Рекомбинантный штамм дрожжей Komagataella kurtzmanii - продуцент бета-глюканазы из Paenibacillus jamilae Российский патент 2020 года по МПК C12N1/19 C12N9/24 C12N15/63 C12N15/81 

Описание патента на изобретение RU2730577C1

Изобретение относится к микробиологии и биотехнологии и касается получения штамма дрожжей Komagataella kurtzmanii, способного продуцировать бета-глюканазу (β-глюканазу).

β-глюканы представляют собой семейство полисахаридов, состоящих из мономеров D-глюкозы, соединенных посредством β-гликозидных связей и являются естественным компонентом клеточных стенок бактерий, грибов, дрожжей и злаков, таких как овес и ячмень. β-глюканы различного происхождения различаются структурой, уровнем разветвления и молекулярной массой, а также физико-химическими свойствами.

β-глюканазы - группа ферментов, катализирующих расщепление β-глюканов с β-1,2-, β-1,3-, β-1,4- и β-1,6-связями.

Важное значение среди ферментов, относящихся к этой группе имеют β-1,3-1,4-глюканазы, которые находят широкое применение, в частности, при производстве пищевых добавок [FEBS Lett., 1975, 52, 202-207], где их используют в качестве добавки к кормам сельскохозяйственных животных с однокамерным желудком. Корм для домашних животных, смешанный с ферментами β-1,3-1,4-глюканазы и ксиланазы, усиливает увеличение веса, потребление корма и усвояемость азота (+5,6%) и липидов (+6,2%), а также уменьшает образование липкого помета, что существенно уменьшает санитарные проблемы [Trends in Biotechnology, 1993, 11(10), 424-430].

Природными источниками β-глюканаз являются различные микроорганизмы: бактерии, грибы, дрожжи и актиномицеты

Большинство кормовых ферментных препаратов, в состав которых входят β-глюканазы, имеют грибное происхождение. Однако, большой интерес представляет разработка рекомбинантных продуцентов ферментов на основе дрожжей, поскольку они более удобны для проведения генно-инженерных работ и быстрее накапливают целевой фермент в сравнении с грибными продуцентами.

Существенным преимуществом дрожжевых продуцентов является также то, что на их основе значительно легче создавать продуценты моноферментов, тогда как грибные продуценты обычно синтезируют комплексы целлюлитических ферментов. Промышленное получение моноферментов позволяет более эффективно решать задачи составления оптимальной композиции ферментов при использовании различных субстратов.

В настоящее время наиболее перспективным является создание продуцентов на основе рекомбинантных штаммов метилотрофных дрожжей рода Pichia, Komagataella или Hansenula [J Ind Microbiol Biotechnol 2009, 36: 1435-1438].

Использование метилотрофных дрожжей позволяет достичь высоких скоростей экспрессии гетерологичных белков с высокой плотностью клеток, а также высокого уровня и качества N-гликозилирования белков.

Особенно часто для высокоуровневой экспрессии геретологичных белков используют метилотрофные дрожжи Pichia pastoris [FEMS Microbiol.Rev., 2000, 24,45-66].

Показано [J. Ind. Microbiol. Biotechnol., 2012 39(6), 869-876], что ген bgl16C1 из Penicillium pinophilum, кодирующий эндо-1,3(4)-β-D-глюканазу, эффективно экспрессируется в клетках дрожжей Pichia pastoris, при этом активность рекомбинантной β-глюканазы в культуральной жидкости при культивировании в 15-литровом ферментере составляет 28721 U/ml.

Известны также рекомбинантные штаммы Pichia pastoris, продуцирующие термостабильную β-1,3-1,4-глюканазу из Bacillus amyloliquefaciens. [CN 101899458]

Поиск новых высокоактивных β-глюканаз, обладающих свойствами, необходимыми для их индустриального использования и способных эффективно выражаться в дрожжах, а также создание на их основе промышленно значимых продуцентов, является актуальной задачей.

В работе [Биотехнология, 2019, 35, 4, 15-23] описан ген из Paenibacillus jamilae, кодирующий β-глюканазу, относящуюся к классу эндо-1,3-1,4-β-глюканазу (ЕС 3.2.1.73).

