СПОСОБ ИЗГОТОВЛЕНИЯ КОЛЛЕКТОРА ТОКА ДЛЯ ЭЛЕКТРОХИМИЧЕСКИХ КОНДЕНСАТОРОВ Российский патент 2021 года по МПК H01G11/34 H01G11/86 H01M4/32 B82Y30/00 

Описание патента на изобретение RU2744480C1

Изобретение относится к области электротехники, а именно к электрохимическим конденсаторам, и может быть использовано в качестве коллектора тока поляризуемого электрода в электродном узле электрохимического конденсатора со щелочным электролитом.

Известен способ изготовления пористой основы электрода никель-кадмиевого аккумулятора, выполненного из порошка карбонильного никеля, напрессованного на металлическую сетку. (В.С. Багоцкий, А.М. Скундин, Химические источники тока, М. Энергоиздат, 1981 с. 197).

Недостатками данного технического решения является образование в процессе работы такого коллектора оксидных пленок па поверхности никеля, что увеличивает переходное сопротивление и снижает мощность, а также большая толщина (примерно 12 мм), что снижает удельные характеристики электродов.

Известен способ изготовления пористой основы электрода щелочного аккумулятора (Патент РФ №2098894 опубл. 10.12.1997 МПК Н01М 4/80). Данный способ изготовления включает прокатку никелевого порошка с применением активного смазочного вещества и последующее спекание в восстановительной атмосфере, в смазочное вещество вводят органический растворитель и прокатывают смесь через валки.

Недостатком технического решения является недостаточная карбонизация поверхности, происходящая при термической деструкции органического связующего и создающая защитный слой от электрохимического окисления.

Известен способ изготовления металл-углерод содержащих тел (выбран в качестве прототипа патент РФ №2520874, опубл. 27.06.2014 МПК В01G 37/02, 37/04), включающих ферромагнитные металлические частицы, капсулированные слоями графитового углерода, который включает пропитывание (у нас - контактирование) целлюлозных, целлюлозоподобных или углеводных тел или тел, полученных из них путем гидротермальной обработки (у нас - углеродсодержащий прекурсор), водным раствором по меньшей мере одного соединения металла (у нас - металлсодержащий субстрат) и последующее нагревание продукта контактирования в инертной и практически лишенной кислорода атмосфере с восстановлением по меньшей мере части субстрата до соответствующего металла или металл-углеродного композита.

Недостатком прототипа способа является недостаточная полнота реакции карбонизации и, как следствие, недостаточные защитные свойства слоев углерода.

Основной проблемой разработки коллектора тока для электрохимического конденсатора со щелочным электролитом является окисление материала проводящей основы с образованием оксидного слоя с пониженной проводимостью, что увеличивает внутреннее сопротивление конденсатора и снижает его мощность.

Техническим результатом изобретения является сохранение низкого контактного сопротивления коллектора тока электрохимического конденсатора со щелочным электролитом в процессе его циклирования за счет карбонизации поверхности подложки.

Указанный технический результат обеспечивается способом изготовления коллектора тока, включающим контактирование углеродсодержащего прекурсора с металлсодержащим субстратом и последующее нагревание продукта контактирования в инертной и практически лишенной кислорода атмосфере с восстановлением по меньшей мере части субстрата, причем металлсодержащим субстратом является никелевая лента с окисленной поверхностью, а углеродсодержащим прекурсором является природный газ, металлсодержащий субстрат получают окислением никелевой ленты в печи в кислородсодержащей атмосфере при температуре 895-905°С в течение 3 минут, металлсодержащий субстрат контактирует с углеродсодержащим прекурсором, природным газом при температуре 895-905°С в печи с атмосферой природного газа в течение 2 минут с восстановлением до металлического никеля и образованием никель-углеродного композита, полученный продукт охлаждают на воздухе.

