Способ приготовления носителя для катализатора гидроочистки Российский патент 2020 года по МПК B01J37/00 B01J32/00 C10G45/08 

Описание патента на изобретение RU2738076C1

Изобретение относится к способам приготовления модифицированных носителей для катализаторов гидроочистки, предназначенных для получения нефтепродуктов с низким содержанием серы.

В связи с состоявшимся переходом российской нефтеперерабатывающей промышленности на выпуск моторных топлив, по содержанию серы соответствующих нормам ЕВРО-5 и аналогичным им российским стандартам [ГОСТ Р52368-2005 (ЕН 590-2004). Топливо дизельное ЕВРО. Технические условия; ГОСТ Р51866-2002 (ЕН 228-1999). Бензин неэтилированный], возникает острая необходимость в отечественных высокоактивных нанесенных катализаторах гидроочистки, позволяющих получать либо непосредственно моторные топлива с низким остаточным содержанием серы, либо малосернистое сырье для их производства, например, вакуумный газойль, содержащий не более 200 ppm S. При этом внедрение новых катализаторов не должно приводить к коренным изменениям условий проведения процессов гидроочистки на российских нефтеперерабатывающих заводах.

В настоящее время основным методом приготовления катализаторов гидроочистки является нанесение активных металлов, чаще всего Со, Ni и Мо, на готовые гранулированные алюмооксидные носители, при этом свойства катализаторов гидроочистки во многом определяются свойствами носителей, на основе которых готовятся нанесенные катализаторы [S. Eijsbouts, Hydrotreating catalysts, in: K.P. de Jong (Ed.), Synthesis of Solid Catalysts. VILEY-VCH Verlag GmbH & Co, KGa A. Weinheim. 2009. P. 302], так как носитель на своей поверхности имеет активные центры той или иной природы, которые оказывают достаточно сильное влияние на каталитически активные нанесенные металлы.

Известно множество различных способов приготовления носителей для катализаторов гидроочистки нефтяных дистиллятов, позволяющих получать носители, представляющие собой как чистый оксид алюминия, так и содержащий различные модифицирующие добавки, однако общим недостатком для них является высокое остаточное содержание серы в продуктах, получаемых на катализаторах, приготовленных с использованием носителей, приготовленных известными способами.

Известен способ приготовления γ-оксида алюминия [RU №2362620, B01J21/04, 27.07.2009], используемого в качестве носителя катализатора гидроочистки, включающий осаждение гидроксида алюминия из раствора алюмината натрия азотной кислотой, его стабилизацию, формовку, сушку и термическую обработку, при этом алюминат натрия обрабатывают азотной кислотой в течение 100-120 мин при температуре 58,0-65,0°С и величине рН=7,8-8,8, а стабилизацию проводят в течение 60 мин при температуре 58,0-62,0°С и величине рН=7,5-8,3. Полученный гранулированный оксид алюминия имеет низкую насыпную плотность и недостаточный для получения высокоэффективного катализатора гидроочистки объем пор – менее 0,63 см3/г. К недостаткам способа можно отнести стадию осаждения, сопровождающуюся выделением большого количества химически загрязненных стоков.

Носитель часто модифицируют различными добавками, в том числе соединениями кремния или бора.

Известен модифицированный кремнием оксид алюминия [CN106582597, B01J21/12, 26.04.2017], а также способ его получения. Модифицированный оксид алюминия получают через следующие стадии: (1) подкисления и пептизации суспензии псевдобемита неорганической кислотой с получением золя псевдобемита; (2) добавление золя кремнезема в золь псевдобемита для получения первой смеси; (3) регулирование значения рН первой смеси в диапазоне, где рН составляет от 1 до 11, в соответствии с различными требованиями к содержанию поверхностных Бренстедовских центров и степени улучшения объема пор оксида алюминия, и проведение реакции в течение некоторого периода времени при условии нагревания для получения второй смеси; (4) кристаллизация второй смеси с получением третьей смеси; (5) фильтрование, промывка, сушка и обжиг третьей смеси для получения модифицированного кремнием оксида алюминия. Способ приготовления такого носителя является технически сложным и многостадийным, а носитель с минимальным количеством Льюисовских центров, приводящих к ухудшению каталитической активности катализаторов гидроочистки, имеет объём пор только 0,51 см3/г.

Бор вводят в состав носителя методом смешения гидроксида алюминия с соединением бора [Studies in Surface Science and Catalysis. 1995. V. 91. P. 833-842] либо путем соосаждения из совместных растворов [Journal of Catalysis. 1989. V. 115. P. 441-451], либо бор вводят методом пропитки в сформованный оксид алюминия с последующей сушкой и прокалкой [Catalysis Today. 2005. V. 107-108. P. 551-558].

Известен носитель и способ приготовления носителя, описанный в патенте [US 6174432, C10G45/04; B01J21/04, 16.01.2001], согласно которому сначала получают гидроксид алюминия по следующей многостадийной схеме: 1 стадия – приготовление водного раствора алюмината натрия с раствором сульфата алюминия при рН 7 и 60 °C, 2 стадия – фильтрация, 3 стадия – отмывка 0,3% водным раствором аммиака, 4 стадия – добавление 10% водного раствора аммиака для корректирования рН до 11, 5 стадия – перемешивание при 90°C в течение 25 ч, 6 стадия - добавление 5 н. водного раствора азотной кислоты до рН 2, 7 стадия - перемешивание 15 мин, 8 стадия - добавление 10% водного раствора аммиака до значения рН 11, 9 стадия - фильтрация и промывка водой. Далее полученный гидроксид алюминия смешивают с определенным количеством водного раствора борной кислоты, формуют, сушат при 110°C в течение 10 ч и прокаливают в течение 2 ч при 800°C. В результате получают носитель, содержащий 1-12 мас.% бора в пересчете на оксид. После пропитки носителя раствором парамолибдата аммония и нитрата никеля, сушки при 110°C и прокалки при 500°C получают катализатор, имеющий величину удельной площади поверхности 70-130 м2/г, средний диаметр пор 19-25 нм, объем пор 0,65-0,8 см3/г. Описанный носитель и способ приготовления носителя являются технологически сложными и продолжительными, при этом получаемый носитель имеет неоптимальные текстурные характеристики – низкую величину удельной площади поверхности и завышенный сверх необходимости диаметр пор. Как следствие, получаемый на его основе такого носителя катализатор имеет низкую активность в процессе гидроочистке.

Наиболее близким к предлагаемому техническому решению является описанный в [RU 2633967, B01J37/08, 20.10.2017] способ приготовления носителя, содержащего, мас.%: борат алюминия Al3BO6 – 5,0-25,0, натрий – менее 0,03, γ-Al2O3 – остальное; имеющего удельную площадь поверхности 200-280 м2/г, объём пор по низкотемпературной десорбции азота – 0,6-0,8 см3/г при среднем диаметре пор 7-12 нм и представляющего собой частицы с сечением в виде круга, трилистника или четырехлистника с диаметром описанной окружности 1,0-1,6 мм и длиной до 20 мм.

Основным недостатком данного способа приготовления носителя является то, что в результате его реализации получается неоптимальный химический и кислотно-основный состав носителя, что в дальнейшем приводит к получению катализатора, склонного к быстрой дезактивации в процессе гидроочистки.