Komagataella kurtzmanii - новый вид метилотрофных дрожжей, выделенный из Pichia pastoris [Antonie van Leeuwenhoek, 2013, 104(3), Published online, DOI 10.1007/s10482-013-9956-7].

В работе [Тюрин O.B. Разработка системы экспрессии генов на основе метилотрофных дрожжей Komagataella kurtzmanii: диссертация, канд. биол. наук. ГосНИИгенетика, Москва, 2014.] описана система экспрессии для данных дрожжей и на модельных штаммах показана ее эффективность для продукции гетерологических белков.

Задачей заявляемого изобретения является расширение арсенала рекомбинантных микроорганизмов, продуцирующих β-глюканазу

Задача решена путем получения рекомбинантного штамма дрожжей Komagataella kurtzmanii Bg3 ВКПМ Y-4621, продуцирующего β-глюканазу, содержащего ген кодирующий эндо-1,3-1,4-β-глюканазу из Paenibacillus jamilae.

Заявляемый рекомбинантный штамм дрожжей Komagataella kurtzmanii Bg3 получен путем интеграции в состав хромосомы штамма K, kurtzmanii 727Δ His4 ВКПМ Y-4462 экспрессионной кассеты, в состав которой входит ген из Paenibacillus jamilae.

Штамм является продуцентом эндо-1,3-1,4-β-глюканазы из Paenibacillus jamilae и депонирован во Всероссийской Коллекции Промышленных Микроорганизмов (ВКПМ) НИЦ «Курчатовский институт» - ГосНИИгенетика как Komagataella kurtzmanii Bg3 ВКПМ Y-4621.

Культурально-морфологические характеристики заявляемого штамма: При культивировании при температуре 28°С в течение 48 часов на агаризованной среде YP ((мас. %): пептон-2, дрожжевой экстракт -1, агар -2, вода - остальное), с добавлением глюкозы (2 мас. %) клетки имеют овальную форму, 3-4 мкм в диаметре. Клетки почкуются, при этом почкование истинное, многостороннее. Истинного мицелия не образуют.

Споруляция происходит при инкубации культуры на агаризованной среде следующего состава (мас. %): хлорид калия - 1.0, ацетат натрия - 0.5, глюкоза - 1.0, агар - 2.0, вода - остальное. Аски имеют тетраэдрическую форму, включают 4 аскоспоры.

На агаризованной среде YP с добавлением глюкозы (2 мас. %) колонии светло-бежевого цвета с ровным краем, матовой поверхностью, линзовидным профилем и пастообразной консистенцией.

При росте в жидкой среде YP (мас. %: пептон-2, дрожжевой экстракт -1, вода - остальное) с добавлением глюкозы (2 мас. %), при 28°С в течение 24 ч культивирования - жидкость мутная, осадок белый, коагуляции не наблюдается, пристеночных пленок не образует.

Физиолого-биохимические признаки:

Штамм способен к росту как в аэробных, так и в анаэробных условиях.

В качестве единственного источника углерода способен использовать метанол, этанол, глюкозу, глицерин, лактат, сукцинат, не способен ассимилировать мальтозу, сахарозу, ацетат, крахмал, лактозу.

Штамм не способен к росту при 35°С.

Штамм не способен к ассимиляции трегалозы.

При культивировании в присутствии метанола штамм способен синтезировать β-глюканазу.

Изобретение проиллюстрировано следующими фигурами:

Фиг. 1 Экспрессионная кассета 1

Фиг. 2 Электрофорез гена Paenibacillus jamilae

Фиг. 3 Фингерпринт штамма Komagataella kurtzmanii Bg3 Y-4621

Изобретение подтверждается следующими примерами.

Пример 1. Получение штамма дрожжей Komagataella kurtzmanii. несущего ген из Paenibacillus jamilae

В качестве источника гена используют тотальную геномную ДНК штамма Paenibacillus jamilae Bgl ВКПМ В-13193 [Биотехнология, 2019, 35, 4, 15-23]. Синтезируют ДНК гена методом ПЦР с использованием праймеров BglP.jam-f (5'-aaagaattcgcggggaatgttttttgggaa-3') и BglP.jam-r (5'-aaagcggccgcttaattgctcgtgtattttacc-3% содержащих на 5'-концах сайты рестрикции для клонирования - EcoRI и NotI Полученный фрагмент ДНК обрабатывают рестриктазами EcoRI и NotI и клонируют в состав экспрессионного вектора рРIС9 (http://www.thermofisher.com/order/catalog/product/V17520).

