/07, B01J 013/02, A23L 001/00, опубликован 27.06.2009, Российская Федерация, предложен способ получения микрокапсул хлорида натрия с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 оборотов/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.

Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 оборотов/мин).

Наиболее близким методом является способ, предложенный в пат. 2134967, МПК A01N 53/00, A01N 25/28, опубликован 27.08.1999, Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.

Недостатком метода является диспергирование в водной среде, что делает предложенный способ не применимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.

Техническая задача - упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).

Решение технической задачи достигается способом получения нанокапсул солей металлов, отличающийся тем, что в качестве оболочки нанокапсул используется каррагинан при получении нанокапсул методом осаждения нерастворителем с применением 1,2-дихлорэтана в качестве осадителя.

Отличительной особенностью предлагаемого метода является получение нанокапсул методом осаждения нерастворителем с использованием 1,2-дихлорэтана в качестве осадителя, а также использование каррагинана в качестве оболочки частиц.

Результатом предлагаемого метода являются получение нанокапсул солей в полимерной оболочке.

ПРИМЕР 1. Получение нанокапсул сульфата железа в каррагинане, соотношение ядро: оболочка 1:3

100 мг сульфата железа диспергируют в суспензию 300 мг каррагенана в бутаноле, в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного в вещества при перемешивании 1200 об/с. Далее приливают 2 мл 1,2-дихлорэтана. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,368 г порошка нанокапсул. Выход составил 92%.

ПРИМЕР 2. Получение нанокапсул сульфата цинка в каррагинане, соотношение ядро: оболочка 1:3

100 мг сульфата цинка диспергируют в суспензию 300 мг каррагинана в бутаноле, в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1200 об/с. Далее приливают 2 мл 1,2-дихлорэтана. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,376 г порошка нанокапсул. Выход составил 94%.

ПРИМЕР 3. Получение нанокапсул карбоната кальция в каррагинане, соотношение ядро: оболочка 1:3

100 мг карбоната кальция диспергируют в суспензию 300 мг каррагенана в бутаноле, в присутствии 0,01 г препарата Е472с при перемешивании 1200 об/с. Далее приливают 2 мл 1,2-дихлорэтана. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,4 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 4 Получение нанокапсул карбоната магния в каррагинане, соотношение ядро:оболочка 1:3

100 мг карбоната магния диспергируют в суспензию 300 мг каррагенана в бутаноле, в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1200 об/с. Далее приливают 2 мл 1,2-дихлорэтана. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,4 г порошка нанокапсул. Выход составил 100%.

Пример 5. Определение размеров нанокапсул методом NTA.

Измерения проводили на мультипараметрическом анализаторе наночастиц Nanosight LM0 производства Nanosight Ltd. (Великобритания) в конфигурации HS-BF (высокочувствительная видеокамера Andor Luca, полупроводниковый лазер с длиной волны 405 нм и мощностью 45 мВт). Прибор основан на методе анализа траекторий наночастиц (Nanoparticle Tracking Analysis, NTA), описанном в ASTM E2834.

Оптимальным разведением для разведения было выбрано 1:100. Для измерения были выбраны параметры прибора: Camera Level=16, Detection Threshold=10 (multi), Min Track Length: Auto, Min Expected Size: Auto, длительность единичного измерения 215s, использование шприцевого насоса.

Получены нанокапсулы солей с достаточно высокими выходами. Предложенная методика вполне пригодна для применения в промышленных масштабах ввиду минимальных потерь и простоты исполнения.

Статистические характеристики распределений приведены в табл. 1.