Изобретение решает задачу создания эффективного способа приготовления носителя для катализатора гидроочистки, имеющего:

1. Оптимальный химический состав;

2. Оптимальный фазовый состав;

3. Оптимальные кислотно-основные свойства;

4. Оптимальные текстурные характеристики;

5. Заданный размер и форму гранул.

Технический результат – получение носителя, на основе которого готовят катализатор, имеющий максимальную активность в целевых реакциях, протекающих при гидроочистке углеводородного сырья спустя как минимум 1000 ч с момента начала процесса гидроочистки.

Задача решается способом приготовления носителя катализатора гидроочистки.

Способ приготовления модифицированного носителя заключается в следующем: продукт быстрой термической обработки гидраргиллита (ПБТОГ) измельчают до частиц со средним объёмным диаметром агломератов частиц 5-25 мкм, затем гидратируют, отмывают от примесного натрия, осадок подвергают гидротермальной обработке в присутствии источников кремния или кремния и бора, сушат на распылительной сушилке, проводят при перемешивании пептизацию порошка псевдобемита водным раствором аммиака с аммиачным модулем не менее 0,075; экструдируют и после термообработки получают носитель, содержащий, мас.%: в пересчете на оксиды неметаллов SiO2 – 0,1-20 и B2O3 – 0-10, натрий – не более 0,03, γ- и χ-Al2O3 – остальное, причем соотношение низкотемпературных форм оксида алюминия χ-Al2O3 и γ-Al2O3 в носителе в мас.% составляет (0-40):(100-60). Носитель имеет фрагменты Si(OSi)(OAl)2(O–) и Si(OSi)(O–)3 на поверхности носителя, наблюдаемые у алюмосиликатов и силикатных анионов; имеет концентрацию Льюисовских кислотных центров всех типов в диапазоне 100-1000 µмоль/г; характеризуется удельной площадью поверхности 210-330 м2/г, объемом пор по низкотемпературной десорбции азота – 0,5-0,85 см3/г при среднем диаметре пор 7-13 нм и представляет собой гранулы с сечением в виде круга, трилистника

или четырехлистника с диаметром описанной окружности 1,0-1,6 мм и длиной до 20 мм.

В качестве исходного ПБТОГ берут либо продукт ЦТА (ТУ 2175-040-03533913-2007), получаемый в центробежном реакторе барабанного типа ЦЕФЛАР [RU 2264589, F26B7/00, 20.11.2005], либо термоактивированный гидроксид алюминия ТГА (ТУ 24.42.12-146-60201897-2018), получаемый в трубчатых реакторах в потоке горячих газов [RU 2219128, C01F7/44, 20.12.2003]. Допускается использование аналогичного продукта, выпускаемого по иным ТУ, но обязательно отвечающего нижеследующим требованиям, мас.%:

– доля гидраргиллита (гиббсита), не более 3;

– доля бемита, не более 10;

– доля разупорядоченного χ-подобного Al2O3 (рентгеноаморфная или аморфная фаза, или ρ-Al2O3), не менее 87;

– доля потери массы при прокаливании при 800°С, в пределах 6-10;

– доля оксида натрия (Na2O), не более 0,3;

имеющего удельную площадь поверхности, м2/г, не менее 200.

Порошок ПБТОГ, измельченный на любом измельчающем оборудовании до частиц со средним объёмным диаметром 5-25 мкм, гидратируют при перемешивании в нагретых слабоконцентрированных растворах азотной кислоты.

Гидратированный ПБТОГ отмывают химически очищенной водой до остаточного содержания натрия не более 0,03 мас.% в пересчёте до Na2O.

Отмытый гидратированный ПБТОГ подвергают гидротермальной обработке в водном растворе азотной кислоты и источника кремния или в водном растворе азотной кислоты и источников кремния и бора при pH 1-2, при температуре не менее 150оС в течение не менее 4 ч в герметичном автоклаве.

Гидротермальную обработку отмытого гидратированного ПБТОГ проводят в автоклаве в водных растворах азотной кислоты с добавлением заданного количества кремнийсодержащего источника или кремнийсодержащего и борсодержащего источников при температуре суспензии выше 100°C. После завершения гидротермальной обработки суспензию охлаждают до заданной температуры, но не выше 90°С, автоклав разгружают, содержимое сосуда репульпируют дистиллированной или технически подготовленной водой до получения псевдобемитсодержащей суспензии, пригодной для распылительной сушки.

Далее проводят сушку на распылительной сушилке при температуре воздуха на входе в сушилку не выше 350°C и непрерывном перемешивании репульпированной суспензии. Готовый порошок модифицированного гидроксида алюминия выгружают из приемной ёмкости (стакана) циклонного пылеуловителя распылительной сушилки.

Далее готовят пластичную массу методом смешения и пептизации полученного порошка в смесителе с Z-образными лопастями в присутствии водного раствора аммиака.

Готовую пластичную массу перегружают из смесителя в экструдер и продавливают через отверстие фильеры, обеспечивающее получение экструдатов готового носителя с сечением в виде круга, трилистника или четырехлистника с диаметром описанной окружности 1,0-1,6 мм и длиной до 20 мм.

Затем проводят термическую обработку экструдатов, включающую в себя предварительную стадию сушки. Экструдаты сушат в сушильном шкафу при температуре (110±10)°C в течение 2 ч. Термическую обработку проводят в муфельной печи с подачей осушенного воздуха в камеру печи. Экструдаты в фарфоровой чашке помещают в печь и прокаливают при температуре (550±10)°C в течение 4 ч.

Основным отличительным признаком модифицированного носителя по сравнению с прототипом является наличие в составе носителя фрагментов Si(OSi)(OAl)2(O–) и Si(OSi)(O–)3 с концентрацией в пересчете на оксид неметалла SiO2 – 0,1-20 мас.%, наблюдаемых у алюмосиликатов и силикатных анионов, которые сочетаются с боратом алюминия Al3BO6 со структурой норбергита с концентрацией в пересчете на оксид неметалла B2O3 0-10 мас.%. Выход содержания фрагментов Si(OSi)(OAl)2(O–) и Si(OSi)(O–)3 и бората алюминия Al3BO6 в перечете на оксиды неметаллов в носителе за заявляемые рамки приводит к получению катализатора с пониженной активностью.

Вторым отличительным признаком предлагаемого способа приготовления носителя по сравнению с прототипом является совокупность стадий переработки исходного реагента – продукта быстрой термической обработки гидраргиллита (ПБТОГ), включающая измельчение, гидратацию, отмывку, гидротермальную обработку в присутствии кремний содержащих или кремнийсодержащих и борсодержащих источников, распылительную сушку, пептизацию, экструдирование и термическую обработку, обеспечивающая получение носителя, содержащего, мас.%: в пересчете на оксиды неметаллов SiO2 – 0,1-20 и B2O3 – 0-10; натрий – не более 0,03; γ- и χ-Al2O3 – остальное, причем соотношение низкотемпературных форм оксида алюминия χ-Al2O3 и γ-Al2O3 в носителе в мас.% составляет (0-40) : (100-60). Носитель также имеет фрагменты Si(OSi)(OAl)2(O–) и Si(OSi)(O–)3 на поверхности носителя, наблюдаемые у алюмосиликатов и силикатных анионов; имеет концентрацию Льюисовских кислотных центров всех типов в диапазоне 100-1000 µмоль/г; характеризуется удельной площадью поверхности 210-330 м2/г, объемом пор по низкотемпературной десорбции азота – 0,5-0,85 см3/г при среднем диаметре пор 7-13 нм и представляет собой гранулы с сечением в виде круга, трилистника или четырехлистника с диаметром описанной окружности 1,0-1,6 мм и длиной до 20 мм.