В состав экспрессионного плазмидного вектора pPIC-bg/Pum входят следующие генетические элементы:

1. Ген _Paenibacillus jamilae, встроенный в единую рамку считывания с нуклеотидной последовательностью сигнального пептида α-фактора, под контролем АОХ1 промотора

2. Терминатор транскрипции ТТАОХ1

3. Дрожжевой селективный маркер His4

4. Область интеграции - нуклеотидная последовательность гена АОХ1

5. Селективный маркер для клеток E.coli - ген bla, кодирующий β-лактамазу, придающий клеткам устойчивость к ампициллину.

6. Бактериальный pUC origin.

Для получения интегративной экспрессионной кассеты 1 (фиг. 1) плазмиду pPIC- обрабатывают эндонуклеазой рестрикции BglII и используют для трансформации клеток дрожжей.

Указанную интегративную экспрессионную кассету трансформируют в клетки Komagataella kurtzmanii 727Δ His4 ВКПМ Y-4462 полученного на основе штамма К. kurtzmanii ВКПМ Y-727 [Тюрин О.В. Разработка системы экспрессии генов на основе метилотрофных дрожжей Komagataella kurtzmanii: диссертация… канд. биол. наук. ГосНИИгенетика, Москва, 2014.] путем делеции гена His4.

Процедуру трансформации осуществляют методом электропорации, как описано в [Тюрин О.В. Разработка системы экспрессии генов на основе метилотрофных дрожжей Komagataella kurtzmanii: диссертация канд. биол. наук. ГосНИИгенетика, Москва, 2014.].

Селекцию трансформантов ведут на агаризованной среде YNB (HiMedia Laboratories Pvt. Limited, Индия) с добавлением глюкозы (2 мас. %) в течение 5 суток при температуре 30°С.

В результате получают набор трансформантов Y727-Bgl26, в геном каждого из которых оказывается интегрировано различное число копий целевой экспрессионной кассеты, включающей ген β-глюканазы Paenibacillus jamilae.

Для отбора наиболее продуктивных трансформантов проводят их культивирование в жидкой ферментационной питательной среде YP с добавлением метанола (3 мас. %) в 96-луночных планшетах при 30°С в течение 72 ч на качалке (250 об/мин). В качестве контроля используют штамм Komagataella kurtzmanii 727Δ. His4 ВКПМ Y-4462.

Определение активности β-глюканазы в культуральной жидкости проводят с использованием динитросалициловой кислоты (ДНС - метод) [Anal. Chem., 1959, 31 (3), 426-428] в 96-луночном планшете следующим образом. В каждой лунке смешивают 25 мкл1% раствора субстрата β-глюкана ячменя в 0,5 М ацетатном буфере (рН 7) и 25 мкл культуральной жидкости. Инкубацию проводят при50°С 10 минут, после чего добавляют в лунку 50 мкл раствора ДНС. Планшет прогревают при 99°С 10 минут и измеряют оптическую плотность окрашенного раствора при длине волны 546 нм. В качестве стандарта используют раствор глюкозы.

По результатам ферментации отбирают наиболее продуктивный трансформант Bg3, который при культивировании в планшете синтезирует β-глюканазу в количестве 229 ед/мл культуральной жидкости.

Трансформант депонирован во Всероссийской Коллекции Промышленных Микроорганизмов (ВКПМ) НИЦ «Курчатовский институт»

ГосНИИгенетика как Komagataella kurtzmanii_Bg3 ВКПМ Y-4621.

Для подтверждения наличия в хромосоме полученного штамма вставки гена Paenibacillus jamilae методом полимеразной цепной реакции (ПЦР) используют хромосомальную ДНК, выделенную из клеток этого штамма и специфические праймеры BglP.j-f и BglP.j-r.

BglP.j-f 5'-gcggggaatgttttttgggaa-3',

BglP.j-r 5'-ttaattgctcgtgtattttacc-3'

Режим реакции ПЦР:

95°С - 3 мин - 1 цикл

30 циклов:

95°С - 30 сек.

57°С-30 сек.

72°С - 60 сек.

