Изобретение относится к каталитическим способам переработки смесевых дизельных фракций первичного и вторичного происхождения с высоким содержанием серы, с получением смеси сверхмалосернистых фракций бензиновых и дизельных углеводородов.
В настоящее время наиболее востребованным видом топлива для двигателей внутреннего сгорания является дизельное топливо. Получение дизельных топлив с низким содержанием серы является одной из наиболее важных задач современной нефтепереработки. В России производится дизельное топливо, содержащее не более 10 ppm серы в соответствии с ГОСТ Р 52368-2005. (ЕН 590-2004). Топливо дизельное ЕВРО. Технические условия. Рост потребления дизельного топлива связан с увеличением доли его экспорта на внешние рынки, ростом численности автомобилей с дизельным двигателем, обновлением парка грузовых автомобилей, автобусов и парка самоходной военной техники. При этом, в нефтеперерабатывающей промышленности, с одной стороны ужесточаются требования к экологическому качеству применяемых топлив, а с другой – возникает необходимость извлекать из нефтяного сырья все больше светлых фракций из-за возрастания потребления топлив, что ведёт к увеличению объёмов производства вторичных дистиллятов. Таким образом, с ростом потребности транспорта в дизельном топливе особую актуальность приобретает проблема расширения его производства за счёт вовлечения в переработку средних дистиллятов вторичных процессов.
Для увеличения объёма производства дизельного топлива на ряде нефтеперерабатывающих заводов в качестве компонентов дизельного топлива используют такие дистилляты вторичных процессов, как лёгкий газойль висбрекинга (ГВ) тяжелого нефтяного сырья (мазуты, гудроны), лёгкий газойль коксования (ЛГК) и лёгкий газойль каталитического крекинга (ЛГКК). Кроме того, помимо традиционных процессов переработки тяжелого нефтяного сырья (ТНС), основанных на термическом крекинге, либо гидрокрекинге, проводятся исследования, направленные на разработку новых процессов облагораживания с получением вторичных фракций, например, с использованием воды (крекинг ТНС в среде суб- и сверхкритической воды, а также водяного пара). Получаемые в этих процессах средние дистилляты (н.к. – 360°С) не находят квалифицированного применения из-за их нестабильности, обусловленной наличием значительного количества непредельных углеводородов, повышенным содержанием полиароматических углеводородов, а также азот- и сераорганических соединений. Вследствие вышеуказанных особенностей, вторичные дистилляты, как правило, перерабатывают в смеси с прямогонными дизельными фракциями (ПДФ) – дистиллятами, полученными при первичной переработке нефти. Однако гидроочистка таких смесей не всегда обеспечивает приемлемую глубину гидрообессеривания и гидрирования ароматических соединений. Поэтому одной из задач, стоящих перед нефтепереработкой, является развитие как процессов, так и комплексных схем переработки вторичных дистиллятов с получением сверхмалосернистых дизельных топлив.
Из патентной литературы известны различные способы гидроочистки прямогонного дизельного топлива в смеси с легкими газойлями, либо дизельными фракциями вторичных процессов, однако основным недостатком этих подходов является высокое остаточное содержание серы в получаемых продуктах, обусловленное низкой активностью используемых катализаторов. Кроме того, в настоящее время отсутствуют процессы гидроочистки вторичных фракций, полученных в процессах облагораживания ТНС в присутствии водяного пара и/или сверхкритической воды. Также, используемые для гидрогенизационной обработки ПДФ и газойли вторичных процессов обычно содержат не более 2,0 мас. % серы.
Известен способ переработки дистиллятов вторичного происхождения с получением очищенного дизельного топлива и бензина [РФ, № 2135548, C10G59/02, 27.08.1999], при котором дистилляты вторичного происхождения (бензин коксования – содержание серы 0,65 мас. %; газойль коксования – содержание серы 1,4 мас. %), выкипающие в интервале температур 21 – 205 и/или 140 – 360°С, в смеси с прямогонной фракцией (ПДФ, содержание серы 1,4 мас. %) подвергают двухстадийной гидроочистке в присутствии алюмокобальтмолибденового либо алюмоникельмолибденового катализатора при 200 – 320°С на первой стадии и 280 – 380°С на второй. Соотношение вторичных фракций к прямогонным варьируется в интервале (5 – 95) : (95 – 5). Недостатком данного способа является многостадийность гидрогенизационной переработки, а также очень высокое содержание серы в конечной дизельной фракции (350 – 500 ppm).
