Изобретение относится к медицине, а именно, к способам получения биорезорбируемых остеопластических биокомпозитов синтетического типа, предназначенных для лечения заболеваний и повреждений костной системы человека, и может найти применение в стоматологии и челюстно-лицевой хирургии, где существует необходимость регенерации поврежденных челюстных костей, устранения костных дефектов, возникающих при травмах, удалении кист, секвестрэктомии, после костной пластики.
Синтетические остеопластические материалы представляют собой безопасную и более перспективную альтернативу аутогеннным, алогенным и ксеногенным материалам. Преимущественно они выполняют роль матрицы костеобразования для остеогенных элементов, находящихся в ближайшем окружении дефекта, что способствует интеграции имплантата с материнской костной тканью. Остеоиндуктивные свойства, необходимые для успешной инициации остеогенеза, упомянутые материалы приобретают, во-первых, за счет способности сорбировать циркулирующие в крови сигнальные молекулы (факторы роста, морфогенетические белки), во-вторых, за счет определенного химического состава этих материалов, формируемого на стадии их синтеза и включающего биоактивную составляющую.
Известен нанодисперсный биорезорбируемый материал на основе аморфного гидроксиапатита (RU 2510740, опубл. 2014.04.10), стимулирующий регенерацию мягкой и костной ткани, который используется для заживления ран различной этиологии, а также в качестве остеопластического материала, в качестве активного компонента средств гигиены полости рта и наноносителя лекарственных средств. В патенте описан также способ получения известного биорезорбируемого материала, который включает приготовление смеси из гидроксида кальция, монозамещенного фосфата кальция моногидрата и оксидов металлов, в качестве которых используют оксид магния и/или оксид цинка при атомном соотношении (Са+МII)/Р=1,67, Са/Р не ниже 1,33, где (MII) - Mg2+ или Zn2+, добавление к смеси водного раствора биополимера в виде гидрогеля с концентрацией полимера 0,01-10,0 мас.% для формирования органической матрицы, осаждение наночастиц аморфного гидроксиапатита при температуре 10-30°С при нейтральных значениях рН 7,0-7,5 с последующим фильтрованием и высушиванием осадка при температуре 20-30°С до получения конечного продукта. Сложный многокомпонентный состав известного биорезорбируемого материала, многоступенчатость способа его приготовления, необходимость строгого соблюдения всех условий (режимов и параметров), необходимость использования всех входящих в заявленный состав компонентов для обеспечения работоспособности известного технического решения и для получения необходимого положительного эффекта от его применения в значительной мере усложняют его практическую реализацию и сводят на нет его возможные преимущества.
Известен способ получения микрогранул на основе гидроксилапатита кальция (RU 2235061, опубл. 2014.04.10) путем смешивания гидроксида кальция и однозамещенного фосфата кальция моногидрата в мольном соотношении Са/Р=1,67 с добавлением к этой смеси водного раствора, содержащего гидрогель полимера природного происхождения с концентрацией полимера 0,01-10,0 мас.%, с осаждением упомянутых веществ при температуре 20-41°С и значении рН 6,8-7,2, с последующим фильтрованием и высушиванием конечного продукта в виде микрогранул при температуре 105-160°С. Смешивание и осаждение веществ осуществляют в течение от 1 минуты до 1 часа, а в качестве гидрогеля полимера природного происхождения используют коллаген или желатин, или кератин, или плаценту, или альгинат натрия, или ксантан, или эфиры целлюлозы, или гепарин, или хитозан. Для придания микрогранулам сферической формы и защиты от микробного повреждения при одновременном усилении бактерицидного действия осаждение микрогранул проводят в растворе нетоксичного антимикробного агента с последующей его иммобилизацией на нетканое полотно, при этом в качестве нетоксичного антимикробного агента используют алкилрезорцинолы. Однако полученный известным способом гранулированный материал ограничен в применении: он характеризуется кристаллической структурой с крупным размером микрогранул, что не позволяет использовать его в качестве ранозаживляющего средства вследствие отсутствия резорбции в мягких тканях.