Использование в качестве субстрата окисленной никелевой ленты позволяет более эффективно адсорбировать молекулы метана, а также катализировать реакцию пиролиза с образованием углерода и водорода. Углеродсодержащий прекурсор в виде природного газа легче подвергается пиролизу и образует ультрадисперсный углерод, который может внедряться в структуру никеля и прочно связываться с ним. Окисление при температуре 895-905°С в течение 3 минут обеспечивает образование гонкой оксидной пленки, которая может легко восстанавливаться образующимся при пиролизе водородом. При повышении температуры выше 905°С и/или времени выдержки толщина пленки увеличивается, и при последующей карбонизации поверхность никеля сорбирует недостаточное количество молекул метана. При выдержке в течение 2 минут в атмосфере природного газа происходит пиролиз метана и протекают два параллельных процесса: восстановление оксида никеля до металлического никеля или карбида никеля (слой с хорошей каталитической активностью); разложение природного газа (метана) на углерод и водород. В результате на поверхности никеля образуется карбид никеля, который при последующем охлаждении частично распадается на свободный углерод в виде мелкодисперсных поверхностных кластеров и частично внедренный в структуру никеля углерод. Карбонизированная по предлагаемому способу поверхность никеля при работе конденсатора со щелочным электролитом не покрывается плотной оксидной пленкой и не приводит к увеличению переходного сопротивления.

Пример реализации способа

Для данного способа используется никель в виде пластичной ленты. Ленту никелевую, намотанную на катушку, подавали в печь с кислородсодержащей атмосферой и температурой 895-905°С, где происходило предварительное окисление поверхности, с со скоростью 1,4 м/мин, что эквивалентно нахождению ленты в печи в течение 3 мин. После этого ленту пропускали через печь с температурой 895-905°С и средой природного газа со скоростью 1,6 м/мин, что эквивалентно нахождению ленты в печи в течение 2 минут, после чего лента остывала на воздухе. Из карбонизированной никелевой ленты были вырублены образцы коллекторов тока геометрическим размером 75×48 мм в количестве 20 штук. Провели измерение контактного сопротивления образца в нескольких точках с одной стороны, затем с другой. После этого был собран блок из положительных электродов, обернутых в полипропиленовый сепаратор и образец коллектора тока. Собранный блок поместили в ячейку и залили раствором щелочи. Ячейку поместили в термостат, подсоединили положительный электрод к стенду контроля, испытываемый образец к отрицательному выводу стенда, нагрели термостат до 80°С и выдерживали 20 минут.

Провели испытания по следующему режиму:

1. Заряд током 2,5 А до напряжения 1,6 В;

2. Разряд током 2,5 А до напряжения 0,6 В

3. Количество циклов - 500.

После проведения испытания ячейку с блоком разобрали и промыли водой, после чего дистиллированной водой и просушили.

Измерили контактное сопротивление образца в нескольких точках с двух сторон после проведения испытаний. Измерения контактного сопротивления показали, что изменение контактного сопротивления образцов составило от 5,5 до 15%, что считается приемлемым (не более 50%).

Таким образом, предлагаемый способ изготовления коллектора тока для электрохимического конденсатора позволяет сохранить низкое контактное сопротивление коллектора тока электрохимического конденсатора со щелочным электролитом в процессе его циклирования за счет карбонизации поверхности подложки.

