КОРПУС И РАБОЧЕЕ КОЛЕСО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ Российский патент 2020 года по МПК F01D11/12 F04D29/40 F04D29/08 

Описание патента на изобретение RU2727943C2

Изобретение относится к узлу, содержащему корпус газотурбинного двигателя (ГТД) и установленное внутри корпуса рабочее колесо с лопатками.

В корпусе с возможностью вращения может быть установлено одно или более рабочих колес.

С целью достижения оптимального коэффициента полезного действия ГТД лопатки, как правило, устанавливают таким образом, что их концы проходят как можно ближе к внутренней стенке корпуса.

Иногда это может приводить к тому, что концы лопаток входят в контакт с внутренней стенкой корпуса, например, в результате теплового расширения лопаток или их удлинения в результате воздействия центробежной силы, в частности, во время первых часов эксплуатации авиационного газотурбинного двигателя для самолета или вертолета.

Во избежание повреждения стенки корпуса вследствие таких контактов на внутренней поверхности корпуса ГТД иногда закрепляют полосы истираемого материала (т.е. материала, закрепляемого в данных местах для того, чтобы он подвергался абразивному воздействию), которые располагают напротив концов лопаток.

Длину лопаток в этом случае выбирают таким образом, чтобы при работе ГТД на максимальной скорости концы лопаток входили в контакт с полосой истираемого материала.

Под действием трения в течение первых часов эксплуатации ГТД происходит износ полосы истираемого материала до тех пор, пока она не примет форму, при которой не входит более в контакт с концами лопаток. Получаемая таким образом форма является формой, обеспечивающей минимальный зазор между концами лопаток и корпусом.

Однако контакт и трение между полосой истираемого материала и концами лопаток приводит к износу, вибрации и даже к ударным нагрузкам, негативно влияющим на продолжительность ресурса и рабочие характеристики ГТД.

Таким образом, необходимо свести к минимуму такое отрицательное воздействие.

С этой целью, как раскрыто документе WO 2012/025357, в корпусе ГТД с установленным внутри него рабочим колесом, концы лопаток выполнены таким образом, что их задние края значительно короче, чем передние края. Такое решение позволяет обеспечить зазор, по меньшей мере, между задними частями концов лопаток и корпусом.

Однако такое решение требует уменьшения площади поверхности лопаток, и, следовательно, происходит уменьшение их рабочего воздействия на текучую среду, что приводит к снижению КПД рабочего колеса.

Таким образом, задачей изобретения является создание конструкции корпуса ГТД и/или лопаток, обеспечивающей минимальный зазор между лопатками и корпусом, который ограничивает, насколько это возможно, контакт и трение между лопатками и корпусом и обеспечивает сохранение максимального КПД лопаток.

Задача решается посредством узла, содержащего корпус газотурбинного двигателя и установленное внутри указанного корпуса рабочее колесо с лопатками, причем корпус имеет внутреннюю стенку, включающую в себя кольцевую полосу из истираемого материала, при этом концы лопаток расположены напротив указанной полосы из истираемого материала и кольцевой канавки, содержащихся в корпусе, полоса из истираемого материала расположена спереди по потоку, а кольцевая канавка - сзади по потоку, полоса из истираемого материала ограничивает задней частью кольцевую канавку, а задний край кольцевой канавки в осевом направлении расположен на уровне задних краев лопаток или за ними.

Вышеуказанный узел корпуса с рабочим колесом, содержащий напротив концов лопаток расположенную спереди полосу из истираемого материала и расположенную сзади кольцевую канавку, обеспечивает следующие преимущества.

Полоса из истираемого материала расположена напротив концов лопаток, над их передними частями. Следует отметить, что расположение над передними частями концов лопаток является особенно важным для уменьшения зазора между концами лопаток и внутренней поверхностью корпуса.

Таким образом, применение полосы из истираемого материала является особенно оправданным над передними частями концов лопаток. В этой области данная полоса обеспечивает возможность получения минимального зазора между концами лопаток и корпусом.