Технический результат предлагаемого способа приготовления модифицированного носителя для катализатора гидроочистки складывается из следующих составляющих:

1. Заявляемый способ приводит к получению из продукта быстрой термической обработки гидраргиллита (ПБТОГ) модифицированного носителя, имеющего определённый химический состав, мас.%: в пересчете на оксиды неметаллов SiO2 – 0,1-20 и B2O3 – 0-10; натрий – не более 0,03; γ- и χ-Al2O3 – остальное, причем соотношение низкотемпературных форм оксида алюминия χ-Al2O3 и γ-Al2O3 в носителе в мас.% составляет (0-40):(100-60). Данный состав обеспечивает пониженный (оптимальный) уровень Льюисовской кислотности носителя, способствующий снижению нежелательного химического взаимодействия между активными металлами (Co и Mo) и поверхностью носителя и дальнейшему селективному получению наиболее активного в гидроочистке сульфидного компонента – CoMoS фазы типа II.

2. Заявляемая совокупность и условия последовательных стадий переработки продукта быстрой термической обработки гидраргиллита (ПБТОГ), включающие измельчение, гидратацию, промывку, гидротермальную обработку, распылительную сушку, пептизацию, экструдирование и термообработку, приводят к получению модифицированного носителя, имеющего размер и форму гранул, обеспечивающие диффузию сырья по всему сечению гранулы при минимальном перепаде давления по реактору, а также текстурные характеристики, обеспечивающие доступ всех серосодержащих молекул сырья к сульфидному активному компоненту.

Описание предлагаемого технического решения.

Готовят носитель, содержащий фрагменты Si(OSi)(OAl)2(O–) и Si(OSi)(O–)3 на поверхности носителя, борат алюминия Al3BO6 со структурой норбергита и γ- и χ-Al2O3.

Берут навеску продукта быстрой термической обработки гидраргиллита (ПБТОГ), отвечающего вышеперечисленным требованиям.

Навеску измельчают на мельнице (шаровой, планетарной, струйной или любой другой) до частиц со средним объёмным диаметром агломератов частиц 5-25 мкм. В ряде случаев ПБТОГ используют в исходном состоянии, т.е. без измельчения, в этом случае фракционный состав агломератов частиц сохраняется.

Навеску ПБТОГ гидратируют при перемешивании в течение 2-4 ч в нагретых до 50-75°C слабоконцентрированных растворах азотной кислоты (кислотный модуль не более 0,1). После чего полученную суспензию фильтруют под вакуумом и промывают либо дистиллированной водой, либо технически подготовленной водой, не содержащей натрия. В результате получают влажный осадок – кек.

Гидротермальную обработку отмытого осадка проводят в автоклаве в водных растворах азотной кислоты с добавлением заданного количества кремнийсодержащего источника или кремнийсодержащего и борсодержащего источников при температуре суспензии выше 100°C. После завершения гидротермальной обработки суспензию охлаждают до заданной температуры, но не выше 90°С, автоклав разгружают, содержимое сосуда репульпируют дистиллированной или технически подготовленной водой до получения псевдобемитсодержащей суспензии, пригодной для распылительной сушки.

Далее проводят сушку на распылительной сушилке при температуре воздуха на входе в сушилку не выше 350°C и непрерывном перемешивании репульпированной суспензии. Готовый порошок модифицированного гидроксида алюминия выгружают из приемной ёмкости (стакана) циклонного пылеуловителя распылительной сушилки.

Далее готовят пластичную массу методом смешения и пептизации полученного порошка в смесителе с Z-образными лопастями в присутствии водного раствора аммиака.

Готовую пластичную массу перегружают из смесителя в экструдер и продавливают через отверстие фильеры, обеспечивающее получение экструдатов готового носителя с сечением в виде круга, трилистника или четырехлистника с диаметром описанной окружности 1,0-1,6 мм и длиной до 20 мм.

Затем проводят термическую обработку экструдатов, включающую в себя предварительную стадию сушки. Экструдаты выдерживают в сушильном шкафу при температуре (110±10)°C в течение 2 ч. Термическую обработку проводят в муфельной печи с подачей осушенного воздуха в камеру печи. Экструдаты в фарфоровой чашке помещают в печь и прокаливают при температуре (550±10)°C в течение 4 ч.

Готовый носитель содержит, мас.%: в пересчете на оксиды неметаллов SiO2 – 0,1-20 и B2O3 – 0-10, натрий – не более 0,03, γ- и χ-Al2O3 – остальное, причем соотношение низкотемпературных форм оксида алюминия χ-Al2O3 и γ-Al2O3 в носителе в мас.% составляет (0-40):(100-60); носитель имеет фрагменты Si(OSi)(OAl)2(O–) и Si(OSi)(O–)3 на поверхности, наблюдаемые у алюмосиликатов и силикатных анионов; носитель имеет концентрацию Льюисовских кислотных центров всех типов в диапазоне 100-1000 µмоль/г; характеризуется удельной площадью поверхности 210-330 м2/г, объемом пор по низкотемпературной десорбции азота – 0,5-0,85 см3/г при среднем диаметре пор 7-13 нм и представляет собой гранулы с сечением в виде круга, трилистника или четырехлистника с диаметром описанной окружности 1,0-1,6 мм и длиной до 20 мм. Входящий в состав носителя борат алюминия Al3BO6 со структурой норбергита представляет собой частицы с размерами от 10 до 250 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 Å, с углом между ними 53.8°.

С использованием данного носителя готовят нанесенный катализатор. Сначала готовят пропиточный раствор, содержащий биметаллическое комплексное соединение [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2]. Для этого отвешивают заданные количества парамолибдата аммония (NH4)6Mo7O24·4H2O, кобальта (II) основного карбоната СоСО3·mCo(ОН)2·nH2O, где массовая доля кобальта составляет 48-53%, кислоты лимонной моногидрата. Мерным цилиндром отмеряют заданное количество воды дистиллированной. В колбу наливают отмеренное количество воды и помещают якорь магнитной мешалки. Колбу помещают на нагревательную поверхность магнитной мешалки с подогревом. Устанавливают скорость вращения мешалки 300 об/мин и температуру раствора 60°C. Загружают в колбу отмеренное количество кислоты лимонной и перемешивают при визуальном контроле. Затем в колбу к раствору кислоты лимонной добавляют навеску парамолибдата аммония при постоянном перемешивании и поддержании температуры раствора 60±5°C. Раствор перемешивают до образования однородного прозрачного раствора, содержащего комплексное соединение – цитрат молибдена (VI) (NH4)4[Мо4(C6H5O7)2О11]. Навеску кобальта (II) основного карбоната добавляют к ранее полученному водному раствору цитрата молибдена (VI). При этом жидкость вспенивается, а ее температура повышается до 70°C. Перемешивание продолжают при 65-70°C до получения однородного прозрачного раствора темно-вишневого цвета, не содержащего мути, пузырьков и пены. Раствор содержит кобальт и молибден в форме биметаллического комплексного соединения [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2].

Приготовленный раствор переливают в тарированный мерный цилиндр, после чего объем раствора доводят до заданного количества добавлением дистиллированной воды.

Полученным раствором пропитывают модифицированный носитель, при этом используют пропитку носителя по влагоемкости. Пропитку проводят при температуре 15-90°C в течение 5-60 мин при периодическом перемешивании. После пропитки катализатор сушат на воздухе при температуре 100-200°C.