Похожие патенты RU2744480C1

название год авторы номер документа
СПОСОБ ПРОИЗВОДСТВА ПОРИСТЫХ МЕТАЛЛОУГЛЕРОДНЫХ МАТЕРИАЛОВ 2015
  • Коган Семен
  • Белоус Светлана А.
  • Лаврова Татьяна С.
  • Чепурная Ирина А.
  • Тимонов Александр М.
  • Карушев Михаил П.
RU2675582C2
ЭЛЕКТРОХИМИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНЫХ СТРУКТУР ОКСИДА НИКЕЛЯ (II) 2015
  • Лебедева Ольга Константиновна
  • Культин Дмитрий Юрьевич
  • Роот Наталья Викторовна
  • Кустов Леонид Модестович
  • Джунгурова Гиляна Евгеньевна
  • Калмыков Константин Борисович
  • Дунаев Сергей Федорович
RU2592892C1
СПОСОБ ИЗГОТОВЛЕНИЯ НЕПОЛЯРИЗУЕМОГО ЭЛЕКТРОДА ДЛЯ ЭЛЕКТРОХИМИЧЕСКОГО КОНДЕНСАТОРА 2015
  • Варакин Игорь Николаевич
  • Кильганова Екатерина Алексеевна
  • Самитин Виктор Васильевич
  • Степанов Алексей Борисович
RU2611722C1
СПОСОБ ИЗГОТОВЛЕНИЯ ХЕМОРЕЗИСТОРА НА ОСНОВЕ НАНОСТРУКТУР ОКСИДА НИКЕЛЯ ЭЛЕКТРОХИМИЧЕСКИМ МЕТОДОМ 2018
  • Соломатин Максим Андреевич
  • Сысоев Виктор Владимирович
  • Федоров Федор Сергеевич
RU2682575C1
КОМПОЗИТНЫЙ КАТАЛИЗАТОР И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2015
  • Дай Вэй
  • Лю Сюлян
  • Цзян Хайбинь
  • Ван Гоцин
  • Чжан Сяохун
  • Пэн Хуэй
  • Цяо Цзиньлян
RU2677479C2
ЭЛЕКТРОХИМИЧЕСКИЙ КОНДЕНСАТОР 2004
  • Варакин Игорь Николаевич
  • Кильганова Екатерина Алексеевна
  • Менухов Владимир Васильевич
  • Разумов Сергей Николаевич
  • Самитин Виктор Васильевич
  • Тарасов Сергей Владимирович
RU2296383C2
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОСТРУКТУР ИЗ ОРГАНИЧЕСКОГО СОЕДИНЕНИЯ И МЕТАЛЛСОДЕРЖАЩИХ ВЕЩЕСТВ 2006
  • Кодолов Владимир Иванович
  • Кодолова Вера Владимировна
  • Семакина Надежда Владимировна
  • Волкова Елена Григорьевна
  • Макарова Людмила Григорьевна
  • Яковлев Григорий Иванович
RU2337062C2
СПОСОБ ИЗГОТОВЛЕНИЯ НЕПОЛЯРИЗУЕМОГО ЭЛЕКТРОДА ЭЛЕКТРОХИМИЧЕСКОГО КОНДЕНСАТОРА 2020
  • Архипенко Владимир Александрович
  • Иванов Владимир Михайлович
  • Ермакова Елена Николаевна
  • Евсеева Надежда Викторовна
  • Жукалина Елена Павловна
  • Воронина Анна Геннадьевна
RU2744516C1
СПОСОБ ИЗГОТОВЛЕНИЯ НЕПОЛЯРИЗУЕМОГО ЭЛЕКТРОДА ДЛЯ ЭЛЕКТРОХИМИЧЕСКОГО КОНДЕНСАТОРА 2003
  • Разумов С.Н.
  • Варакин И.Н.
  • Кильганова Е.А.
  • Степанов А.Б.
RU2254641C2
НОВЫЙ СПОСОБ ПРОИЗВОДСТВА ВЫСОКОУГЛЕРОДИСТЫХ МАТЕРИАЛОВ И ПОЛУЧЕННЫЕ ВЫСОКОУГЛЕРОДИСТЫЕ МАТЕРИАЛЫ 2017
  • Корженко, Александр
  • Меркаде, Селья
RU2765203C2

Реферат патента 2021 года СПОСОБ ИЗГОТОВЛЕНИЯ КОЛЛЕКТОРА ТОКА ДЛЯ ЭЛЕКТРОХИМИЧЕСКИХ КОНДЕНСАТОРОВ