И наоборот, в области задних частей концов лопаток наличие зазора между концами лопаток и корпусом является не столь важным. Согласно изобретению, предпочтение в данной области отдается для обеспечения достаточного зазора с целью предотвращения возможных контактов между концами лопаток и корпусом.

С этой целью согласно изобретению в корпусе выполнена канавка, расположенная непосредственно за полосой из истираемого материала. Данная канавка ничем не заполнена, в отличие от полосы из истираемого материала. Иными словами, данная кольцевая канавка обеспечивает радиус стенки корпуса, который больше, чем радиус полосы из истираемого материала (и выполнен более точно, чем ее внутренняя поверхность).

Такая разница радиусов означает, что концы лопаток, радиус которых, по существу, постоянен от их передних краев до задних краев, проходят очень близко к полосе из истираемого материала, и при этом, как было указано выше, происходит изнашивание полосы, а задние части очень мало контактируют или практически не входят в контакт с поверхностью канавки, то есть с корпусом.

Для получения оптимального аэродинамического КПД рабочего колеса задний край кольцевой канавки может быть расположен напротив, или, по существу, на уровне заднего края концов лопаток.

В качестве варианта, с целью предотвращения контакта между лопатками и корпусом, задний край кольцевой канавки можно также расположить в осевом направлении за задними краями лопаток.

В этом случае задний край кольцевой канавки, предпочтительно, располагают на расстоянии от задних краев лопаток в осевом направлении, которое должно составлять от 5% до 20% хорды лопаток по оси, измеренном по концам лопаток. Такое расстояние дает возможность кольцевой канавке иметь концы лопаток с достаточным диапазоном перемещения относительно их номинального положения.

Изобретение обеспечивает корпус с оптимизированной поверхностью контакта и, преимущественно, содержащий полосу из истираемого материала с минимальной протяженностью в осевом направлении, тем самым, обеспечивая минимальный контакт и трение между лопатками и корпусом.

Указанные далее различные усовершенствования могут быть выполнены по отдельности или в комбинациях друг с другом:

– канавка, за исключением поверхности канавки, образованной полосой из истираемого материала, может иметь в осевом сечении вогнутую форму;

– дно канавки может содержать цилиндрический участок;

– канавка, за исключением поверхности канавки, образованной полосой из истираемого материала, может иметь в осевом сечении вогнутую форму во всех точках от переднего края до заднего края;

– канавка своим задним краем может быть соединена с внутренней стенкой корпуса вогнутой соединительной галтелью, в частности, имеющей в сечении дугу окружности;

– канавка своим задним краем может быть соединена с внутренней стенкой корпуса поверхностью, имеющей, по существу, форму усеченного конуса;

– радиус дна канавки может быть меньше максимального радиуса полосы из истираемого материала;

– поверхность канавки, образованная полосой из истираемого материала, может

иметь форму усеченного конуса, угол которого равен, по меньшей мере, 45°, и, предпочтительно, по меньшей мере, 60°. Разумеется, поверхность канавки, образованная полосой из истираемого материала, может быть выполнена в плоскости, проходящей поперечно корпусу, и может быть перпендикулярна оси корпуса;

- канавка может быть герметичной или может иметь герметичное дно. Другими словами, канавка не соединена с какими-либо каналами для прохода потока газа или жидкости. Эта особенность служит не для предотвращения входа или выхода газа, а лишь для обеспечения возможности свободного вращения концов лопаток без контакта с корпусом; и

- полоса из истираемого материала занимает от 30% до 70% длины лопаток в осевом направлении.

Объектом изобретения также является осевой компрессор для ГТД, содержащий корпус или узел корпуса с рабочим колесом, как было указано выше.

И, наконец, объектом изобретения является ГТД, содержащий, по меньшей мере, один описанный выше корпус.

Сущность изобретения и его преимущества станут более понятными после ознакомления с приведенным далее подробным описанием возможных вариантов его осуществления, которые приведены в качестве неограничивающих примеров. Описание изобретения приведено со ссылками на чертежи.