Прокаленный катализатор содержит, мас.%: 18,8 МоО3, 4,9 СоО, носитель – остальное; при этом модифицированный носитель содержит, мас.%: в пересчете на оксиды неметаллов SiO2 – 0,1-20 и B2O3 – 0-10; натрий – не более 0,03; γ- и χ-Al2O3 – остальное, причем соотношение низкотемпературных форм оксида алюминия χ-Al2O3 и γ-Al2O3 в носителе в мас.% составляет (0-40):(100-60).

Сущность изобретения иллюстрируется следующими примерами.

Пример 1 согласно известному решению [RU 2633968, B01J32/00, 20.10.2017].

Сначала готовят носитель, для чего 150 г продукта термической активации гидраргиллита измельчают на планетарной мельнице до частиц размером в пределах 20-50 мкм. Далее порошок гидратируют при перемешивании и нагревании в растворе азотной кислоты с концентрацией 0,5%. Затем суспензию на воронке с бумажным фильтром промывают дистиллированной водой до остаточного содержания натрия в порошке не более 0,03%. Отмытую и отжатую лепешку переносят в автоклав, в который добавляют раствор 2,3 г борной кислоты в 1 л 1,5%-ного раствора азотной кислоты, имеющий рН 1,4. Автоклав нагревают до 150 °C и выдерживают 12 ч. Далее автоклав охлаждают до комнатной температуры и проводят сушку полученной суспензии на распылительной сушилке при температуре воздуха на входе в сушилку 155°C и непрерывном перемешивании суспензии, высушенный порошок собирают в приемной емкости сушилки. Навеску 150 г порошка помещают в корыто смесителя с Z-образными лопастями, пептизируют 2,5%-ным водным раствором аммиака, после чего экструдируют через фильеру, обеспечивающую получение частиц с сечением в виде трилистника с диаметром описанной окружности 1,6 мм.

Сформованные гранулы сушат при температуре 120°C и прокаливают при температуре 550°C. В результате получают носитель, содержащий, мас.%: борат алюминия Al3BO6 со структурой норбергита – 5,0; натрий – 0,03; γ-Al2O3 – остальное.

Характеристики носителя по примеру 1 приведены в таблице 1.

Далее готовят раствор биметаллического комплексного соединения [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2], для чего в 100 мл дистиллированной воды при перемешивании последовательно растворяют 73,3 г лимонной кислоты C6H8O7; 89,87г парамолибдата аммония (NH4)6Mo7O24·4H2O и 30,1 г кобальта (II) углекислого основного водного СоСО3·mCo(ОН)2·nH2O, где массовая доля кобальта составляет 48-53%. После полного растворения всех компонентов добавлением дистиллированной воды объем раствора доводят до 200 мл.

100 г полученного носителя пропитывают по влагоемкости 67 мл раствора биметаллического комплексного соединения [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2] при 20°C в течение 60 мин. Затем катализатор сушат на воздухе при 100°C.

Катализатор содержит, мас.%: [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2] – 38,4; носитель – остальное; при этом носитель содержит, мас.%: борат алюминия Al3BO6 со структурой норбергита – 5,0; натрий – 0,03; γ-Al2O3 – остальное.

Катализатор имеет удельную поверхность 150 м2/г, объем пор 0,55 см3/г, средний диаметр пор 13 нм и представляет собой частицы с сечением в виде трилистника с диаметром описанной окружности 1,6 мм и длиной до 20 мм. Входящий в состав катализатор борат алюминия Al3BO6 со структурой норбергита представляет собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3.2 и 2.8 Å, с углом между ними 53.8°.

Далее катализатор сульфидируют по одной из известных методик. В данном случае катализатор сульфидирован прямогонной дизельной фракцией, содержащей дополнительно 1,5 мас.% сульфидирующего агента – диметилдисульфида (ДМДС), при объемной скорости подачи сульфидирующей смеси 2 ч-1 и соотношении водород/сырье = 300 нм3 Н23 по следующей программе:

– сушка катализатора в реакторе гидроочистки в токе водорода при 140°C в течение 2 ч;

– смачивание катализатора прямогонной дизельной фракцией в течение 2 ч;

– подача сульфидирующей смеси и увеличение температуры до 240°C со скоростью подъема температуры 25°C/ч;

– сульфидирование при температуре 240°C в течение 8 ч (низкотемпературная стадия);

– увеличение температуры реактора до 340°C со скоростью подъема температуры 25°C/ч;

– сульфидирование при температуре 340°C в течение 8 ч.

В результате получают катализатор, который содержит, мас.%: Мо – 12,5; Со – 3,85; S – 8,3; носитель – остальное; при этом носитель содержит, мас.%: борат алюминия Al3BO6 со структурой норбергита – 5,0; натрий – 0,03; γ-Al2O3 – остальное.

Катализатор тестируют в гидроочистке дизельного топлива, содержащего 0,32% серы, 200 ppm азота, имеющего плотность 0,847 г/см3, интервал кипения 210-360°C, Т95 – 352 °C. Условия гидроочистки: объемная скорость подачи сырья – 2,5 ч-1, соотношение Н2/сырье = 500 нм3 Н23 сырья, давление 3,8 МПа, температура 350°C.

Катализатор также тестируют в гидроочистке вакуумного газойля. Гидроочистку вакуумного газойля (3,0% серы, 1200 ppm азота, к.к. 560 °C) проводят при 370°C, давлении 9,0 МПа, массовом расходе вакуумного газойля 1 ч-1, объемном отношении водород/сырье = 500 нм3 Н23.

Результаты тестирования катализатора в гидроочистке спустя 1000 ч работы катализатора приведены в таблице 2.

Примеры 2-7 иллюстрируют предлагаемое техническое решение.

Пример 2

Носитель готовят следующим образом. Берут 150 г порошкообразного продукта быстрой термической обработки гидраргиллита (ПБТОГ), измельчают на шаровой мельнице до агломератов частиц со средним объемным диаметром 5-25 мкм. Далее измельченный порошок гидратируют при непрерывном перемешивании в слабоконцентрированном (0,3 мас.%) растворе азотной кислоты при температуре 50°С в течение 2 ч. Затем суспензию фильтруют под вакуумом с использованием воронки Бюхнера и колбы Бюнзена через фильтровальную бумагу типа «Синяя лента» и промывают дистиллированной водой до остаточного содержания натрия в пересчете на сухое твердое вещество 0,03 мас.%. В результате получают влажный осадок – кек.

Кек загружают в автоклав, в который добавляют 1,5% раствор азотной кислоты до достижения pH суспензии 1,0-2,0. К суспензии добавляют при перемешивании 0,25 мл жидкости полиметилсилоксановой марки ПМС-50 (ГОСТ 13032-77). Сосуд автоклава нагревают до 160°С и выдерживают в течение 10 ч. Далее сосуд автоклава охлаждают до комнатной температуры. Суспензию выгружают и сушат в распылительной сушилке при температуре теплоносителя на входе в сепаратор не выше 350°С до получения сухого порошкообразного псевдобемита.

Навеску 150 г порошка псевдобемита помещают в корыто смесителя с Z-образными лопастями, пептизируют 2,5% водным раствором аммиака, после чего экструдируют при давлении 50-60,0 МПа через фильеру, обеспечивающую получение частиц с сечением в виде круга с диаметром описанной окружности 1 мм.