Изобретение относится к области электротехники, а именно к электрохимическим конденсаторам, и может быть использовано в качестве коллектора тока поляризуемого электрода в электродном узле электрохимического конденсатора со щелочным электролитом. Способ изготовления коллектора тока включает контактирование углеродсодержащего прекурсора с металлсодержащим субстратом и последующее нагревание продукта контактирования в инертной и практически лишенной кислорода атмосфере с восстановлением по меньшей мере части субстрата, в качестве металлсодержащего субстрата используют никелевую ленту с окисленной поверхностью, а углеродсодержащего прекурсора - природный газ, металлсодержащий субстрат получают окислением никелевой ленты в печи в кислородсодержащей атмосфере при температуре 895-905°С в течение 3 минут, металлсодержащий субстрат контактирует с углеродсодержащим прекурсором, природным газом при температуре 895-905°С в печи с атмосферой природного газа в течение 2 минут с восстановлением до металлического никеля и образованием никель-углеродного композита, полученный продукт охлаждают на воздухе. Техническим результатом изобретения является сохранение низкого контактного сопротивления коллектора тока электрохимического конденсатора со щелочным электролитом в процессе его циклирования за счет карбонизации поверхности подложки. 1 пр.

Формула изобретения RU 2 744 480 C1

Способ изготовления коллектора тока, включающий контактирование углеродсодержащего прекурсора с металлсодержащим субстратом и последующее нагревание продукта контактирования в инертной и практически лишенной кислорода атмосфере с восстановлением по меньшей мере части субстрата, отличающийся тем, что металлсодержащим субстратом является никелевая лента с окисленной поверхностью, а углеродсодержащим прекурсором является природный газ, металлсодержащий субстрат получают окислением никелевой ленты в печи в кислородсодержащей атмосфере при температуре 895-905°С в течение 3 минут, металлсодержащий субстрат контактирует с углеродсодержащим прекурсором, природным газом при температуре 895-905°С в печи с атмосферой природного газа в течение 2 минут с восстановлением до металлического никеля и образованием никель-углеродного композита, полученный продукт охлаждают на воздухе.

Документы, цитированные в отчете о поиске Патент 2021 года RU2744480C1

СПОСОБ ПОДГОТОВКИ УГОЛЬНОЙ ШИХТЫ ДЛЯ КОКСОВАНИЯ 2012
  • Гилязетдинов Рашит Равильевич
  • Сухов Игорь Юрьевич
RU2550874C2
CN 105006376 A, 28.10.2015
CN 109256280 A, 22.01.2019
СПОСОБ ПОЛУЧЕНИЯ НАНОСТРУКТУРИРОВАННОГО УГЛЕРОДНОГО МАТЕРИАЛА С ВЫСОКОЙ УДЕЛЬНОЙ ПОВЕРХНОСТЬЮ И МИКРОПОРИСТОСТЬЮ 2006
  • Яковлев Вадим Анатольевич
  • Елецкий Петр Михайлович
  • Пармон Валентин Николаевич
RU2311227C1
JP 2004284921 A, 14.10.2004
ПОРИСТАЯ ОСНОВА ЭЛЕКТРОДА ЩЕЛОЧНОГО АККУМУЛЯТОРА И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ 1995
  • Григорьева Л.К.
  • Павлов А.П.
  • Чижик С.П.
RU2098894C1
JP H0967112 A,11.03.1997
Способ получения пористых материалов 1978
  • Кусаев Юрий Ильич
  • Смирнов Николай Валентинович
  • Копецкий Вячеслав Васильевич
  • Николаев Рудольф Константинович
SU1131530A1

RU 2 744 480 C1

Авторы

Архипенко Владимир Александрович

Иванов Владимир Михайлович

Воронина Анна Геннадьевна

Даты

2021-03-10Публикация

2020-03-05Подача