Похожие патенты RU2568832C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ АУКСИНОВ В КАРРАГИНАНЕ 2014
  • Кролевец Александр Александрович
  • Навальнева Ирина Алексеевна
  • Богачев Илья Александрович
  • Никитин Кирилл Сергеевич
  • Бойко Екатерина Евгеньевна
  • Медведева Яна Владимировна
RU2567339C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ АЛБЕНДАЗОЛА 2014
  • Кролевец Александр Александрович
  • Богачев Илья Александрович
  • Никитин Кирилл Сергеевич
  • Бойко Екатерина Евгеньевна
  • Медведева Яна Владимировна
RU2559571C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ СОЛЕЙ МЕТАЛЛОВ В КОНЖАКОВОЙ КАМЕДИ 2014
  • Кролевец Александр Александрович
  • Богачев Илья Александрович
  • Никитин Кирилл Сергеевич
  • Бойко Екатерина Евгеньевна
  • Медведева Яна Владимировна
RU2569735C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ ГИББЕРЕЛЛИНОВОЙ КИСЛОТЫ 2014
  • Кролевец Александр Александрович
  • Навальнева Ирина Алексеевна
  • Богачев Илья Александрович
  • Никитин Кирилл Сергеевич
  • Бойко Екатерина Евгеньевна
  • Медведева Яна Владимировна
RU2573982C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ ВИТАМИНОВ В КАРРАГИНАНЕ 2014
  • Кролевец Александр Александрович
  • Богачев Илья Александрович
  • Никитин Кирилл Сергеевич
  • Бойко Екатерина Евгеньевна
RU2562561C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ КВЕРЦЕТИНА И ДИГИДРОКВЕРЦЕТИНА В ХИТОЗАНЕ 2014
  • Кролевец Александр Александрович
  • Богачев Илья Александрович
  • Никитин Кирилл Сергеевич
  • Бойко Екатерина Евгеньевна
  • Медведева Яна Владимировна
RU2574897C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ ВИТАМИНОВ В ГЕЛЛАНОВОЙ КАМЕДИ 2014
  • Кролевец Александр Александрович
  • Богачев Илья Александрович
  • Никитин Кирилл Сергеевич
  • Бойко Екатерина Евгеньевна
  • Медведева Яна Владимировна
RU2559577C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ 2-ЦИС-4-ТРАНС-АБСЦИЗОВОЙ КИСЛОТЫ 2014
  • Кролевец Александр Александрович
  • Навальнева Ирина Алексеевна
  • Богачев Илья Александрович
  • Никитин Кирилл Сергеевич
  • Бойко Екатерина Евгеньевна
  • Медведева Яна Владимировна
RU2564892C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ 2,4-ДИХЛОРФЕНОКСИУКСУСНОЙ КИСЛОТЫ 2014
  • Кролевец Александр Александрович
  • Навальнева Ирина Алексеевна
  • Богачев Илья Александрович
  • Никитин Кирилл Сергеевич
  • Бойко Екатерина Евгеньевна
  • Медведева Яна Владимировна
RU2550920C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ БЕТУЛИНА 2014
  • Кролевец Александр Александрович
  • Богачев Илья Александрович
  • Никитин Кирилл Сергеевич
  • Бойко Екатерина Евгеньевна
  • Медведева Яна Владимировна
RU2574899C1

Реферат патента 2015 года СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ СОЛЕЙ МЕТАЛЛОВ

Изобретение относится в области нанотехнологии и фармацевтической химии. При получении нанокапсул солей металлов в качестве оболочки используется каррагинан. Массовое соотношение соль металла:каррагинан составляет 1:3. При осуществлении способа получения нанокапсул соль металла диспергируют в суспензию каррагинана в бутаноле в присутствии препарата Е472с при перемешивании 1200 об/с. Далее приливают 1,2-дихлорэтан, полученную суспензию отфильтровывают и сушат при комнатной температуре. Способ обеспечивает упрощение и ускорение процесса получения нанокапсул и увеличение выхода по массе. 1 ил., 1 табл., 5 пр.

Формула изобретения RU 2 568 832 C1

Способ получения нанокапсул солей металлов в каррагинане, характеризующийся тем, что в качестве оболочки нанокапсул используется каррагинан, массовое соотношение соль металла:каррагинан составляет 1:3, при этом соль металла диспергируют в суспензию каррагинана в бутаноле в присутствии препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1200 об/с, далее приливают 1,2-дихлорэтан, полученную суспензию отфильтровывают и сушат при комнатной температуре.

Документы, цитированные в отчете о поиске Патент 2015 года RU2568832C1

СПОСОБ ПОЛУЧЕНИЯ МИКРОКАПСУЛИРОВАННЫХ ПРЕПАРАТОВ, СОДЕРЖАЩИХ ПИРЕТРОИДНЫЕ ИНСЕКТИЦИДЫ 1997
  • Шестаков К.А.
  • Леви М.И.
  • Крейнгольд С.У.
  • Сизова Г.И.
  • Богданова Е.Н.
RU2134967C1
СОЛОДОВНИК В.Д
"Микрокапсулирование", Москва, "Химия", 1980, стр.136-139
Способ получения микрокапсул 1978
  • Нижник Валерий Васильевич
  • Жартовский Владимир Михайлович
  • Баранова Анна Ивановна
SU676316A1
Способ получения микрокапсул 1976
  • Герберт Бенсон Шер
SU707510A3
МИКРОКАПСУЛА ДЛЯ ДЛИТЕЛЬНОГО ВЫСВОБОЖДЕНИЯ ФИЗИОЛОГИЧЕСКИ АКТИВНОГО ПЕПТИДА 1993
  • Хироаки Окада[Jp]
  • Яйой Иноуе[Jp]
  • Ясуаки Огава[Jp]
RU2098121C1

RU 2 568 832 C1

Авторы

Кролевец Александр Александрович

Богачев Илья Александрович

Никитин Кирилл Сергеевич

Бойко Екатерина Евгеньевна

Медведева Яна Владимировна

Даты

2015-11-20Публикация

2014-07-01Подача