Наиболее близким к заявляемому является способ получения керамических порошков на основе гидроксиапатита и волластонита (ГАП/ВТ), которые биологически совместимы с костной тканью человека и предназначены для устранения дефектов зубов и костей в стоматологии, челюстно-лицевой хирургии, травматологии, ортопедии (описан в патенте RU 2657817, опубл. 2018.06.15). Известный способ включает смешивание водных растворов гидроксида кальция, ортофосфорной кислоты и пятиводного силиката натрия; в нем используют только те реагенты, которые не приводят к образованию вредных побочных продуктов, при этом отношение концентраций Са/Р задают равным 1,67, а отношение Ca/Si=1,00, а количества Са(ОН)2, Н3РО4 и Na2SiO3 рассчитывают исходя из значений Са/Р и Ca/Si и выбранной пропорции ГАП/ВТ. Значение рН поддерживают на уровне 12,00±0,05. После осаждения полученную твердую фазу выдерживают под маточным раствором в течение 24 часов при температуре 22-25°С, отфильтровывают, промывают дистиллированной водой, высушивают при 90°С до постоянной массы, прокаливают при 1000°С в течение 2 часов и перемалывают полученную керамическую массу до порошкообразного состояния. Полученные известным способом композитные керамические порошки содержат до 90 мас.% ВТ в смеси с ГАП.
Тонкая структура и пористость получаемого известным способом дисперсного керамического материала зависят от ряда не всегда поддающихся контролю факторов (в частности, от механического размола на последнем этапе обработки), что в конечном итоге не позволяет получить композит достаточно высокого качества. Температура спекания 1000°С является критичной для термообработки ГАП: в результате двухчасовой обработки проявляются признаки нестабильности структуры, наблюдается нарушение его микроструктуры, уменьшение пористости при сохраняющемся количественном содержании кальция-фосфора, происходит снижение его биологической активности, ухудшение свойств композита в целом.
Задачей изобретения является создание способа получения эффективного остеопластического дисперсного биокомпозитного материала на основе волластонита для применения в стоматологии и челюстно-лицевой хирургии.
Технический результат способа заключается в повышении биологической активности получаемого дисперсного остеопластического материала на основе волластонита, содержащего 30% гидроксиапатита за счет равномерного распределения последнего во всем объеме композита, снижения температуры прокаливания и уменьшения его продолжительности, а также за счет получения упомянутого материала в контролируемых условиях.
Указанный технический результат достигают способом получения остеопластического дисперсного биокомпозита на основе волластонита, содержащего гидроксиапатит, с помощью золь-гель метода с использованием в качестве прекурсоров кальций-, фосфор- и кремнийсодержащих водных растворов, включающим перемешивание исходной реакционной смеси с получением осадка в виде геля, отделение, промывание, сушку и прокаливание полученного геля, согласно которому, в отличие от известного, в ходе золь-гель синтеза осуществляют структурирование внутреннего пористого объема биокомпозита, при этом в качестве порообразующих компонентов применяют силоксан-акрилатный латекс и углеродное волокно.
Перемешивание реакционной смеси, содержащей прекурсоры гидроксиапатита и волластонита, с осаждением геля осуществляют в интервале температур 85-95°С в течение 3,0-3,5 часов.
Структурирование внутреннего пористого объема биокомпозита осуществляют с помощью водного раствора силоксан-акрилатного латекса, содержащего 0,1-0,3 мас.% углеродного волокна, который вводят в реакционную смесь в ходе золь-гель синтеза в разбавлении 1:25-30 в отношении 3:2 к общему количеству содержащихся в ней компонентов.
Для формирования кристаллической фазы полученного биокомпозита и удаления порообразователей проводят его термоокислительную обработку путем разогрева в атмосфере воздуха со скоростью 5°С/мин до 800°С с выдержкой при достигнутой максимальной температуре в течение 55-65 минут.
Способ осуществляют следующим образом.
Дисперсный биокомпозит, состоящий из волластонита CaSiO3 (ВТ) и гидроксиапатита (ГАП), получают в виде структурированного порошка с помощью золь-гель технологии с элементами темплатного синтеза. В качестве основных прекурсоров для синтеза силиката кальция CaSiO3 и гидроксиапатита используют метасиликат натрия Na2SiO3⋅5H2O, кальций хлористый CaCl2⋅2H2O и гидрофосфат аммония (NH4)2HPO в виде водных растворов. В качестве темплатов для структурирования внутреннего пористого объема биокомпозита используют порообразующие компоненты: водный раствор силоксан-акрилатного латекса, содержащий углеродное волокно (УВ).