На фиг. 1 схематично показана часть компрессора, включающая в себя корпус согласно изобретению;

на фиг. 2 схематично показаны часть компрессора и лопатка согласно первому варианту осуществления изобретения, на виде в продольном разрезе;

на фиг. 3 - вид в разрезе, аналогичный представленному на фиг. 2, показывающий второй вариант осуществления изобретения;

на фиг. 4 - вид в разрезе, аналогичный представленному на фиг. 2, показывающий третий вариант осуществления изобретения;

на фиг. 5 - вид в разрезе, аналогичный представленному на фиг. 2, показывающий четвертый вариант осуществления изобретения;

на фиг. 6 - вид в разрезе, аналогичный представленному на фиг. 2, показывающий пятый вариант осуществления изобретения;

на фиг. 7 - вид в разрезе, аналогичный представленному на фиг. 2, показывающий шестой вариант осуществления изобретения.

На фиг. 1 показан осевой компрессор 10 для ГТД. Он содержит корпус 12 с установленным внутри него рабочим колесом 14. Как правило, рабочее колесо 14 включает в себя диск 16 ротора с осесимметрично закрепленными на нем радиальными лопатками 18. Рабочее колесо установлено таким образом, что оно может вращаться относительно оси вращения А внутри корпуса 12.

Корпус 12 содержит внутреннюю стенку 20, которая образует канал для прохождения газа. Эта внутренняя стенка образует поверхность вращения, которая, как правило, имеет коническую форму, но в представленном примере исполнения она имеет цилиндрическую форму и расположена в диапазоне расположения рабочего колеса 14 в осевом направлении.

Возможные конструкции лопаток 18 и внутренней стенки 20 корпуса 12 показаны для различных вариантов осуществления изобретения на фиг. 2-7.

На различных чертежах идентичным или аналогичным элементам присвоены одинаковые ссылочные обозначения. Кроме того, различные корпусы, показанные, соответственно, на фиг. 3-7, являются идентичными корпусу, изображенному на фиг. 2, за исключением отличий, указанных далее в описании.

На каждой из фиг. 2-7 передний край корпуса 12 (относительно предполагаемого направления потока газа через корпус) расположен с левой стороны.

Каждая лопатка 18 имеет передний край 18А, задний край 18В и конец 19.

В осевом направлении в области расположения рабочего колеса 14, радиально внутренняя часть корпуса 12 содержит, главным образом, два элемента: в целом цилиндрический корпус 22, выполненный из металла или металлического сплава (титанового, алюминиевого, стального и т.д.), и полосу 24 из истираемого материала, отличающегося от материала корпуса 22, например, из алюминиево-кремниевого сплава.

Перед лопатками 18 и за ними корпус 22 имеет радиально-внутреннюю поверхность 23, которая имеет, в целом, цилиндрическую форму. Радиус R этой поверхности немного больше максимального радиуса рабочего колеса 14, измеренного по концам лопаток 18. В корпусе 22 отсутствуют какие-либо каналы для прохождения газа в обход рабочего колеса 14.

На уровне концов лопаток 18 или непосредственно перед ними в корпусе 22 выполнен паз 26. Этот паз выполнен в виде кольцевой канавки, имеющей поверхность вращения вокруг оси А, проточенную в корпусе 22. Этот паз 26 имеет донную поверхность 27, форма которой является, в целом, цилиндрической.

Полоса 24, аналогичным образом, имеющая форму корпуса, установлена в пазу 26 в его передней части.

Таким образом, напротив концов лопаток 18 в корпусе впереди расположена полоса 24 из истираемого материала, а за ней расположена кольцевая канавка 30, которая, в сущности, представляет собой заднюю часть паза 26.

Полоса 24 имеет радиально-внутреннюю поверхность 25. Толщину (в радиальном направлении) полосы 24 выбирают таким образом, чтобы при установке полосы 24 в пазу 26 внутренняя поверхность 23 корпуса 22 и внутренняя поверхность 25 полосы 24 располагались на одном уровне, то есть имели один и тот же радиус R (см. фиг. 2). Таким образом, разность радиусов поверхности 23 (внутренней поверхности корпуса 22) и поверхности дна 27 паза 26 на уровне полосы 24 равна толщине полосы 24.