72°С - 5 мин. - 1 цикл

Для контроля величины амплифицированного фрагмента ДНК при электрофорезе использован молекулярный маркер GeneRuler 1 kb DNA Ladder (Fermentas) (линия 2, фиг. 2, размер фрагментов снизу вверх 10000, 8000, 6000, 5000, 4000, 3500, 3000, 2500, 2000, 1500, 1000, 750, 500, 250 п.н.). Наработка фрагмента ДНК размером 642 п.н. (линия 1 фиг. 2) свидетельствует о присутствии в хромосоме штамма вставки гена Paenibacillus jamilae.

На фиг. 3 представлены результаты ПЦР-фингерпринта (Applied and Environmental Microbiology, Oct, 1999, 4351-4356) штамма Komagataella kurtzmanii Bg3 ВКПМ Y-4621.

Фингерпринт проведен методом полимеразной цепной реакции (PCR) с использованием неспецифических праймеров М13 (линия 2 фиг. 3) и 1254 (линия 3 фиг. 3).

Праймер М13 gagggtggcggttct

режим реакции:

1 цикл

95°С – 3 мин.

39 циклов

95°С - 30 сек.

45°С - 30 сек.

72°С - 2 мин.

1 цикл

72°С - 5 мин.

Праймер 1254 ccgcagccaa

режим реакции:

1 цикл

95°С - 3 мин.

39 циклов

95°С - 30 сек.

48°С - 30 сек.

72°С - 1 мин.

1 цикл 72°С - 5 мин.

Для контроля величины фрагментов ДНК при электрофорезе использован молекулярный маркер 1kb DNA GeneRuler (Fermentas) (линия 1, фиг. 3 размер фрагментов снизу вверх 10000, 8000, 6000, 5000, 4000, 3500, 3000, 2500, 2000, 1500, 1000, 750, 500, 250 п.н.).

Пример 2. Продукция фермента β-глюканазы заявляемым штаммом Komagataella kurtzmanii ВКПМ Y-4621.

Посевную культуру выращивают в пробирках (50 мл) с 10 мл жидкой питательной среды YP с добавлением глюкозы (2 мас. %) при 30°С в течение 24 ч на качалке (250 об/мин). Посев ферментационной среды осуществляют в соотношении 1/10.

Ферментацию проводят при 30°С на качалке (250 об/мин) в питательной среде состава (мас. %): дрожжевой экстракт - 0,5, пептон - 1, вода - остальное с добавлением глюкозы (1 мас. %) в пробирках (50 мл) с рабочим объемом 5 мл. Через 18 часов добавляют метанол (1 мас. %) Ферментацию продолжают в течение 72 часов, добавляя метанол (1 мас. %) через каждые 24 часа. После окончания ферментации определяют количество фермента β-глюканазы в культуральной жидкости с использованием ДНС метода.

Через 72 часа ферментации количество фермента составила 987 ед/мл культуральной жидкости.