Сформованные гранулы сушат при температуре 120°C и прокаливают при температуре 550°C. В результате получают носитель, содержащий, мас.%: соединение кремния в пересчете на оксид неметалла SiO2 – 0,1, натрий – 0,03, γ-Al2O3 – остальное.

Характеристики носителя приведены в таблице 1.

Далее готовят раствор биметаллического комплексного соединения [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2], для чего в 100 мл дистиллированной воды при перемешивании последовательно растворяют 50,6 г лимонной кислоты C6H8O7; 75,09 г парамолибдата аммония (NH4)6Mo7O24×4H2O и 24,7 г кобальта (II) углекислого основного водного СоСО3·mCo(ОН)2·nH2O, где массовая доля кобальта составляет 48-53%. После полного растворения всех компонентов добавлением дистиллированной воды объем раствора доводят до 200 мл.

100 г полученного носителя пропитывают по влагоемкости 85 мл раствора биметаллического комплексного соединения [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2] при 20°C в течение 60 мин. Затем катализатор сушат на воздухе при 100°C.

Прокаленный катализатор содержит, мас.%: 18,8 МоО3, 4,9 СоО, носитель – остальное.

Далее катализатор сульфидируют аналогично примеру 1. Затем проводят гидроочистку углеводородного сырья аналогично примеру 1.

Пример 3

Носитель готовят следующим образом. Берут 150 г ПБТОГ, измельчают на шаровой мельнице до агломератов частиц со средним объемным диаметром 5-25 мкм. Далее измельченный порошок гидратируют при непрерывном перемешивании в слабоконцентрированном (0,3 мас.%) растворе азотной кислоте при температуре 75°С в течение 4 ч. Затем суспензию фильтруют под вакуумом с использованием воронки Бюхнера и колбы Бюнзена через фильтровальную бумагу типа «Синяя лента» и промывают дистиллированной водой до остаточного содержания натрия в пересчете на сухое твердое вещество 0,03 мас.%. В результате получают влажный осадок – кек.

Кек загружают в автоклав, в который добавляют 1,5% раствор азотной кислоты до достижения pH суспензии 1,0-2,0. К суспензии добавляют при перемешивании 2,5 мл жидкости полиметилсилоксановой марки ПМС-100 (ГОСТ 13032-77). Сосуд автоклава нагревают до 150°С и выдерживают в течение 12 ч, затем охлаждают до комнатной температуры. Суспензию выгружают и сушат в распылительной сушилке при температуре теплоносителя на входе в сепаратор не выше 350°С до получения сухого порошкообразного псевдобемита.

Навеску 150 г порошка псевдобемита помещают в корыто смесителя с Z-образными лопастями, пептизируют 2,5% водным раствором аммиака, после чего экструдируют при давлении 50-60,0 МПа через фильеру, обеспечивающую получение частиц с сечением в виде цилиндра с диаметром описанной окружности 1,6 мм.

Сформованные гранулы сушат при температуре 120°C и прокаливают при температуре 550°C. В результате получают носитель, содержащий, мас.%: соединение кремния в пересчете на оксид неметалла SiO2 – 1, натрий – 0,03, χ- и γ-Al2O3 – остальное, причем соотношение низкотемпературных форм оксида алюминия χ- и γ-Al2O3 в носителе в мас.% составляет 5 : 95.

Характеристики носителя приведены в таблице 1.

Далее готовят раствор биметаллического комплексного соединения [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2], для чего в 100 мл дистиллированной воды при перемешивании последовательно растворяют 53,75 г лимонной кислоты C6H8O7; 79,78 г парамолибдата аммония (NH4)6Mo7O24×4H2O и 26,3 г кобальта (II) углекислого основного водного СоСО3·mCo(ОН)2·nH2O, где массовая доля кобальта составляет 48-53%. После полного растворения всех компонентов добавлением дистиллированной воды объем раствора доводят до 200 мл.

100 г полученного носителя пропитывают по влагоемкости 80 мл раствора биметаллического комплексного соединения [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2] при 20°C в течение 60 мин. Затем катализатор сушат на воздухе при 100°C.

Прокаленный катализатор содержит, мас.%: 18,8 МоО3, 4 СоО, носитель – остальное.

Далее катализатор сульфидируют аналогично примеру 1. Затем проводят гидроочистку углеводородного сырья аналогично примеру 1.

Пример 4

Носитель готовят следующим образом. Берут 150 г ПБТОГ, измельчают на шаровой мельнице до агломератов частиц со средним объемным диаметром 5-25 мкм. Далее измельченный порошок гидратируют при непрерывном перемешивании в слабоконцентрированном (0,3 мас.%) растворе азотной кислоте при температуре 75°С в течение 3 ч. Затем суспензию фильтруют под вакуумом с использованием воронки Бюхнера и колбы Бюнзена через фильтровальную бумагу типа «Синяя лента» и промывают дистиллированной водой до остаточного содержания натрия в пересчете на сухое твердое вещество 0,03 мас.%. В результате получают влажный осадок – кек.

Кек загружают в автоклав, в который добавляют 1,5% раствор азотной кислоты до достижения pH суспензии 1,0-2,0. К суспензии добавляют при перемешивании 12,5 мл жидкости полиметилсилоксановой марки ПМС-200 (ГОСТ 13032-77). Сосуд автоклава нагревают до 150°С и выдерживают в течение 6 ч, затем охлаждают до комнатной температуры. Суспензию выгружают и сушат в распылительной сушилке при температуре теплоносителя на входе в сепаратор не выше 350°С до получения сухого порошкообразного псевдобемита.

Навеску 150 г порошка псевдобемита помещают в корыто смесителя с Z-образными лопастями, пептизируют 2,5% водным раствором аммиака, после чего экструдируют при давлении 60,0 МПа через фильеру, обеспечивающую получение частиц с сечением в виде трилистника с диаметром описанной окружности 1,6 мм.

Сформованные гранулы сушат при температуре 120°C и прокаливают при температуре 550°C. В результате получают носитель, содержащий, мас.%: соединение кремния в пересчете на оксид неметалла SiO2 – 5, натрий – 0,03, χ- и γ-Al2O3 – остальное, причем соотношение низкотемпературных форм оксида χ- и γ-Al2O3 алюминия в носителе в мас.% составляет 20 : 80.

Характеристики носителя приведены в таблице 1.

Далее готовят раствор биметаллического комплексного соединения [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2], для чего в 100 мл дистиллированной воды при перемешивании последовательно растворяют 61,4 г лимонной кислоты C6H8O7; 91,2 г парамолибдата аммония (NH4)6Mo7O24×4H2O и 30,0 г кобальта (II) углекислого основного водного СоСО3·mCo(ОН)2·nH2O, где массовая доля кобальта составляет 48-53%. После полного растворения всех компонентов добавлением дистиллированной воды объем раствора доводят до 200 мл.

100 г полученного носителя пропитывают по влагоемкости 70 мл раствора биметаллического комплексного соединения [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2] при 20°C в течение 60 мин. Затем катализатор сушат на воздухе при 100°C.

Прокаленный катализатор содержит, мас.%: 18,8 МоО3, 4,9 СоО, носитель – остальное.

Далее катализатор сульфидируют аналогично примеру 1. Далее проводят гидроочистку углеводородного сырья аналогично примеру 1.