Передний край поверхности 25 полосы 24 расположен, в целом, на уровне (в осевом направлении) передних краев 18А лопаток 18, или, возможно, немного впереди них.

Следует отметить, что в соответствии с изобретением могут иметься разрывы поверхности 25 полосы 24 (по положению или по касательной) по отношению к поверхности 23. Например, внутренний радиус полосы 24 может быть немного меньше или немного больше радиуса R поверхности 23 корпуса 22.

Задний край полосы 24 расположен приблизительно посередине (в направлении по оси А) между передним крем 18А и задним крем 18В лопатки 18. В целом, предпочтительно, чтобы полоса 24 из истираемого материала закрывала, по меньшей мере, 30% длины лопаток в осевом направлении. Кроме того, нецелесообразно, чтобы полоса занимала более 70% по длине лопаток в осевом направлении.

Непосредственно за полосой 24 находится канавка 30. Канавка образована спереди полосой 24, а ее дно и задняя часть - корпусом 22.

В целом, при перемещении спереди назад, в канавке 30 последовательно расположены следующие части: передняя часть 32, образованная полосой 24, дно 34 и задняя часть 36.

Передняя часть образована задней поверхностью полосы 24. И, наоборот, дно 34 и задняя часть 36 не выполнены из истираемого материала. Они выполнены непосредственно в корпусе 22.

В вариантах исполнения, показанных на фиг. 2-6, эта поверхность расположена в плоскости, поперечной оси А корпуса 12. Таким образом, передняя поверхность 32 образует ступеньку "наружу" на переднем крае канавки 30, где диаметр канала для текучей среды резко увеличивается.

Донная поверхность 34 является частью донной поверхности паза 26. В вариантах осуществления, показанных на фиг. 2-4 и 7, донная поверхность паза 26 является цилиндрической, и, следовательно, в этих вариантах донные поверхности 27 также являются цилиндрическими.

И, наконец, как и поверхность 32, задняя поверхность 36 канавки 30 может быть расположена в плоскости, поперечной оси А корпуса 12 (см. вариант осуществления изобретения, показанный на фиг. 2). В результате, задняя поверхность 36 канавки 30 образует ступеньку "внутрь" на заднем крае канавки 30, где диаметр канала для прохода газов резко уменьшается, чтобы снова стать равным диаметру внутренней поверхности корпуса 22.

Задний край поверхности 36 канавки 30 расположен, в целом, на уровне (в осевом направлении) задних краев 18В лопаток 18, или, возможно, немного за ними.

Таким образом, канавка 30 имеет в осевом сечении вогнутую форму.

На фиг. 3-7 показаны различные варианты выполнения канавки 30.

Варианты, показанные на фиг. 3 и 4, отличаются от варианта, изображенного на фиг. 2, конструкцией задней поверхности 36 канавки 30.

Как показано на фиг. 3, задняя поверхность 36 выполнена в форме усеченного конуса вокруг оси А. Своим задним краем канавка 30 соединена с внутренней стенкой 20 корпуса посредством поверхности, по существу, в форме усеченного конуса, которая в осевом сечении образует постоянный наклон, соединяющий дно 34 со стенкой 20 корпуса. Преимущество такой формы задней поверхности заключается в том, что она ограничивает образование турбулентности на задних краях концов лопаток 18.

Как показано на фиг. 4, задняя поверхность 36 представляет собой вогнутую соединительную галтель, имеющую в сечении дугу окружности. Передний край этой соединительной галтели соединен с дном 34 канавки 30 и расположен по касательной к дну 34.

Кроме того, в этих вариантах осуществления протяженность донной поверхности 34 в направлении по оси меньше, чем в первом варианте, и наоборот, протяженность задней поверхности 36 в осевом направлении больше. Согласно этим вариантам поверхность 34 заканчивается перед задними краями лопаток 18, а не на одном уровне с ними. Таким образом, задняя поверхность 36 канавки 30 проходит в направлении по оси от заднего края донной поверхности 34 перед задними краями лопаток 18 до задних краев или за них.