К водному раствору силоксан-акрилатного латекса (соотношение латекс: вода = 1:25-30), содержащего 0,1-0,3 мас.% углеродного волокна, при интенсивном перемешивании несколькими порциями добавляют расчетные количества 1,0 М раствора хлорида кальция CaCl2 и 1,0 М раствора метасиликата натрия Na2SiO3⋅5H2O.
Перемешивают реакционную смесь в течение 3,0-3,5 часов, поддерживая ее температуру в интервале 85-95°С, до образования густого геля. После этого дают смеси остыть до комнатной температуры, вводят в нее расчетные количества хлорида кальция и гидрофосфата аммония в виде 1,0 М водных растворов и перемешивают при комнатной температуре до полной однородности, например, с помощью магнитной мешалки, в течение примерно 1 часа.
Расчет количества исходных компонентов производят в соответствии со стехиометрией следующих уравнений: 1) синтез волластонита; 2) синтез гидроксиапатита в растворе силиката кальция.
Отфильтровывают полученный гель, промывают дистиллированной водой до отрицательной реакции на хлорид ионы и сушат не менее пяти часов при 90-95°С до образования ксерогеля аморфного композита.
Примеры конкретного осуществления способа
В качестве прекурсоров для синтеза силиката кальция и гидроксиапатита были использованы соответствующие химреактивы марки «хч». В качестве порообразующих компонентов применяли промышленный силоксан-акрилатный латекс КЭ 13-36 российского производства с содержанием твердой фазы 50%, средним размером частиц 160 нм (ООО «Астрохим»), а также углеродное волокно торговой марки АУТ-М (ТУ 1916-346-04838763-2009), произведенное в России (АО «ЭНПО» «Неорганика»).
Пример 1
В водный раствор силоксан-акрилатного латекса (соотношение латекс: вода 1:30) вводили 0,1 мас.% угольного волокна и подвергали смесь ультразвуковой гомогенизации на приборе Bandelin Sonopulos HD 3200 (Германия).
К 150 мл полученного таким образом порообразователя при интенсивном перемешивании несколькими порциями приливали 50 мл 1,0 М раствора хлорида кальция CaCl2 и 50 мл 1,0 М раствора метасиликата натрия Na2SiO3. Полученную реакционную смесь перемешивали в течение трех часов при 85°С до образования густого геля, по истечении 3 часов гель охлаждали до комнатной температуры (25°С), после чего добавляли 41,5 мл 1,0 М раствора хлорида кальция и 25 мл 1,0 М гидрофосфата аммония (NH4)2HPO4. Снова перемешивали на магнитной мешалке в течение 1 часа при комнатной температуре. Полученный материал отфильтровывали, промывали дистиллированной водой до отрицательной реакции на хлорид ионы и сушили около 5 часов при 90°С.
Для удаления порообразователей и формирования кристаллической фазы биокомпозитного материала проводили термообработку полученных образцов на воздухе в муфельной печи Nabertherm GmbH (Германия) со скоростью разогрева 5°С/мин до достижения температуры 800°С с выдержкой при достигнутой максимальной температуре в течение 65 минут.
Пример 2
Дисперсный биокомпозит, содержащий волластонит CaSiO3 и гидроксиапатит, получали в условиях примера 1 (в качестве порообразователя брали силоксан-акрилатный латекс в виде водного раствора с соотношением латекс: вода=1:25, с добавлением 0,3 мас.% углеродного волокна). При этом золь-гель синтез проводили в течение 3,5 часов при 95°С. После охлаждения реакционной смеси и добавления второй части компонентов (хлорида кальция и гидрофосфата аммония) обработку проводили аналогично примеру 1.
Идентификацию кристаллических фаз исходных и полученных образцов биокомпозитов проводили с помощью рентгенофазового анализа на многоцелевом рентгеновском дифрактометре D8 Advance Bruker AXS (Германия).
В пределах 800°С происходит полное выгорание темплатов (полимерного латекса и углеродного волокна - УВ), при этом формируется кристаллическая фаза волластонита и ГАП (фиг. 1). Рентгенограммы полученных образцов биокомпозитов CaSiO3 (волластонит)/ГАП аналогичны друг другу, вне зависимости от наличия УВ в исходном ксерогеле (фиг. 1, кривые 2-4).
Удельную поверхность определяли на приборе Autosorb IQ Quantoc - анализаторе низкотемпературной адсорбции азота (при 77К)т.
Распределение пор по размерам определяли на ртутном поромере Auto Pore IV Micromeritics GmbH (США).
