СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА ГЛУБОКОГО ОКИСЛЕНИЯ И СПОСОБ КАТАЛИТИЧЕСКОГО СЖИГАНИЯ ИЛОВОГО ОСАДКА КОММУНАЛЬНЫХ ОЧИСТНЫХ СООРУЖЕНИЙ Российский патент 2021 года по МПК B01J23/34 B01J23/72 B01J23/745 B01J23/75 B01J23/86 B01J37/08 B01J37/32 B01D53/62 B01D53/72 B01D53/94 

Описание патента на изобретение RU2750802C1

Изобретение относится к области разработки способов приготовления катализаторов глубокого окисления СО и органических веществ и способам сжигания иловых осадков коммунальных очистных сооружений.

Известен катализатор сжигания топлива (SU 1216862, B01J 23/26, 23.12.1991), представляющий собой оксид алюминия, содержащий хромит магния и оксид алюминия следующего состава: хромит магния 10-26 мас. %, оксид алюминия 74-90%. Данный катализатор обладает повышенной термостабильностью и износоустойчивостью, однако в некоторых технологических процессах с повышенными экологическими требованиями активности данного катализатора недостаточно для полного исключения эмиссии оксида углерода (Закономерности глубокого каталитического окисления некоторых классов органических соединений и развитие научных основ каталитического сжигания топлива в каталитических генераторах тепла: Дис. докт. хим. наук: 02.00.15 / Исмагилов З.Р. Ин-т катализа им. Г.К. Борескова СО РАН. - Новосибирск, 1988. - 502 с.).

Известен катализатор для сжигания топлива (SU 1295566, B01J 23/86, 18.06.1985), представляющий собой оксид алюминия, содержащий одновременно хромит медимагния общей формулы: Mg1-xCuxCr2O4, где х=0.08-0.40. Данный катализатор обладает повышенной термостабильностью, износоустойчивостью и активностью в окислении органических веществ и СО. В качестве носителя для данного катализатора используются сферические гранулы оксида алюминия, полученные по сложной многостадийной технологии методом жидкостного формования. В связи с этим возникает проблема высокой стоимости носителя и, соответственно, катализатора на его основе.

Наиболее близким к заявленному по технической сущности и достигаемому эффекту является способ приготовления катализатора глубокого окисления (RU 2591955, B01J 37/02, 20.07.2016). Оксидный носитель пропитывают солями переходных металлов, затем сушат и прокаливают. Катализатор, полученный данным способом, содержит в качестве активного компонента оксиды переходных металлов или их смеси, нанесенные на оксидный носитель. При этом в качестве оксидного носителя он содержит гранулы пропанта, состоящего из кварца и силикатов магния, или его модификаций. Предлагаемый катализатор обладает высокой активностью и высокой механической прочностью. Однако из-за не высокой удельной поверхности оксидного носителя - модифицированного пропанта, его активность оказалось недостаточной, чтобы эффективно и экологически безопасно реализовать процесс сжигания иловых осадков в кипящем слое катализатора.

Задача, решаемая настоящим изобретением, состоит в разработке способа приготовления катализатора, не уступающего по своей активности в процессе сжигания иловых осадков коммунальных очистных сооружений известным катализаторам глубокого окисления СО и органических веществ на основе оксидов переходных металлов.

Задача решается способом приготовления катализатора окисления CO и органических веществ, содержащего в качестве активного компонента оксиды переходных металлов или их смеси и оксидный носитель. Гранулы катализатора получают методом окатывания порошков активного компонента на основе оксидов переходных металлов или их смеси, с содержанием их не менее 50 мас. % (в пересчете на сухое вещество), гидроксида алюминия, кислоты пептизатора и воды, с последующей сушкой и прокаливанием. При этом получают сферический катализатор, содержащий в качестве оксидного носителя оксид алюминия в количестве не более 50 мас. %, а в качестве активного компонента Fe2O3 в количестве 48-75 мас.%, а также CuO и/или Mn2O3 и/или Co2O3 и/или Cr2O3 в количестве 2-10 мас.%.

В качестве кислоты пептизатора используют HNO3 и/или CH3COOH. Значение кислотного модуля в смеси составляет не более 0.01. Содержание воды в смеси составляет не более 20 мас.%.

Задача также решается способом сжигания илового осадка коммунальных очистных сооружений в кипящем слое катализатора, полученного предлагаемым способом.