Кроме того, в вариантах, показанных на фиг. 3, 4 и 6, задний край кольцевой канавки расположен не на уровне с задними краями 18В лопаток, а за ними.

Таким образом, в этих вариантах задний край кольцевой канавки расположен на расстоянии от задних краев 18В лопаток в направлении по оси А, которое составляет от 5% до 20% хорды лопаток по оси, измеренном по концам лопаток. Величина хорды лопаток по оси равна расстоянию в направлении по оси А, как показано на чертежах, между передними краями 18А и задними краями 18В лопаток.

Вариант осуществления изобретения, показанный на фиг. 5, аналогичен показанному на фиг. 4. Различие заключается лишь в форме дна паза 26.

В отличие от вариантов, представленных на фиг. 2-4, в варианте, показанном на фиг. 5, дно паза 26 содержит на две части: переднюю часть, в которую вставляют полосу 24, и заднюю часть, которая образует канавку 30. Форма обеих вышеуказанных частей является цилиндрической; внутренний диаметр передней части больше внутреннего диаметра задней части, и, таким образом, данные части разделены уступом 38.

Уступ 38 предназначен для фиксации полосы 34 в требуемом положении, в частности, в осевом направлении.

На фиг. 6 показан вариант осуществления изобретения, согласно которому донная поверхность 34 и задняя поверхность 36 плавно соединены друг с другом; между ними нет какой-либо четкой границы.

Выполненные в виде единого целого поверхности 34 и 36 образуют единую поверхность 40.

Форма этой поверхности 40 в осевом сечении является локально строго вогнутой на всем протяжении от переднего края до заднего края, и, следовательно, в сечении данной поверхности отсутствуют прямые линии. Форма этой поверхности может быть различной, в идеале она должна определяться экспериментально или посредством расчетов для обеспечения отсутствия контакта поверхностей 34 и 36 (и, следовательно, поверхности 40) с лопатками 18 на всех режимах работы ГТД.

И, наконец, на фиг. 7 показан вариант, который отличается от представленного на фиг. 3 по форме передней поверхности 32 канавки 30.

Эта передняя поверхность выполнена не перпендикулярной оси А корпуса, а в форме усеченного конуса вокруг оси А. Эта поверхность образует при вершине с осью А угол α, который равен 45°.

Во избежание бессмысленного увеличения размеров полосы 24 из истираемого материала, угол α, предпочтительно, должен быть не менее 45°.

Согласно различным описанным вариантам осуществления концы 19 лопаток 18 расположены в радиальном направлении строго внутри стенки 20. Кроме того, длина лопаток в радиальном направлении, является постоянной.

Ни одна из этих двух характеристик не является существенной для данного изобретения.

Согласно изобретению длина лопаток в радиальном направлении может изменяться в зависимости от их положения в направлении по оси рабочего колеса. Таким образом, лопатки могут иметь радиус (общий радиус для лопаток, установленных на рабочем колесе), который изменяется в осевом направлении.

Согласно изобретению лопатки также могут иметь общий радиус, который может быть больше радиуса внутренней поверхности корпуса непосредственно перед или непосредственно за рабочим колесом, или, по меньшей мере, локально больше этого радиуса (т.е. на определенном расстоянии в направлении по оси рабочего колеса). В этом случае концы лопаток, по меньшей мере, локально входят внутрь стенки корпуса.

Лопатки также могут иметь неодинаковый радиальный зазор относительно корпуса, как это показано, в частности, в вышеописанном варианте осуществления изобретения.

Таким образом, общий радиус лопаток может быть меньше или больше внутреннего радиуса (R) поверхности корпуса непосредственно перед или за лопатками. Общий радиус лопаток также может изменяться между этими двумя конфигурациями в зависимости от положения вдоль оси рабочего колеса.