Используемая в предлагаемом способе температура обработки обеспечивает формирование биокомпозита с относительно высокой величиной Sуд. 61,7 м2/г при условии использования полимерного латекса в качестве темплата (таблица 1), причем установлено, что в исследуемых образцах присутствуют микро-, мезо- и макропоры. Введение в синтез порообразователя УВ снижает общую величину Sуд., но приводит к некоторому укрупнению пор.
Изображения структуры исследуемых материалов были получены методом растровой электронной микроскопии (РЭМ) на приборе Carl Zeiss Ultra 55 (Германия). На РЭМ изображениях синтезированного биокомпозита CaSiO3 (волластонит)/ГАП (фиг. 2), полученных с использованием различных темплатов: а, а* - полимерный латекс; b, b* - полимерный латекс и 0.1 мас.% УВ; с, с* - полимерный латекс и 0.3 мас.% УВ, видно, что морфология поверхности синтезированных образцов биокомпозита представлена игольчатой структурой волластонита, при этом для всех образцов характерна микроструктурная пористость. Отмечено увеличение пористых образований размером от 1 мкм и более при повышении количества вводимого угольного волокна.
Проведены исследования биосовместимых свойств полученного дисперсного биокомпозита в условиях "in vivo" при регенерации искусственно созданного дефекта в области нижней челюсти у лабораторного животного -кролика-самки породы «Новозеландский белый» массой 3 кг.
Оценивали процесс регенерации лунки удаленного переднего зуба (центрального резца) у животного после ее заполнения порошком исследуемого волластонит/ГАП имплантата. Клиническое состояние подопытного животного контролировали по результатам общего и биохимического анализа крови. Динамику регенеративного процесса исследовали с применением мультиспиральной компьютерной томографии (МСКТ). По результатам гистологического исследования и МСКТ диагностики показано, что упомянутый порошок имплантата активно интегрируется в ткани альвеолы в области удаленного зуба животного, прорастает соединительной тканью, сосудами и не вызывает воспаления или некроза окружающих костных тканей. По результатам оценки основных клинических (таблица 2) и биохимических (таблица 3) показателей крови подопытного животного четко определено, что прямое токсическое воздействие имплантата на организм отсутствует.
название | год | авторы | номер документа |
---|---|---|---|
Способ получения биокомпозита с антибактериальными свойствами | 2023 |
|
RU2824130C1 |
Способ получения пористого биокерамического волластонита | 2020 |
|
RU2743834C1 |
СПОСОБ ПОЛУЧЕНИЯ БИОСОВМЕСТИМОЙ ПОРИСТОЙ КЕРАМИКИ НА ОСНОВЕ ДИОКСИДА ЦИРКОНИЯ ДЛЯ ЭНДОПРОТЕЗИРОВАНИЯ | 2020 |
|
RU2741918C1 |
ИМПЛАНТАТЫ ДЛЯ ЗАМЕНЫ "НЕСУЩЕЙ НАГРУЗКУ" КОСТИ, ИМЕЮЩИЕ ИЕРАРХИЧЕСКИ ОРГАНИЗОВАННУЮ АРХИТЕКТУРУ, ПОЛУЧЕННЫЕ ПОСРЕДСТВОМ ПРЕВРАЩЕНИЯ РАСТИТЕЛЬНЫХ СТРУКТУР | 2011 |
|
RU2585958C2 |
СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОГО КЕРАМИЧЕСКОГО МАТЕРИАЛА НА ОСНОВЕ ПИРОФОСФАТА КАЛЬЦИЯ | 2012 |
|
RU2531377C2 |
СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОГО МАТЕРИАЛА НА ОСНОВЕ ФОСФАТА КАЛЬЦИЯ | 2008 |
|
RU2392007C2 |
СПОСОБ ПОЛУЧЕНИЯ КЕРАМИЧЕСКОГО БИОДЕГРАДИРУЕМОГО МАТЕРИАЛА, СОСТОЯЩЕГО ИЗ ПИРОФОСФАТА КАЛЬЦИЯ И ТРИКАЛЬЦИЙФОСФАТА | 2008 |
|
RU2391316C1 |
Остеопластический материал для замещения дефектов костной ткани | 2024 |
|
RU2824989C1 |
Способ получения модифицированного биопокрытия с микрочастицами трикальцийфосфата и/или волластонита на имплантате из магниевого сплава | 2021 |
|
RU2763091C1 |
Биокомпозиционный остеопластический материал для ускорения консолидации переломов животных | 2022 |
|
RU2805654C1 |