Пример 5

Носитель готовят следующим образом. Берут 150 г ПБТОГ. Порошок гидратируют при непрерывном перемешивании в слабоконцентрированном (0,3 мас.%) растворе азотной кислоте при температуре 50°С в течение 3 ч. Затем суспензию фильтруют под вакуумом с использованием воронки Бюхнера и колбы Бюнзена через фильтровальную бумагу типа «Синяя лента» и промывают дистиллированной водой до остаточного содержания натрия в пересчете на сухое твердое вещество 0,03 мас.%. В результате получают влажный осадок – кек.

Кек загружают в автоклав, в который добавляют 1,5% раствор азотной кислоты до достижения pH суспензии 1,0-2,0. К суспензии добавляют при перемешивании 50 мл жидкости полиметилсилоксановой марки ПМС-100 (ГОСТ 13032-77). Сосуд автоклава нагревают до 150°С и выдерживают в течение 12 ч, затем охлаждают до температуры 90°С. Суспензию выгружают и сушат в распылительной сушилке при температуре теплоносителя на входе в сепаратор не выше 350°С до получения сухого порошкообразного псевдобемита.

Навеску 150 г порошка псевдобемита помещают в корыто смесителя с Z-образными лопастями, пептизируют 2,5%-ным водным раствором аммиака, после чего экструдируют при давлении 60,0 МПа через фильеру, обеспечивающую получение частиц с сечением в виде цилиндра с диаметром описанной окружности 1,6 мм.

Сформованные гранулы сушат при температуре 120°C и прокаливают при температуре 550°C. В результате получают носитель, содержащий, мас.%: соединение кремния в пересчете на оксид неметалла SiO2 – 20, натрий – 0,03, χ- и γ-Al2O3 – остальное, причем соотношение низкотемпературных форм оксида χ- и γ-Al2O3 алюминия в носителе в мас.% составляет 40 : 60.

Характеристики носителя приведены в таблице 1.

Далее готовят раствор биметаллического комплексного соединения [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2], для чего в 100 мл дистиллированной воды при перемешивании последовательно растворяют 66,15 г лимонной кислоты C6H8O7; 98,2 г парамолибдата аммония (NH4)6Mo7O24×4H2O и 32,3 г кобальта (II) углекислого основного водного СоСО3·mCo(ОН)2·nH2O, где массовая доля кобальта составляет 48-53%. После полного растворения всех компонентов добавлением дистиллированной воды объем раствора доводят до 200 мл.

100 г полученного носителя пропитывают по влагоемкости 65 мл раствора биметаллического комплексного соединения [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2] при 20°C в течение 60 минут. Затем катализатор сушат на воздухе при 100°C.

Прокаленный катализатор содержит, мас.%: 18,8 МоО3, 4,9 СоО, носитель – остальное.

Далее катализатор сульфидируют аналогично примеру 1. Затем проводят гидроочистку углеводородного сырья аналогично примеру 1.

Пример 6

Носитель готовят следующим образом. Берут 150 г ПБТОГ, измельчают на шаровой мельнице до агломератов частиц со средним объемным диаметром 5-25 мкм. Далее измельченный порошок гидратируют при непрерывном перемешивании в слабоконцентрированном (0,3 мас.%) растворе азотной кислоте при температуре 50°С в течение 4 ч. Затем суспензию фильтруют под вакуумом с использованием воронки Бюхнера и колбы Бюнзена через фильтровальную бумагу типа «Синяя лента» и промывают дистиллированной водой до остаточного содержания натрия в пересчете на сухое твердое вещество 0,03 мас.%. В результате получают влажный осадок – кек.

Кек загружают в автоклав, в который добавляют 1,5% раствор азотной кислоты до достижения pH суспензии 1,0-2,0. К суспензии добавляют при перемешивании 17,8 мл жидкости полиметилсилоксановой марки Лэйксил 15-А и 0,88 г борной кислоты, разбавленной в 10 мл воды. Сосуд автоклава нагревают до 140°С и выдерживают в течение 12 ч, затем охлаждают до комнатной температуры. Суспензию выгружают и сушат в распылительной сушилке при температуре теплоносителя на входе в сепаратор не выше 350°С до получения сухого порошкообразного псевдобемита.

Навеску 150 г порошка псевдобемита помещают в корыто смесителя с Z-образными лопастями, пептизируют 2,5%-ным водным раствором аммиака, после чего экструдируют при давлении 60,0 МПа через фильеру, обеспечивающую получение частиц с сечением в виде четырехлистника с диаметром описанной окружности 1,6 мм.

Сформованные гранулы сушат при температуре 120°C и прокаливают при температуре 550°C. В результате получают носитель, содержащий, мас.%: соединение кремния в пересчете на оксид неметалла SiO2 – 2, соединение бора в пересчете на оксид бора B2O3 – 0,25, натрий – 0,03, χ- и γ-Al2O3 – остальное, причем соотношение низкотемпературных форм оксида χ- и γ-Al2O3 алюминия в носителе в мас.% составляет 10 : 90.

Характеристики носителя приведены в таблице 1.

Далее готовят раствор биметаллического комплексного соединения [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2], для чего в 100 мл дистиллированной воды при перемешивании последовательно растворяют 78,19 г лимонной кислоты C6H8O7; 116,05 г парамолибдата аммония (NH4)6Mo7O24×4H2O и 38,2 г кобальта (II) углекислого основного водного СоСО3·mCo(ОН)2·nH2O, где массовая доля кобальта составляет 48-53%. После полного растворения всех компонентов добавлением дистиллированной воды объем раствора доводят до 200 мл.

100 г полученного носителя пропитывают по влагоемкости 55 мл раствора биметаллического комплексного соединения [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2] при 20°C в течение 60 мин. Затем катализатор сушат на воздухе при 100°C.

Прокаленный катализатор содержит, мас.%: 18,8 МоО3, 4,9 СоО, носитель – остальное.

Далее катализатор сульфидируют аналогично примеру 1. Затем проводят гидроочистку углеводородного сырья аналогично примеру 1.

Пример 7

Носитель готовят следующим образом. Берут 150 г ПБТОГ, измельчают на шаровой мельнице до агломератов частиц со средним объемным диаметром 5-25 мкм. Далее измельченный порошок гидратируют при непрерывном перемешивании в слабоконцентрированном (0,3 мас. %) растворе азотной кислоте при температуре 60°С в течение 2 ч. Затем суспензию фильтруют под вакуумом с использованием воронки Бюхнера и колбы Бюнзена через фильтровальную бумагу типа «Синяя лента» и промывают дистиллированной водой до остаточного содержания натрия в пересчете на сухое твердое вещество – 0,03 мас.%. В результате получают влажный осадок – кек.

Кек загружают в автоклав, в который добавляют 1,5% раствор азотной кислоты до достижения pH суспензии 1,0-2,0. К суспензии добавляют при перемешивании 11,6 мл жидкости полиметилсилоксановой марки Наносил-30А и 35,2 г борной кислоты, растворенной в 100 мл воды. Сосуд автоклава нагревают до 140°С и выдерживают в течение 24 ч, затем охлаждают до комнатной температуры. Суспензию выгружают и сушат в распылительной сушилке при температуре теплоносителя на входе в сепаратор не выше 350°С до получения сухого порошкообразного псевдобемита.

Навеску 150 г порошка псевдобемита помещают в корыто смесителя с Z-образными лопастями, пептизируют 2,5% водным раствором аммиака, после чего экструдируют при давлении 60,0 МПа через фильеру, обеспечивающую получение частиц с сечением в виде цилиндра с диаметром описанной окружности 1,6 мм.