Похожие патенты RU2727943C2

название год авторы номер документа
ТУРБИНА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ 2012
  • Болотин Николай Борисович
RU2490474C1
ЛЕНТА ДЛЯ ИСТИРАЕМОГО МАТЕРИАЛА В КОМПРЕССОРЕ ТУРБИНЫ 2014
  • Жан-Франсуа Кортекисс
RU2679517C2
ТУРБИНА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ 2012
  • Болотин Николай Борисович
RU2504663C2
КОМПОЗИТНЫЙ КОРПУС ДЛЯ КОМПРЕССОРА ОСЕВОЙ ТУРБОМАШИНЫ, ПОЛУЧЕННЫЙ ДВУХКОМПОНЕНТНЫМ ЛИТЬЕВЫМ ФОРМОВАНИЕМ 2012
  • Кристин Брассин
  • Ксавье Вери
RU2619973C2
УСТРОЙСТВО ДЛЯ КРЕПЛЕНИЯ НАПРАВЛЯЮЩЕГО СОПЛОВОГО АППАРАТА ТУРБИНЫ, ТУРБИНА И ДВИГАТЕЛЬ САМОЛЕТА С ТАКИМ ОБОРУДОВАНИЕМ 2007
  • Бар Жак
  • Русселэн Стефан
  • Эскюр Дидье
RU2436965C2
Сопловый аппарат турбины высокого давления (ТВД) газотурбинного двигателя (варианты), сопловый венец соплового аппарата ТВД и лопатка соплового аппарата ТВД 2018
  • Марчуков Евгений Ювенальевич
  • Куприк Виктор Викторович
  • Андреев Виктор Андреевич
  • Комаров Михаил Юрьевич
  • Кононов Николай Александрович
  • Крылов Николай Владимирович
  • Рябов Евгений Константинович
  • Золотухин Андрей Александрович
RU2683053C1
Ротор компрессора авиационного газотурбинного двигателя со спаркой блисков и спаркой блиска с "классическим" рабочим колесом и со спаркой "классического" рабочего колеса с рабочим колесом с четвертой по шестую ступень с устройствами демпфирования колебаний рабочих лопаток этих блисков и рабочих колес, ротор вентилятора и ротор бустера с устройством демпфирования колебаний рабочих широкохордных лопаток вентилятора, способ сборки спарки с демпфирующим устройством 2016
  • Эскин Изольд Давидович
  • Ермаков Александр Иванович
  • Гаршин Егор Алексеевич
RU2665789C2
СТАТОР ОСЕВОГО КОМПРЕССОРА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ 1992
  • Кузнецов В.А.
  • Тункин А.И.
RU2036333C1
СТАТОР ОСЕВОЙ ТУРБОМАШИНЫ, СПОСОБ ЕГО ПРОИЗВОДСТВА И ТУРБОМАШИНА, СОДЕРЖАЩАЯ УКАЗАННЫЙ СТАТОР 2013
  • Хавье Шарль
RU2568353C2
КОМПРЕССОР И ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ С ОПТИМИЗИРОВАННЫМ КОЭФФИЦИЕНТОМ ПОЛЕЗНОГО ДЕЙСТВИЯ 2011
  • Перро Венсан Поль Габриэль
  • Пестей Аньес
  • Барт Ливен
  • Илиопулу Василики
RU2568355C2

Иллюстрации к изобретению RU 2 727 943 C2

Реферат патента 2020 года КОРПУС И РАБОЧЕЕ КОЛЕСО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ

Изобретение относится к узлу, содержащему корпус (12) газотурбинного двигателя и установленное внутри указанного корпуса рабочее колесо (14) с лопатками. Корпус (12) имеет внутреннюю стенку (20), включающую в себя кольцевую полосу (24) из истираемого материала. Концы лопаток расположены напротив полосы из истираемого материала и кольцевой канавки (30), содержащихся в корпусе, причем полоса из истираемого материала расположена спереди по потоку, а кольцевая канавка (30) - сзади по потоку. Полоса из истираемого материала ограничивает задней частью кольцевую канавку (30). Задний край кольцевой канавки (30) в осевом направлении расположен на уровне задних краев (18В) лопаток (18) или за ними. Такая конструкция обеспечивает оптимальное использование полосы из истираемого материала в корпусе газотурбинного двигателя. 2 н. и 9 з.п. ф-лы, 7 ил.