Технический результат - высокая активность заявляемого катализатора глубокого окисления, приготовленного методом окатывания, влияющая на степень выгорания иловых осадков коммунальных очистных сооружений в процессе их сжигания и высокая механическая прочность катализатора в режиме кипящего слоя.

Сущность изобретения иллюстрируется следующими примерами.

Пример 1 (Прототип)

Гранулы пропанта диаметром 2-3 мм обрабатывают раствором КОН (мольная доля КОН в растворе составляет 40%) в течение 3 ч (при температуре, близкой к температуре кипения раствора), после охлаждения промывают дистиллированной водой до нейтрального рН и обрабатывают избытком 20% раствора азотной кислотой. Промывают дистиллированной водой до нейтрального рН, сушат при 110°C в течение 2 ч. Полученные гранулы носителя с удельной поверхностью 15 м2/г, состоящего по данным РФА из кварца SiO2 и силикатов магния (энстатита MgSiO3 и форстерита Mg2SiO4), содержащего SiO2 50 мас. %, MgO 31 мас. %, пропитывают раствором бихромата меди, сушат при 100°C в течение 3 ч и прокаливают при 600°C в течение 4 ч. Содержание активного компонента CuCr2O4 - 6 мас. %.

В качестве меры каталитической активности катализаторов в процессе сжигания иловых осадков коммунальных очистных сооружений была выбрана степень выгорания илового осадка в процессе сжигания. Испытания проводили в реакторе с кипящим слоем катализатора по методике, описанной в работе (Симонов А.Д., Чуб О.В., Языков Н.А. Каталитическое сжигание осадков сточных вод коммунального хозяйства. Химия в интересах устойчивого развития. 2010. Т.18. №6. С.749-753.).

На фигуре приведена принципиальная схема установки по каталитическому сжиганию в кипящем слое. Установка включает реактор 1, теплообменник 2, внешний электронагреватель 3, ротаметры 4, бункер с иловым осадком 5, транспортер 6, эжектор 7, циклон 8, емкость для сбора зольных остатков 9, регулировочные вентили 10.

Способ сжигания илового осадка коммунальных очистных сооружений осуществляли следующим образом.

В реактор 1 загружают 400 мл катализатора с размером частиц 1.5-2.0 мм. Диаметр реактора 40 мм, высота 1000 мм. С помощью внешнего электронагревателя 3 слой катализатора в реакторе разогревают до необходимой рабочей температуры 500-700°С. Затем через ротаметры 4 подают воздух под газораспределительную решетку для псевдоожижения слоя катализатора и на эжектор 7.Общий расход воздуха составляет 3 м3/ч. Осадок в количестве 360 г/ч из бункера 5 подают по транспортеру 6 в эжектор 7, далее с воздухом отходы поступают в нижнюю часть кипящего слоя катализатора. Избыточную теплоту, выделившуюся при сгорании отходов, отводят с помощью водоохлаждаемого теплообменника 2. Твердые продукты сгорания отходов отделяют от дымовых газов в циклоне 8 и собирают в емкости 9. Содержание влаги, летучих веществ и золы в исходном осадке и твердых продуктов сгорания определяют техническим анализом по ГОСТ 11014-2001, ГОСТ 6382-2001, ГОСТ 11022-95 соответственно. Степень выгорания горючей массы осадка определяют по формуле:

где A - зольность тверды продуктов сгорания, B - исходная зольность сухого осадка.

Активность катализатора в реакции окисления CO определяют на приборе «Хемосорб» импульсным методом по температуре 50% конверсии CO. Прочность гранул катализатора определяют с помощью прибора МП-9С как среднее значение 30 измерений.

Температура 50% конверсии CO составляет 225°C. Степень выгорания осадка 94.3 %. Механическая прочность составляет 49 МПа. Размер гранул 1,5±0,5 мм. Полученные гранулы катализатора обладают идеальной сферической формой.