Сформованные гранулы сушат при температуре 120°C и прокаливают при температуре 550°C. В результате получают носитель, содержащий мас.%: соединение кремния в пересчете на оксид неметалла SiO2 – 2, соединение бора в пересчете на оксид бора B2O3 – 10, натрий – 0,03, χ- и γ-Al2O3 – остальное, причем соотношение низкотемпературных форм оксида χ- и γ-Al2O3 алюминия в носителе в мас.% составляет 15 : 85.

Характеристики носителя приведены в таблице 1.

Далее готовят раствор биметаллического комплексного соединения [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2], для чего в 100 мл дистиллированной воды при перемешивании последовательно растворяют 86,0 г лимонной кислоты C6H8O7; 127,7 г парамолибдата аммония (NH4)6Mo7O24×4H2O и 42,01 г кобальта (II) углекислого основного водного СоСО3·mCo(ОН)2·nH2O, где массовая доля кобальта составляет 48-53%. После полного растворения всех компонентов добавлением дистиллированной воды объем раствора доводят до 200 мл.

100 г полученного носителя пропитывают по влагоемкости 50 мл раствора биметаллического комплексного соединения [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2] при 20°C в течение 60 мин. Затем катализатор сушат на воздухе при 100°C.

Прокаленный катализатор содержит, мас.%: 18,8 МоО3, 4,9 СоО, носитель – остальное.

Далее катализатор сульфидируют аналогично примеру 1. Затем проводят гидроочистку углеводородного сырья аналогично примеру 1.

Таким образом, как видно из приведенных примеров, носитель для катализатора гидроочистки, полученный предлагаемым способом, за счет своего химического состава, кислотно-основных свойств и текстуры, обусловленных наличием в составе в заданных концентрациях модификаторов, обеспечивает получение катализатора, имеющего высокую активность, значительно превосходящую спустя 1000 часов процесса активность катализатора, приготовленного с использованием носителя-прототипа в гидроочистке углеводородного сырья.

Таблица 1 – Физико-химические свойства носителей для катализаторов гидроочистки

Образец по примеру Содержание Si в пересчете на SiO2, мас.% Содержание B в пересчете на B2O3, мас.% Соотношение χ-Al2O3 и γ-Al2O3, мас.% Концентрация ЛКЦ*, µмоль/г Sуд, м2 Vпор, см3 Средний диаметр пор, нм 1 0 0,93 0 : 100 1200 212 0,67 12,3 2 0,1 0 0 : 100 1000 210 0,85 13 3 1,0 0 5 : 95 870 240 0,80 10 4 5 0 20 : 80 490 260 0,70 9,5 5 20 0 40 : 60 100 290 0,65 8 6 2 0,25 10 : 90 920 250 0,55 7,7 7 2 10 15 : 85 940 330 0,50 7

* ЛКЦ – Льюисовские кислотные центры

Таблица 2 – Активность катализаторов по примерам по прошествии 1000 ч с момента начала процесса гидроочистки

Катализатор из примера 1 (известное техническое решение) 2 3 4 5 6 7 Остаточное содержание серы в гидроочищенном дизельном топливе, ppm 320 290 240 220 200 275 270 Остаточное содержание серы в гидроочищенном вакуумном газойле, ppm 12 10 8,5 7,7 6 9,7 9,8

Похожие патенты RU2738076C1

название год авторы номер документа
Носитель для катализатора гидроочистки 2020
  • Габриенко Антон Алексеевич
  • Данилевич Владимир Владимирович
  • Данилова Ирина Геннадьевна
  • Казаков Максим Олегович
  • Климов Олег Владимирович
  • Корякина Галина Ивановна
  • Надеина Ксения Александровна
  • Носков Александр Степанович
RU2738080C1
Способ приготовления катализатора гидроочистки дизельного топлива 2020
  • Надеина Ксения Александровна
  • Данилевич Владимир Владимирович
  • Казаков Максим Олегович
  • Романова Татьяна Сергеевна
  • Климов Олег Владимирович
  • Носков Александр Степанович
RU2732243C1
СПОСОБ ГИДРООЧИСТКИ СЫРЬЯ КАТАЛИТИЧЕСКОГО КРЕКИНГА 2020
  • Надеина Ксения Александровна
  • Климов Олег Владимирович
  • Данилевич Владимир Владимирович
  • Казаков Максим Олегович
  • Носков Александр Степанович
  • Сайко Анастасия Васильевна
RU2739760C1
КАТАЛИЗАТОР ГИДРООЧИСТКИ ДИЗЕЛЬНОГО ТОПЛИВА 2020
  • Надеина Ксения Александровна
  • Данилевич Владимир Владимирович
  • Казаков Максим Олегович
  • Корякина Галина Ивановна
  • Данилова Ирина Геннадьевна
  • Габриенко Антон Алексеевич
  • Климов Олег Владимирович
  • Носков Александр Степанович
RU2726634C1
Способ приготовления катализатора гидроочистки сырья каталитического крекинга 2020
  • Надеина Ксения Александровна
  • Климов Олег Владимирович
  • Данилевич Владимир Владимирович
  • Романова Татьяна Сергеевна
  • Казаков Максим Олегович
  • Носков Александр Степанович
RU2744504C1
Катализатор гидроочистки сырья каталитического крекинга 2020
  • Надеина Ксения Александровна
  • Климов Олег Владимирович
  • Данилевич Владимир Владимирович
  • Казаков Максим Олегович
  • Корякина Галина Ивановна
  • Носков Александр Степанович
RU2744503C1
Способ приготовления носителя для катализатора гидроочистки 2021
  • Данилевич Владимир Владимирович
  • Корякина Галина Ивановна
  • Климов Олег Владимирович
  • Надеина Ксения Александровна
  • Носков Александр Степанович
RU2763927C1
Способ получения малосернистого дизельного топлива 2020
  • Надеина Ксения Александровна
  • Данилевич Владимир Владимирович
  • Казаков Максим Олегович
  • Климов Олег Владимирович
  • Носков Александр Степанович
RU2732944C1
НОСИТЕЛЬ ДЛЯ КАТАЛИЗАТОРА ГИДРООЧИСТКИ 2021
  • Данилевич Владимир Владимирович
  • Герасимов Евгений Юрьевич
  • Надеина Ксения Александровна
  • Корякина Галина Ивановна
  • Климов Олег Владимирович
  • Носков Александр Степанович
RU2759437C1
КАТАЛИЗАТОР ГИДРООЧИСТКИ ДИЗЕЛЬНОГО ТОПЛИВА 2021
  • Надеина Ксения Александровна
  • Корякина Галина Ивановна
  • Данилевич Владимир Владимирович
  • Климов Олег Владимирович
  • Сайко Анастасия Васильевна
  • Носков Александр Степанович
  • Резниченко Ирина Дмитриевна
  • Андреева Анна Вячеславовна
  • Клейменов Андрей Владимирович
  • Ведерников Олег Сергеевич
  • Никитин Александр Анатольевич
  • Храпов Дмитрий Валерьевич
RU2763889C1

Реферат патента 2020 года Способ приготовления носителя для катализатора гидроочистки

Изобретение относится к области катализа. Описан способ приготовления носителя катализатора гидроочистки углеводородного сырья, содержащего оксид алюминия и соединение кремния или соединения кремния и бора, в котором продукт быстрой термической обработки гидраргиллита измельчают до частиц со средним объёмным диаметром агломератов частиц 5-25 мкм, затем гидратируют, отмывают от натрия, подвергают гидротермальной обработке в виде суспензии в водном растворе азотной кислоты и источника кремния или в водном растворе азотной кислоты и источника кремния и борной кислоты, распылительной сушке, проводят пептизацию порошка при перемешивании водным раствором аммиака с аммиачным модулем не менее 0,075; экструдируют и после термообработки получают носитель, содержащий, мас.%: кремний и бор в пересчете на оксиды неметаллов SiO2 – 0,1-20 и B2O3 – 0-10, натрий – 0,005-0,03, низкотемпературные переходные формы оксида алюминия Al2O3 – остальное, при этом соотношение низкотемпературных переходных форм оксида алюминия χ-Al2O3 и γ-Al2O3 в носителе в мас.% составляет (0-40):(100-60). Технический результат – увеличение активности катализатора. 11 з.п. ф-лы, 2 табл., 7 пр.