Формула изобретения RU 2 727 943 C2

1. Узел газотурбинного двигателя, содержащий корпус (12) и установленное внутри указанного корпуса рабочее колесо (14) с лопатками, причем корпус (12) имеет внутреннюю стенку (20), включающую в себя кольцевую полосу (24) из истираемого материала, отличающийся тем, что концы лопаток расположены напротив указанной полосы из истираемого материала и кольцевой канавки (30), содержащихся в корпусе, причем полоса из истираемого материала расположена спереди по потоку, а кольцевая канавка (30) – сзади по потоку, при этом полоса из истираемого материала ограничивает задней частью кольцевую канавку (30), а задний край кольцевой канавки (30) в осевом направлении расположен на уровне задних краев (18B) лопаток (18) или за ними, причем дно (34) канавки содержит цилиндрический участок.

2. Узел по п. 1, отличающийся тем, что канавка, за исключением поверхности (32) канавки, образованной полосой из истираемого материала, имеет в осевом сечении вогнутую форму.

3. Узел по п. 1, отличающийся тем, что канавка своим задним краем соединена с внутренней стенкой (20) корпуса вогнутой соединительной галтелью (36).

4. Узел по п. 1, отличающийся тем, что канавка своим задним краем соединена с внутренней стенкой корпуса поверхностью (36), имеющей, по существу, форму усеченного конуса.

5. Узел по п. 1, отличающийся тем, что радиус дна (34) канавки меньше максимального радиуса полосы из истираемого материала.

6. Узел по п. 1, отличающийся тем, что поверхность канавки, образованная полосой из истираемого материала, имеет форму усеченного конуса, угол (α) уклона которого равен, по меньшей мере, 45°.

7. Узел по п. 1, отличающийся тем, что дно канавки (30) является герметичным.

8. Узел по п. 1, отличающийся тем, что полоса из истираемого материала занимает от 30% до 70% длины указанных лопаток в осевом направлении.

9. Узел по п. 1, отличающийся тем, что канавка своим задним краем соединена с внутренней стенкой (20) корпуса вогнутой соединительной галтелью, имеющей в сечении дугу окружности.

10. Узел по п. 1, отличающийся тем, что поверхность канавки, образованная полосой из истираемого материала, имеет форму усеченного конуса, угол (α) уклона которого равен, по меньшей мере, 60°.

11. Газотурбинный двигатель, содержащий по меньшей мере один узел по любому из пп. 1-10.

Документы, цитированные в отчете о поиске Патент 2020 года RU2727943C2

Устройство для формования конфетных масс 1979
  • Габзималян Ваграм Григорьевич
  • Тер-Давтян Зорик Суренович
  • Бугров Владимир Александрович
  • Зюскин Михаил Михайлович
SU835402A2
US 6227794 B1, 08.05.2001
JP 2009174429 A, 06.08.2009
ТЯГОВО-ДОГРУЗОЧНОЕ УСТРОЙСТВО 2008
  • Скурятин Николай Филиппович
  • Зданович Борис Станиславович
  • Мусохранов Сергей Васильевич
  • Скурятин Андрей Николаевич
RU2361747C1
УСТРОЙСТВО ФИКСАЦИИ СЕКТОРОВ КОЛЬЦА ВОКРУГ ВАЛА ТУРБИНЫ ТУРБОМАШИНЫ, ТУРБОМАШИНА, СЕКТОР КОЛЬЦА И ТУРБИНА ТУРБОМАШИНЫ 2007
  • Дюран Дидье
  • Жеан Доминик
  • Гро Валери Анни
  • Сотто-Лами Дидье
RU2403405C2

RU 2 727 943 C2

Авторы

Перро Винсент Поль Габриэль

Кошон Себастьен

Даты

2020-07-27Публикация

2013-09-19Подача