Пример 2

Гидроксид алюминия типа псевдобемит, измельченный порошок активного компонента (нанокомпозит, полученный прокаливанием солей нитратов, с поверхностью не менее 10 м2/г, полученный по методике, описанной в работе (Fedorov A.V., Tsapina A.M., Bulavchenko O.A., Saraev A.A., Odegova G.V., Ermakov D.Y., Zubavichus Y.V., Yakovlev V.A., Kaichev V.V., Structure and Chemistry of Cu-Fe-Al Nanocomposite Catalysts for CO Oxidation, Catalysis Letters. 2018. - V.148., N12. - P.3715-3722. DOI: 10.1007/s10562-018-2539-5), воду и кислоту пептизатор перемешивают в тарельчатом грануляторе, окатывают, с получением сферических гранул катализатора. Величина кислотного модуля (мольное отношение кислоты к оксиду алюминия) составляет 0.005. Содержание воды в пластифицированной массе составляет 10 мас. %. Гранулы сушат на воздухе в течение 24 ч, при 110°С в течение 2 ч и прокаливают при 700°С в течение 1 ч. Полученный катализатор содержит 3.0 мас. % CuO, 50.0 мас. % Fe2O3 и 47.0 % Al2O3.

Температура 50% конверсии CO составляет 210°C. Степень выгорания осадка 98.2 %. Механическая прочность составляет 18 МПа. Размер гранул 3,0±2,1 мм. Полученные гранулы катализатора обладают идеальной сферической формой.

Пример 3

Аналогичен примеру 2.

Полученный катализатор содержит 75.0 мас. % Fe2O3 и 25.0 % Al2O3.

Температура 50% конверсии CO составляет 225°C. Степень выгорания осадка 97.8 %. Механическая прочность составляет 11 МПа. Размер гранул 2,8±1,8 мм. Полученные гранулы катализатора обладают идеальной сферической формой.

Пример 4

Аналогичен примеру 2.

Полученный катализатор содержит 5.0 мас. % Mn2O3, 60.0 мас. % Fe2O3 и 35.0 % Al2O3.

Температура 50% конверсии CO составляет 230°C. Степень выгорания осадка 98.1 %. Механическая прочность составляет 13 МПа. Размер гранул 2,5±1,7 мм. Полученные гранулы катализатора обладают идеальной сферической формой.

Пример 5

Аналогичен примеру 2.

Полученный катализатор содержит 4.5 мас. % Cr2O3, 60.0 мас. % Fe2O3 и 35.5 % Al2O3.

Температура 50% конверсии CO составляет 230°C. Степень выгорания осадка 98.0 %. Механическая прочность составляет 14 МПа. Размер гранул 3,2±2,0 мм. Полученные гранулы катализатора обладают идеальной сферической формой.

Пример 6

Аналогичен примеру 2.

Полученный катализатор содержит 4.0 мас. % Co2O3, 61.0 мас. % Fe2O3 и 35.0 % Al2O3.

Температура 50% конверсии CO составляет 205°C. Степень выгорания осадка 98.9 %. Механическая прочность составляет 12 МПа. Размер гранул 3,4±2,0 мм. Полученные гранулы катализатора обладают идеальной сферической формой.

Пример 7

Аналогичен примеру 2.

Полученный катализатор содержит 4.0 мас. % Co2O3, 6.0 мас. % CuO, 55.0 мас. % Fe2O3 и 35.0 % Al2O3.

Температура 50% конверсии CO составляет 185°C. Степень выгорания осадка 99.6 %. Механическая прочность составляет 14 МПа. Размер гранул 3,2±2,1 мм. Полученные гранулы катализатора обладают идеальной сферической формой.

Пример 8

Аналогичен примеру 2.

Полученный катализатор содержит 7.0 мас. % Mn2O3, 3.0 мас. % CuO, 52.0 мас. % Fe2O3 и 38.0 % Al2O3.

Температура 50% конверсии CO составляет 185°C. Степень выгорания осадка 99.0 %. Механическая прочность составляет 15 МПа. Размер гранул 3,5±2,2 мм. Полученные гранулы катализатора обладают идеальной сферической формой.

Пример 9

Аналогичен примеру 2.

Величина кислотного модуля составила 0.01.

Температура 50% конверсии CO составляет 210°C. Степень выгорания осадка 98.5 %. Механическая прочность составляет 13 МПа. Размер гранул 3,5±2,3 мм. Полученные гранулы катализатора обладают идеальной сферической формой.

Пример 10

Аналогичен примеру 2.

Величина кислотного модуля составила 0.0001.

Температура 50% конверсии CO составляет 215°C. Степень выгорания осадка 99.0 %. Механическая прочность составляет 15 МПа. Размер гранул 3,2±2,1 мм. Полученные гранулы катализатора обладают идеальной сферической формой.

Пример 11

Аналогичен примеру 9.