Известен способ переработки дистиллятов вторичного происхождения с получением очищенного дизельного топлива и бензина [РФ, № 2316580, C10G59/06, 10.02.2008], смесь вторичных и прямогонных дистиллятов также подвергают двухстадийной гидроочистке при 200 – 320°С на первой стадии и 280 – 380°С на второй. В качестве вторичных дистиллятов используют бензин висбрекинга (содержание серы 1,2 мас. %) и легкий газойль висбрекинга (содержание серы 2,0 мас. %). На первой стадии используют алюмоникельмолибденовый либо алюмоникельвольфрамовый катализатор, объемная скорость подачи сырья (ОСПС) составляет 5 – 10 ч-1, соотношение водорода к сырью зависит от йодного числа сырья и варьируется от 100 до 230 нм3/м3. На второй стадии применяют алюмоникель-, либо алюмокобальтмолибденовый катализатор, соотношение водорода к сырью составляет 150 – 300 нм3/м3. Недостатками данного способа также являются многостадийность процесса и высокое содержание серы в конечной дизельной фракции (50 – 1800 ppm).
Общим недостатком для всех вышеперечисленных процессов гидропереработки является то, что в них не удаётся достичь остаточного содержания серы в дизельных топливах ниже 10 ppm, а используемые ПДФ и вторичное сырье (дизельные фракции, легкие газойли) могут содержать не более 2,0 мас. % серы.
Наиболее близким к предлагаемому техническому решению является описанный в [РФ, № 2609834, C10G65/04, 06.02.2017] способ гидрооблагораживания дизельных дистиллятов с получением очищенного сверхмалосернистого дизельного топлива в присутствии NiMo катализаторов с использованием носителя на основе силикоалюмофосфата SAPO-31. Облагораживание проводят в следующих условиях: Т = 340 – 380°С, ОСПС = 1,0 – 1,5 ч-1, PH2 = 5,5 – 7,0 МПа, H/C = 215 – 600. В качестве сырья используют смесь легкого газойля каталитического крекинга (ЛГКК) с ПДФ в массовом соотношении ЛГКК/ПДФ = 5 – 30 : 95 – 70. Содержание серы приводится только для смесевого сырья – 0,754 мас. %. Содержание серы в полученных в результате гидропереработки дизельных фракциях варьируется в интервале 1,6 – 22,6 ppm, в зависимости от условий процесса.
Основным недостатком известного способа гидропереработки является то, что с его помощью можно перерабатывать только дизельные фракции с низким содержанием серы. Предлагаемое изобретение решает задачу создания улучшенного способа получения сверхмалосернистого дизельного топлива из высокосернистых вторичных дизельных фракций (содержание серы до 3,6 мас. %), а используемые в процессе вторичные дизельные фракции (ВДФ) получены в качестве продуктов нового процесса переработки тяжелого нефтяного сырья – каталитического парового крекинга (КПК) (крекинга в присутствии водяного пара).
Технический результат – проведение гидрогенизационной переработки высокосернистых дизельных фракций вторичного происхождения (содержание серы больше, чем в прототипе) в виде смеси с ПДФ с получением дизельных фракций, содержащих менее 10 ppm серы. Используемые ВДФ получены в результате КПК ТНС с последующим их выделением из продуктов (полусинтетической нефти) путем ректификации.
Задача решается способом получения малосернистого дизельного топлива, заключающимся в превращении смеси вторичных дизельных фракций с высоким содержанием серы с прямогонными дизельными фракциями при повышенном давлении и нагревании в потоке водородсодержащего газа в присутствии гетерогенного катализатора, включающего в состав активного компонента Mo, Co/Ni, P и S, а в состав носителя – борат алюминия и γ-Al2O3, при температуре не выше 340оС, давлении не более 7,0 МПа, массовом расходе сырья не менее 1,0 ч-1, объемном отношении водород/сырье не более 500 м3/м3, в качестве вторичных дизельных фракций, входящих в состав смесевого сырья используют дизельные фракции с концом кипения до 360оС, полученные ректификацией полусинтетической нефти, являющейся продуктом каталитического парового крекинга тяжелого нефтяного сырья, которое может быть природным, например, тяжелые нефти, битумы и пр., либо техногенным, например, мазут, гудрон. Содержание серы во вторичных дизельных фракциях может варьироваться от 0 до 3,6 мас. %.
Катализатор имеет удельную поверхность 120 – 190 м2/г, объём пор 0,35 – 0,65 см3/г, средний диаметр пор 7 – 12 нм, и представляет собой частицы с сечением в виде круга, трилистника или четырёхлистника с диаметром описанной окружности 1,0 – 1,6 мм и длиной до 20 мм.
Основным отличительным признаком предлагаемого способа переработки ВДФ по сравнению с прототипом является то, что в гидроочистке используются дизельные фракции вторичного происхождения, полученные из ТНС путем КПК.
Вторым отличительным признаком предлагаемого способа по сравнению с прототипом является то, что с его помощью можно вовлекать в переработку ВДФ с очень высоким содержанием серы (до 3,6 мас. %).
Описание предлагаемого технического решения.