Формула изобретения RU 2 738 076 C1

1. Способ приготовления носителя для катализатора гидроочистки углеводородного сырья, содержащего оксид алюминия и соединение кремния или соединения кремния и бора, отличающийся тем, что продукт быстрой термической обработки гидраргиллита измельчают до частиц со средним объёмным диаметром агломератов частиц 5-25 мкм, затем гидратируют, отмывают от натрия, подвергают гидротермальной обработке в виде суспензии в водном растворе азотной кислоты и источника кремния или в водном растворе азотной кислоты и источника кремния и борной кислоты, распылительной сушке, проводят пептизацию порошка при перемешивании водным раствором аммиака с аммиачным модулем не менее 0,075; экструдируют и после термообработки получают носитель, содержащий, мас.%: кремний и бор в пересчете на оксиды неметаллов SiO2 – 0,1-20 и B2O3 – 0-10, натрий – 0,005-0,03, низкотемпературные переходные формы оксида алюминия Al2O3 – остальное, при этом соотношение низкотемпературных переходных форм оксида алюминия χ-Al2O3 и γ-Al2O3 в носителе в мас.% составляет (0-40):(100-60).

2. Способ по п. 1, отличающийся тем, что получаемый носитель имеет удельную площадь поверхности 210-330 м2/г, объём пор по низкотемпературной десорбции азота – 0,5-0,85 см3/г, средний диаметр пор 7-13 нм и представляет собой гранулы с сечением в виде круга, трилистника или четырехлистника с диаметром описанной окружности 1,0-1,6 мм и длиной до 20 мм.

3. Способ по п. 1, отличающийся тем, что согласно ЯМР 29Si соединение кремния представляет собой фрагменты Si(OSi)(OAl)2(O–) и Si(OSi)(O–)3 на поверхности носителя, наблюдаемые у алюмосиликатов и силикатных анионов.

4. Способ по п. 1, отличающийся тем, что соединение бора в составе носителя представляет собой борат алюминия Al3BO6 со структурой норбергита.

5. Способ по п. 1, отличающийся тем, что концентрация Льюисовских кислотных центров всех типов составляет 100-1000 µмоль/г.

6. Способ по п. 1, отличающийся тем, что в качестве исходного продукта быстрой термической обработки гидраргиллита используют продукт со следующими характеристиками, мас.%: гидраргиллита не более 3; бемита не более 10; разупорядоченного χ-подобного Al2O3, также называемого как рентгеноаморфная или аморфная фаза или ρ-Al2O3 не менее 87; доля потери массы при прокаливании при 800°С в пределах 6-10, доля оксида натрия не более 0,3; с удельной площадью поверхности не менее 200 м2/г.

7. Способ по п. 1, отличающийся тем, что продукт быстрой термической обработки гидраргиллита, измельчённый до частиц со средним объёмным диаметром агломератов частиц 5-25 мкм, гидратируют при перемешивании в нагретых слабоконцентрированных растворах азотной кислоты.

8. Способ по п. 1, отличающийся тем, продукт быстрой термической обработки гидраргиллита после измельчения до частиц со средним объёмным диаметром агломератов частиц 5-25 мкм и гидратации отмывают до остаточного содержания натрия не более 0,03 мас.%, но не менее 0,005 мас.%.

9. Способ по п. 1, отличающийся тем, что в качестве источника кремния используют полиметилсилоксановую жидкость марок ПМС-50, -100, -200 или используют кремнезоль, стабилизированный ионами аммония, марки Лэйксил 15-А, или используют золь кремниевой кислоты Наносил-30А.

10. Способ по п. 1, отличающийся тем, что продукт быстрой термической обработки гидраргиллита после измельчения, гидратации, отмывки и гидротермальной обработки подвергают распылительной сушке при температуре газа-теплоносителя не выше 350°С.

11. Способ по п. 1, отличающийся тем, что продукт быстрой термической обработки гидраргиллита после измельчения, гидратации, отмывки, гидротермальной обработки, распылительной сушки и пептизации экструдируют через фильеру, обеспечивающую получение частиц с сечением в виде круга, трилистника или четырёхлистника с диаметром описанной окружности 1,0-1,6 мм.

12. Способ по п. 1, отличающийся тем, что сформованные гранулы носителя сушат при температуре 120°С и прокаливают при температуре 550°С.

Документы, цитированные в отчете о поиске Патент 2020 года RU2738076C1

СПОСОБ ПЕРЕРАБОТКИ ТЯЖЕЛОГО УГЛЕВОДОРОДНОГО СЫРЬЯ 2015
  • Винокуров Владимир Арнольдович
  • Фролов Валентин Ивлиевич
  • Иванов Евгений Владимирович
  • Гущин Павел Александрович
  • Лесин Сергей Викторович
  • Караханов Эдуард Аветисович
  • Лысенко Сергей Васильевич
  • Глотов Александр Павлович
  • Кардашев Сергей Викторович
  • Вутолкина Анна Викторовна
RU2592548C1
Губкина"), 27.07.2016
КАТАЛИЗАТОР ГИДРООЧИСТКИ, СОДЕРЖАЩИЙ МЕТАЛЛООРГАНИЧЕСКИЕ СУЛЬФИДЫ НА ЛЕГИРОВАННЫХ НОСИТЕЛЯХ 2016
  • Бус, Эвелин
  • Дека, Упакул
  • Ван Дер Гринд, Ханс
  • Вогелар, Бастиан Мартен
  • Тонен, Сандер Хендрикус Ламбертус
  • Эйсбаутс-Шпичкова, Сонья
RU2715424C2
CN 110773185 A (ZHEJIANG PETROLEUM & CHEMICAL CO LTD), 11.02.2020
СПОСОБ ГИДРООБРАБОТКИ РАФИНАТОВ МАСЛЯНЫХ ФРАКЦИЙ 1992
  • Каменский А.А.
  • Прокофьев В.П.
  • Милюткин В.С.
  • Вязков В.А.
  • Есипко Е.А.
  • Тремасов В.А.
  • Болдинов В.А.
  • Блохинов В.Ф.
  • Прошин Н.Н.
RU2027739C1

RU 2 738 076 C1

Авторы

Данилевич Владимир Владимирович

Залесский Сергей Александрович

Казаков Максим Олегович

Климов Олег Владимирович

Корякина Галина Ивановна

Надеина Ксения Александровна

Носков Александр Степанович

Столярова Елена Александровна

Даты

2020-12-07Публикация

2020-03-19Подача