Вместо азотной кислоты HNO3 используют уксусную кислоту CH3COOH.

Температура 50% конверсии CO составляет 220°C. Степень выгорания осадка 98.6 %. Механическая прочность составляет 16 МПа. Размер гранул 3,5±2,2 мм. Полученные гранулы катализатора обладают идеальной сферической формой.

Пример 12

Аналогичен примеру 9.

Вместо азотной кислоты HNO3 используют смесь азотной и уксусной кислоты CH3COOH.

Температура 50% конверсии CO составляет 215°C. Степень выгорания осадка 98.5 %. Механическая прочность составляет 14 МПа. Размер гранул 3,4±2,0 мм. Полученные гранулы катализатора обладают идеальной сферической формой.

Пример 13

Аналогичен примеру 2.

Содержание воды в пластифицированной массе составляет 10 мас. %.

Температура 50% конверсии CO составляет 220°C. Степень выгорания осадка 98.4 %. Механическая прочность составляет 12 МПа. Размер гранул 3,0±2,1 мм. Полученные гранулы катализатора обладают идеальной сферической формой.

Пример 14

Аналогичен примеру 2.

Содержание воды в пластифицированной массе составляет 5 мас. %.

Температура 50% конверсии CO составляет 215°C. Степень выгорания осадка 98.3 %. Механическая прочность составляет 17 МПа. Размер гранул 3,5±2,5 мм. Полученные гранулы катализатора обладают идеальной сферической формой.

Сравнительные характеристики катализаторов глубокого окисления приведены в Таблице.

Таблица

Сравнительные характеристики катализаторов

Температура достижения 50 % конверсии СО, °C Степень выгорания осадка, % Прочность, МПа Размер гранул, мм Пример 1 225 94,3 49 1,5±0,5 Пример 2 210 98,2 18 3,0±2,1 Пример 3 225 97,8 11 2,8±1,8 Пример 4 230 98,1 13 2,5±1,7 Пример 5 230 98,0 14 3,2±2,0 Пример 6 205 98,9 12 3,4±2,0 Пример 7 185 99,6 14 3,2±2,1 Пример 8 185 99,0 15 3,5±2,2 Пример 9 210 98,5 13 3,5±2,3 Пример 10 215 99,0 15 3,2±2,1 Пример 11 220 98,6 16 3,5±2,2 Пример 12 215 98,5 14 3,4±2,0 Пример 13 220 98,4 12 3,0±2,1 Пример 14 215 98,3 17 3,5±2,5

Приведенные примеры показывают, что катализаторы глубокого окисления, приготовленные методом окатывания, по активности не уступают известным катализаторам глубокого окисления. При этом степень выгорания осадка при использовании заявляемых катализаторов превышает 97,8 %, что выше, чем у известных катализаторов (94,3 %). Катализаторы обладают высокой механической прочностью (≥11 МПа), которая удовлетворяет требованиям (10 МПа), предъявляемым к катализаторам глубокого окисления для кипящего слоя (Пармон В.Н., Симонов А.Д., Садыков В.А., Тихов С.Ф. Каталитическое сжигание: достижения и проблемы // Физика горения и взрыва. 2015. Т. 51. № 2. С. 5-13.).