Гидрогенизационную переработку смеси ПДФ и ВДФ, (содержание ВДФ до 30 %) с концом кипения до 360оС, проводят при температуре 340оС, давлении 7,0 МПа, массовом расходе сырья 1,0 ч-1, объемном отношении водород/сырье 500 м3/м3 в присутствии катализатора, содержащего, мас. %: Mo – 10,0 – 16,0; Со – 2,7 – 4,5; P – 0,8 – 1,8; S – 6,7 – 10,8; носитель – остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита – 5,0 – 25,0; γ-Al2O3 – остальное. Используемый катализатор имеет удельную поверхность 120 – 190 м2/г, объём пор 0,35 – 0,65 см3/г, средний диаметр пор 7 – 12 нм, и представляет собой частицы с сечением в виде круга, трилистника или четырёхлистника с диаметром описанной окружности 1,0 – 1,6 мм и длиной до 20 мм.
Сущность изобретения иллюстрируется следующими примерами.
Пример 1.
Для гидропереработки используют смесевое сырье, состоящее из
70 % прямогонной дизельной фракции и 30 % вторичной дизельной фракции, полученной из жидких продуктов каталитического парового крекинга татарской высокосернистой тяжелой нефти (ТН) с содержанием серы 4,3 масс. %. Вторичные дизельные фракции выделяют из полусинтетической нефти (продукта КПК тяжелой нефти) путем ректификации. Содержание серы во ВДФ составляет 3,6 мас. %, в ПДФ – 0,2 мас. %, в смесевом сырье – 1,2 мас. %.
Для гидрогенизационной переработки используют катализатор состава Co-Mo/Al2O3 с активной фазой в сульфидной форме. Физико-химические характеристики исходного носителя и используемого катализатора приведены в таблице 1. Гидрогенизационную переработку смесевого сырья проводят в проточном реакторе с неподвижным слоем катализатора при следующих условиях: температура 340°C, объемная скорость подачи сырья (ОСПС) – 1 час-1, соотношение водород/сырье – 500, давление водорода – 7 МПа. Свойства полученных дизельных фракций приведены в таблице 2.
Пример 2.
Отличается от Примера 1 тем, что в состав смеси дизельных фракций, направляемой на гидропереработку, входит 90 % ПДФ, 10 % ВДФ.
Пример 3.
Отличается от Примера 1 тем, что в состав катализатора вместо кобальта входит никель (таблица 1).
Пример 4.
Отличается от Примера 3 тем, что в качестве ВДФ используются дизельные фракции, полученные из полусинтетической нефти – продукта КПК гудрона. Содержание серы во ВДФ составляет 1,9 масс. %, в ПДФ – 0,2 масс. %, в смесевом сырье – 0,7 масс. %.
Таблица 1 –
Физико-химические характеристики исходного носителя γ-Al2O3 и используемых катализаторов
Результаты гидроочистки приведены в Таблице 2.
Таблица 2 –
Результаты гидропереработки смесевого дизельного топлива
Таким образом, как видно из приведенных примеров, предлагаемый способ гидрогенизационной переработки вторичных дизельных фракций позволяет перерабатывать высокосернистые вторичные дизельные фракции, с содержанием серы больше, чем в прототипе, в виде смесей с прямогонными. Кроме того, предлагаемый способ позволяет использовать ВДФ, полученные из жидких продуктов каталитического парового крекинга различного тяжелого нефтяного сырья, включая высокосернистое. Получаемые дизельные топлива, при этом, имеют содержание серы менее 10 ppm.