Изобретение относится к медицине, а именно к способам получения биорезорбируемых остеопластических биокомпозитов синтетического типа, предназначенных для лечения заболеваний и повреждений костной системы человека, и может найти применение в стоматологии и челюстно-лицевой хирургии. Способ предусматривает получение остеопластического дисперсного биокомпозита на основе гидроксиапатита и волластонита с помощью золь-гель синтеза с использованием в качестве прекурсоров кальций-, фосфор-, кремнийсодержащих водных растворов и включает перемешивание содержащей прекурсоры реакционной смеси с получением осадка в виде геля, отделение, промывание, сушку и прокаливание полученного осадка. На стадии золь-гель синтеза осуществляют структурирование внутреннего пористого объема получаемого биокомпозита введением в реакционную смесь силоксан-акрилатного латекса и углеродного волокна в качестве порообразующих компонентов. Далее проводят термоокислительную обработку полученного материала для формирования кристаллической фазы и удаления порообразователей путем нагревания в атмосфере воздуха со скоростью 5°С/мин до температуры 800°С с выдержкой при достигнутой температуре в течение 55-65 минут. Технический результат - повышение биологической активности получаемого дисперсного остеопластического композита волластонит/гидроксиапатит за счет снижения температуры прокаливания и уменьшения его продолжительности, а также за счет проведения процесса в контролируемых условиях. 2 з п. ф-лы, 2 пр., 3 табл., 2 ил.
1. Способ получения остеопластического дисперсного биокомпозита на основе гидроксиапатита и волластонита с помощью золь-гель синтеза с использованием в качестве прекурсоров кальций-, фосфор-, кремнийсодержащих водных растворов, включающий перемешивание содержащей прекурсоры реакционной смеси с получением осадка в виде геля, отделение, промывание, сушку и прокаливание полученного осадка, отличающийся тем, что на стадии золь-гель синтеза осуществляют структурирование внутреннего пористого объема получаемого биокомпозита введением в реакционную смесь силоксан-акрилатного латекса и углеродного волокна в качестве порообразующих компонентов, после чего проводят термоокислительную обработку полученного материала для формирования кристаллической фазы и удаления порообразователей путем нагревания в атмосфере воздуха со скоростью 5°С/мин до температуры 800°С с выдержкой при достигнутой температуре в течение 55-65 минут.
2. Способ по п. 1, отличающийся тем, что осаждение геля осуществляют перемешиванием реакционной смеси в течение 3,0-3,5 часов при температуре 85-95°С.
3. Способ по пп. 1, 2, отличающийся тем, что структурирование внутреннего пористого объема биокомпозита осуществляют с помощью водного раствора силоксан-акрилатного латекса в разбавлении 1:25-30, содержащего 0,1-0,3 мас.% углеродного волокна, который вводят в реакционную смесь в отношении 3:2 к остальным ее компонентам.
Способ получения керамического порошка на основе гидроксиапатита и волластонита | 2017 |
|
RU2657817C1 |
ОСТЕОГЕННЫЙ БИОРЕЗОРБИРУЕМЫЙ МАТЕРИАЛ ДЛЯ ЗАМЕЩЕНИЯ КОСТНЫХ ДЕФЕКТОВ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2012 |
|
RU2504405C1 |
БИОРЕЗОРБИРУЕМЫЙ МАТЕРИАЛ НА ОСНОВЕ АМОРФНОГО ГИДРОКСИАПАТИТА И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2012 |
|
RU2510740C1 |
СПОСОБ ПОЛУЧЕНИЯ МИКРОГРАНУЛ НА ОСНОВЕ ГИДРОКСИЛАПАТИТА КАЛЬЦИЯ | 2002 |
|
RU2235061C2 |
БИОСОВМЕСТИМЫЙ КОСТНОЗАМЕЩАЮЩИЙ МАТЕРИАЛ И СПОСОБ ПОЛУЧЕНИЯ ЕГО | 2012 |
|
RU2494721C1 |
Способ обработки шламов медно-электролитного производства | 1925 |
|
SU12091A1 |
PAPYNOV E.K | |||
et al | |||
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. | 1921 |
|
SU3A1 |
Солесос | 1922 |
|
SU29A1 |
Авторы
Даты
2021-01-22—Публикация
2020-03-26—Подача