Похожие патенты RU2750802C1

название год авторы номер документа
СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА ГЛУБОКОГО ОКИСЛЕНИЯ И СПОСОБ КАТАЛИТИЧЕСКОГО СЖИГАНИЯ ИЛОВОГО ОСАДКА КОММУНАЛЬНЫХ ОЧИСТНЫХ СООРУЖЕНИЙ 2020
  • Федоров Александр Викторович
  • Ермаков Дмитрий Юрьевич
  • Дубинин Юрий Владимирович
  • Языков Николай Алексеевич
  • Яковлев Вадим Анатольевич
RU2750799C1
СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА ГЛУБОКОГО ОКИСЛЕНИЯ И СПОСОБ КАТАЛИТИЧЕСКОГО СЖИГАНИЯ ИЛОВОГО ОСАДКА КОММУНАЛЬНЫХ ОЧИСТНЫХ СООРУЖЕНИЙ 2020
  • Федоров Александр Викторович
  • Ермаков Дмитрий Юрьевич
  • Дубинин Юрий Владимирович
  • Языков Николай Алексеевич
  • Яковлев Вадим Анатольевич
RU2750800C1
КАТАЛИЗАТОР ГЛУБОКОГО ОКИСЛЕНИЯ И СПОСОБ КАТАЛИТИЧЕСКОГО СЖИГАНИЯ ИЛОВОГО ОСАДКА КОММУНАЛЬНЫХ ОЧИСТНЫХ СООРУЖЕНИЙ 2020
  • Федоров Александр Викторович
  • Ермаков Дмитрий Юрьевич
  • Дубинин Юрий Владимирович
  • Языков Николай Алексеевич
  • Яковлев Вадим Анатольевич
RU2750801C1
КАТАЛИТИЧЕСКИЙ РЕАКТОР ДЛЯ УТИЛИЗАЦИИ ОСАДКОВ СТОЧНЫХ ВОД КОММУНАЛЬНЫХ ОЧИСТНЫХ СООРУЖЕНИЙ И СПОСОБ ОСУЩЕСТВЛЕНИЯ УТИЛИЗАЦИИ 2020
  • Бухтияров Валерий Иванович
  • Дубинин Юрий Владимирович
  • Леонова Анна Александровна
  • Михальков Антон Юрьевич
  • Федоров Игорь Анатольевич
  • Шелест Сергей Николаевич
  • Яковлев Вадим Анатольевич
RU2752476C1
Установка для каталитического сжигания топлива в виде осадков сточных вод коммунальных очистных сооружений и способ его сжигания 2020
  • Бухтияров Валерий Иванович
  • Дубинин Юрий Владимирович
  • Леонова Анна Александровна
  • Михальков Антон Юрьевич
  • Федоров Игорь Анатольевич
  • Шелест Сергей Николаевич
  • Яковлев Вадим Анатольевич
RU2749063C1
СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА ГЛУБОКОГО ОКИСЛЕНИЯ 2015
  • Федоров Александр Викторович
  • Ермаков Дмитрий Юрьевич
  • Яковлев Вадим Анатольевич
  • Языков Николай Алексеевич
  • Симонов Александр Дмитриевич
  • Пармон Валентин Николаевич
RU2591955C1
КАТАЛИЗАТОР ГЛУБОКОГО ОКИСЛЕНИЯ 2015
  • Федоров Александр Викторович
  • Языков Николай Алексеевич
  • Яковлев Вадим Анатольевич
  • Ермаков Дмитрий Юрьевич
  • Симонов Александр Дмитриевич
  • Пармон Валентин Николаевич
RU2577253C1
Катализатор для риформинга бензиновых фракций, способ его получения и применение катализатора 2018
  • Степанов Виктор Георгиевич
  • Воробьев Юрий Константинович
  • Нуднова Евгения Александровна
  • Синкевич Павел Леонидович
RU2675629C1
КАТАЛИТИЧЕСКИЙ РЕАКТОР ДЛЯ ПЕРЕРАБОТКИ ОСАДКОВ СТОЧНЫХ ВОД И СПОСОБ ИХ ПЕРЕРАБОТКИ (ВАРИАНТЫ) 2010
  • Симонов Александр Дмитриевич
  • Пармон Валентин Николаевич
  • Яковлев Вадим Анатольевич
  • Языков Николай Алексеевич
RU2456248C1
КАТАЛИЗАТОР, СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ И СПОСОБ ФТОРИРОВАНИЯ ГАЛОГЕНИРОВАННЫХ УГЛЕВОДОРОДОВ 2009
  • Симонова Людмила Григорьевна
  • Решетников Сергей Иванович
  • Зирка Александр Анатольевич
  • Глазырин Алексей Владимирович
  • Харина Ирина Валерьевна
  • Исупова Любовь Александровна
  • Булгакова Юния Олеговна
  • Кругляков Василий Юрьевич
  • Пармон Валентин Николаевич
  • Трукшин Игорь Георгиевич
  • Козлова Ольга Викторовна
RU2402378C1

Иллюстрации к изобретению RU 2 750 802 C1

Реферат патента 2021 года СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА ГЛУБОКОГО ОКИСЛЕНИЯ И СПОСОБ КАТАЛИТИЧЕСКОГО СЖИГАНИЯ ИЛОВОГО ОСАДКА КОММУНАЛЬНЫХ ОЧИСТНЫХ СООРУЖЕНИЙ