название | год | авторы | номер документа |
---|---|---|---|
Способ получения малосернистого дизельного топлива и малосернистого бензина | 2019 |
|
RU2716165C1 |
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОПЛОТНОГО РЕАКТИВНОГО ТОПЛИВА (ВАРИАНТЫ) | 2018 |
|
RU2670449C1 |
Способ совместной гидропереработки триглицеридов жирных кислот и нефтяных дизельных фракций | 2019 |
|
RU2726796C1 |
Способ совместной гидропереработки растительного и нефтяного сырья | 2019 |
|
RU2726616C1 |
СПОСОБ ПЕРЕРАБОТКИ ДИСТИЛЛЯТОВ ВТОРИЧНОГО ПРОИСХОЖДЕНИЯ | 1998 |
|
RU2135548C1 |
СПОСОБ ПОЛУЧЕНИЯ МОТОРНЫХ ТОПЛИВ | 2016 |
|
RU2623088C1 |
СПОСОБ ПОЛУЧЕНИЯ МОТОРНЫХ ТОПЛИВ | 2008 |
|
RU2378322C1 |
Способ получения малосернистого дизельного топлива | 2018 |
|
RU2691991C1 |
СПОСОБ ПОЛУЧЕНИЯ ЭКОЛОГИЧЕСКИ ЧИСТОГО ДИЗЕЛЬНОГО ТОПЛИВА | 1996 |
|
RU2089596C1 |
СПОСОБ ПЕРЕРАБОТКИ НЕФТЯНЫХ ОСТАТКОВ | 2006 |
|
RU2309974C1 |
Изобретение описывает способ получения малосернистого дизельного топлива, заключающийся в превращении смеси вторичных дизельных фракций с высоким содержанием серы с прямогонными дизельными фракциями при повышенном давлении и нагревании в потоке водородсодержащего газа в присутствии гетерогенного катализатора, содержащего, мас.%: Mo – 10,0-16,0; Со – 2,7- 4,5; P – 0,8-1,8; S – 6,7-10,8; носитель – остальное; при этом носитель содержит, мас.%: борат алюминия Al3BO6 со структурой норбергита – 5,0-25,0; γ-Al2O3 – остальное; при этом используемый катализатор имеет удельную поверхность 120-190 м2/г, объём пор 0,35-0,65 см3/г, средний диаметр пор 7-12 нм и представляет собой частицы с сечением в виде круга, трилистника или четырёхлистника с диаметром описанной окружности 1,0-1,6 мм и длиной до 20 мм, при температуре не выше 340оС, давлении не более 7,0 МПа; массовом расходе сырья не менее 1,0 ч-1, объемном отношении водород/сырье не более 500 м3/м3, характеризующийся тем, что в качестве вторичных дизельных фракций, входящих в состав смесевого сырья, используют дизельные фракции с концом кипения до 360оС, полученные ректификацией полусинтетической нефти, являющейся продуктом каталитического парового крекинга тяжелого нефтяного сырья, которое может быть природным, например тяжелые нефти, либо техногенным, например гудрон. Технический результат заключается в получении топлива с содержанием серы менее 10 ppm. 1 з.п. ф-лы, 4 пр., 2 табл.
1. Способ получения малосернистого дизельного топлива, заключающийся в превращении смеси вторичных дизельных фракций с высоким содержанием серы с прямогонными дизельными фракциями при повышенном давлении и нагревании в потоке водородсодержащего газа в присутствии гетерогенного катализатора, содержащего, мас.%: Mo – 10,0-16,0; Со – 2,7- 4,5; P – 0,8-1,8; S – 6,7-10,8; носитель – остальное; при этом носитель содержит, мас.%: борат алюминия Al3BO6 со структурой норбергита – 5,0-25,0; γ-Al2O3 – остальное; при этом используемый катализатор имеет удельную поверхность 120-190 м2/г, объём пор 0,35-0,65 см3/г, средний диаметр пор 7-12 нм и представляет собой частицы с сечением в виде круга, трилистника или четырёхлистника с диаметром описанной окружности 1,0-1,6 мм и длиной до 20 мм, при температуре не выше 340оС, давлении не более 7,0 МПа; массовом расходе сырья не менее 1,0 ч-1, объемном отношении водород/сырье не более 500 м3/м3, отличающийся тем, что в качестве вторичных дизельных фракций, входящих в состав смесевого сырья, используют дизельные фракции с концом кипения до 360оС, полученные ректификацией полусинтетической нефти, являющейся продуктом каталитического парового крекинга тяжелого нефтяного сырья, которое может быть природным, например тяжелые нефти, либо техногенным, например гудрон.
2. Способ по п. 1, отличающийся тем, содержание серы во вторичных дизельных фракциях может достигать 3,6 мас.%.
СПОСОБ ПЕРЕРАБОТКИ ДИСТИЛЛЯТОВ ВТОРИЧНОГО ПРОИСХОЖДЕНИЯ | 2006 |
|
RU2316580C1 |
СПОСОБ ПЕРЕРАБОТКИ ДИСТИЛЛЯТОВ ВТОРИЧНОГО ПРОИСХОЖДЕНИЯ | 1998 |
|
RU2135548C1 |
СПОСОБ ПОЛУЧЕНИЯ ЭКОЛОГИЧЕСКИ ЧИСТОГО СУДОВОГО МАЛОВЯЗКОГО ТОПЛИВА | 2002 |
|
RU2213125C1 |
СПОСОБ ПОЛУЧЕНИЯ ДИЗЕЛЬНОГО ТОПЛИВА ИЗ ОСТАТОЧНОГО НЕФТЯНОГО СЫРЬЯ | 2009 |
|
RU2404228C2 |
Катализатор, способ его приготовления и способ гидрооблагораживания дизельных дистиллятов | 2015 |
|
RU2609834C1 |
Способ гидроочистки углеводородного сырья | 2016 |
|
RU2664325C2 |
CN 1485413 A, 31.03.2004 | |||
US 7737071 B2,15.06.2010. |
Авторы
Даты
2020-07-21—Публикация
2019-11-28—Подача