Похожие патенты RU2730577C1

название год авторы номер документа
Штамм дрожжей Komagataella kurtzmanii, продуцирующий бета-глюканазу из Bacillus pumilus и бета-глюканазу из Paenibacillus jamilae 2019
  • Калинина Анна Николаевна
  • Борщевская Лариса Николаевна
  • Гордеева Татьяна Леонидовна
  • Федай Татьяна Дмитриевна
  • Синеокий Сергей Павлович
RU2736441C1
Дрожжи Komagataella kurtzmanii - рекомбинантный продуцент бета-глюканазы 2019
  • Калинина Анна Николаевна
  • Борщевская Лариса Николаевна
  • Гордеева Татьяна Леонидовна
  • Синеокий Сергей Павлович
RU2736440C1
Рекомбинантный штамм дрожжей Komagataella kurtzmanii - продуцент бета-глюканазы 2018
  • Козлов Дмитрий Георгиевич
  • Чеперегин Сергей Эдуардович
  • Малышева Анастасия Васильевна
  • Санникова Евгения Павловна
  • Борщевская Лариса Николаевна
  • Гордеева Татьяна Леонидовна
  • Калинина Анна Николаевна
  • Агранович Аннета Михайловна
  • Федоров Александр Сергеевич
  • Синеокий Сергей Павлович
RU2701640C1
Трансформант дрожжей Komagataella kurtzmanii, продуцирующий бета-глюканазу 2019
  • Козлов Дмитрий Георгиевич
  • Чеперегин Сергей Эдуардович
  • Малышева Анастасия Васильевна
  • Санникова Евгения Павловна
  • Борщевская Лариса Николаевна
  • Гордеева Татьяна Леонидовна
  • Калинина Анна Николаевна
  • Агранович Аннета Михайловна
  • Федоров Александр Сергеевич
  • Синеокий Сергей Павлович
RU2722563C1
Рекомбинантный штамм дрожжей Pichia pastoris - продуцент бета-глюканазы 2018
  • Борщевская Лариса Николаевна
  • Гордеева Татьяна Леонидовна
  • Калинина Анна Николаевна
  • Агранович Аннета Михайловна
  • Федоров Александр Сергеевич
  • Синеокий Сергей Павлович
RU2701494C1
Трансформант дрожжей Pichia pastoris, продуцирующий ксиланазу 2019
  • Калинина Анна Николаевна
  • Борщевская Лариса Николаевна
  • Гордеева Татьяна Леонидовна
  • Агранович Аннета Михайловна
  • Синеокий Сергей Павлович
RU2714113C1
Штамм дрожжей Pichia pastoris, продуцирующий ксиланазу из Paenibacillus brasilensis 2019
  • Калинина Анна Николаевна
  • Борщевская Лариса Николаевна
  • Гордеева Татьяна Леонидовна
  • Федай Татьяна Дмитриевна
  • Синеокий Сергей Павлович
RU2728243C1
Рекомбинантный штамм дрожжей Pichia pastoris - продуцент ксиланазы 2018
  • Калинина Анна Николаевна
  • Борщевская Лариса Николаевна
  • Гордеева Татьяна Леонидовна
  • Агранович Аннета Михайловна
  • Синеокий Сергей Павлович
RU2701308C1
Штамм дрожжей Pichia pastoris - продуцент ксиланазы 2018
  • Калинина Анна Николаевна
  • Борщевская Лариса Николаевна
  • Гордеева Татьяна Леонидовна
  • Агранович Аннета Михайловна
  • Синеокий Сергей Павлович
RU2701642C1
Трансформант дрожжей Pichia pastoris, продуцирующий эндо-1,4-β-ксиланазу из Paenibacillus brasilensis 2019
  • Калинина Анна Николаевна
  • Борщевская Лариса Николаевна
  • Гордеева Татьяна Леонидовна
  • Синеокий Сергей Павлович
RU2728033C1

Иллюстрации к изобретению RU 2 730 577 C1

Реферат патента 2020 года Рекомбинантный штамм дрожжей Komagataella kurtzmanii - продуцент бета-глюканазы из Paenibacillus jamilae

Изобретение относится к микробиологии и биотехнологии. Предложен рекомбинантный штамм дрожжей Komagataella kurtzmanii, способный продуцировать β-глюканазу. Штамм дрожжей Komagataella kurtzmanii содержит ген bgl26, кодирующий эндо-1,3-1,4-β-глюканазу из Paenibacillus jamilae. Указанный штамм депонирован под номером ВКПМ Y-4621. Изобретение позволяет расширить арсенал рекомбинантных микроорганизмов, продуцирующих β-глюканазу. 2 пр., 3 ил.

Формула изобретения RU 2 730 577 C1

Рекомбинантный штамм дрожжей Komagataella kurtzmanii ВКПМ Y-4621, содержащий ген bgl26, кодирующий эндо-1,3-1,4-β-глюканазу из Paenibacillus jamilae - продуцент β-глюканазы.

Документы, цитированные в отчете о поиске Патент 2020 года RU2730577C1

БОРЩЕВСКАЯ Л
Н
И ДР
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Биотехнология, 2019, Т.35, N 4, С
Прибор для нагревания перетягиваемых бандажей подвижного состава 1917
  • Колоницкий Е.А.
SU15A1
ТЮРИН О.В
Разработка системы экспрессии генов на основе метилотрофных дрожжей Komagataella kurtzmanii
АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата

RU 2 730 577 C1

Авторы

Борщевская Лариса Николаевна

Гордеева Татьяна Леонидовна

Калинина Анна Николаевна

Федоров Александр Сергеевич

Синеокий Сергей Павлович

Даты

2020-08-24Публикация

2019-09-25Подача