Предложен способ приготовления катализатора для сжигания илового осадка коммунальных очистных сооружений, содержащего в качестве активного компонента оксиды переходных металлов или их смеси и оксидный носитель, характеризующийся тем, что гранулы катализатора получают методом окатывания порошков активного компонента на основе оксидов переходных металлов или их смеси с содержанием их не менее 50 мас.%, гидроксида алюминия, кислоты пептизатора и воды, где в качестве кислоты пептизатора используют HNO3 и/или CH3COOH, с последующей сушкой и прокаливанием, при этом получают сферический катализатор, содержащий в качестве оксидного носителя оксид алюминия в количестве не более 50 мас.%, а в качестве активного компонента Fe2O3 в количестве 48-75 мас.%, а также CuO, и/или Mn2O3, и/или Co2O3, и/или Cr2O3 в количестве 2-10 мас.%. Также предложен способ сжигания илового осадка коммунальных очистных сооружений в кипящем слое катализатора, полученного способом, описанным выше. Технический результат - высокая активность заявляемого катализатора глубокого окисления, приготовленного методом окатывания, влияющая на степень выгорания иловых осадков коммунальных очистных сооружений в процессе их сжигания, и высокая механическая прочность катализатора в режиме кипящего слоя. 2 н. и 2 з.п. ф-лы, 14 пр., 1 табл., 1 ил.

Формула изобретения RU 2 750 802 C1

1. Способ приготовления катализатора для сжигания илового осадка коммунальных очистных сооружений, содержащего в качестве активного компонента оксиды переходных металлов или их смеси и оксидный носитель, характеризующийся тем, что гранулы катализатора получают методом окатывания порошков активного компонента на основе оксидов переходных металлов или их смеси с содержанием их не менее 50 мас.%, гидроксида алюминия, кислоты пептизатора и воды, где в качестве кислоты пептизатора используют HNO3 и/или CH3COOH, с последующей сушкой и прокаливанием, при этом получают сферический катализатор, содержащий в качестве оксидного носителя оксид алюминия в количестве не более 50 мас.%, а в качестве активного компонента Fe2O3 в количестве 48-75 мас.%, а также CuO, и/или Mn2O3, и/или Co2O3, и/или Cr2O3 в количестве 2-10 мас.%.

2. Способ по п. 1, отличающийся тем, что значение кислотного модуля в смеси составляет не более 0.01.

3. Способ по п. 1, отличающийся тем, что содержание воды в смеси составляет не более 20 мас.%.

4. Способ сжигания илового осадка коммунальных очистных сооружений в кипящем слое катализатора, полученного способом по пп.1 - 3.

Документы, цитированные в отчете о поиске Патент 2021 года RU2750802C1

СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ДЛЯ ГЛУБОКОГО ОКИСЛЕНИЯ CO И УГЛЕВОДОРОДОВ И КАТАЛИЗАТОР, ПОЛУЧЕННЫЙ ЭТИМ СПОСОБОМ 2010
  • Санин Владимир Николаевич
  • Борщ Вячеслав Николаевич
  • Андреев Дмитрий Евгеньевич
  • Пугачева Елена Викторовна
  • Юхвид Владимир Исаакович
  • Гривва Юрий Николаевич
  • Петров Дмитрий Владимирович
RU2434678C1
Способ получения сферического катализатора для окисления окиси углерода и углеводородов 1981
  • Сычев Максим Максимович
  • Мухленов Иван Петрович
  • Власов Евгений Александрович
  • Заескова Ольга Леонидовна
  • Туболкин Александр Федорович
  • Козлов Александр Иванович
  • Дерюжкина Валентина Ивановна
  • Пяртман Андрей Константинович
  • Ларина Антонина Петровна
  • Прохорова Елена Александровна
SU988329A1
КАТАЛИЗАТОР ДЛЯ ГЛУБОКОГО ОКИСЛЕНИЯ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ И ОКСИДА УГЛЕРОДА В ГАЗОВЫХ ВЫБРОСАХ И СПОСОБ ЕГО ПОЛУЧЕНИЯ (ВАРИАНТЫ) 2001
  • Мулина Т.В.
  • Борисова Т.В.
  • Мельникова О.М.
  • Акимов В.М.
RU2188707C1
JP 2001220108 A, 14.08.2001.

RU 2 750 802 C1

Авторы

Федоров Александр Викторович

Ермаков Дмитрий Юрьевич

Дубинин Юрий Владимирович

Языков Николай Алексеевич

Яковлев Вадим Анатольевич

Даты

2021-07-02Публикация

2020-09-25Подача