ЛИТОЙ КОРПУС СЦЕПКИ ЖЕЛЕЗНОДОРОЖНОГО ПОДВИЖНОГО СОСТАВА Российский патент 2021 года по МПК C22C38/46 C21D9/00 

Описание патента на изобретение RU2755711C1

Изобретение относится к области металлургии и может быть использовано для изготовления литых корпусов сцепок железнодорожного подвижного состава из легированной стали класса Е, отвечающей требованиям спецификации М-201 стандарта AAR (Ассоциации Американских Железных Дорог).

Согласно требованиям спецификации М-201 стандарта AAR, сталь класса Е имеет следующий химический состав с верхними границами диапазонов значений, мас.%: C ≤ 0,32; Si ≤ 1,50; Mn ≤ 1,85; S ≤ 0,040; P ≤ 0,040. Содержание других элементов производители задают, исходя из требуемых механических свойств изготавливаемых литых деталей. Углеродный эквивалент (СЕ) каждой конкретной плавки по результатам анализа ковшевой пробы стали класса Е рассчитывают по формуле:

СЕ = C + (Mn + Si)/6 + (Cr + Mo + V)/5 + (Ni + Cu)/15 ≤ 0,88.

Известен литой корпус сцепки, включающий в себя соединительную голову для размещения механизма сцепления и хвостовик, присоединяющий соединительную голову к железнодорожному вагону, на котором установлена соединительная голова, при этом корпус сцепки изготовлен из стали, предназначенной для изготовления деталей железнодорожного подвижного состава (см. US4595109A, 1986-06-17).

Техническая проблема, которая не решается известным техническим решением, заключается в том, что литые корпуса сцепок, являющиеся массивными деталями с толстыми стенками, имеют недостаточно высокий уровень прочности. Обусловлена указанная техническая проблема изготовлением корпусов литых сцепок из известной стали и выполнением известных операций термической обработки (закалки с отпуском). К упомянутым массивным деталям относятся крупногабаритные детали или детали с толстыми стенками, какими являются литые корпуса сцепных устройств железнодорожного подвижного состава.

Технический результат, достигаемый при осуществлении изобретения, заключается в повышении прочности литого корпуса сцепки, изготовленного из стали класса Е и подвергнутого термической обработке, при обеспечении характеристик пластичности (относительное удлинение и сужение) и вязкости (работа удара), требуемых стандартом AAR.

Достигается указанный технический результат за счёт того, что литой корпус сцепки железнодорожного подвижного состава, изготовленный из стали и включающий в себя голову для размещения механизма сцепления и хвостовик для присоединения головы к железнодорожному вагону, согласно изобретению, изготовлен из стали, содержащей следующие компоненты, мас.%: углерод от 0,25 до 0,30, кремний от 0,15 до 0,40, марганец от 1,00 до 1,25, сера не более 0,025, фосфор не более 0,025, хром от 0,40 до 0,60, никель от 0,40 до 0,70, медь не более 0,30, молибден от 0,20 до 0,30, ванадий не более 0,04, алюминий Al от 0,02 до 0,06, при этом после термической обработки, включающей в себя закалку с температуры в диапазоне 890-940 °С с последующим высоким отпуском при температуре в диапазоне 620-700°С, он имеет ударную вязкость при температуре минус 40°С не менее 27 Дж, предел текучести не менее 700 МПа, временное сопротивление не менее 840 МПа, относительное удлинение не менее 14%, относительное сужение не менее 30% и твёрдость от 241 до 311 HB.

При этом литой корпус сцепки изготовлен из стали, химический состав которой по результатам анализа ковшевой пробы удовлетворяет условию:

C + (Mn + Si)/6 + (Cr + Mo + V)/5 + (Ni + Cu)/15 ≤ 0,88,

где C, Mn, Si, Cr, Mo, V, Ni, Cu означает содержание углерода, марганца, кремния, хрома, молибдена, ванадия, никеля и меди в процентах по массе.

Количественное содержание указанных легирующих элементов и их соотношение выбраны таким образом, чтобы после объёмной закалки с отпуском предлагаемая сталь обеспечивала более высокий по сравнению с требуемым стандартом AAR уровень прочностных механических характеристик корпуса сцепки, поглощающего аппарата и других деталей сцепных устройств железнодорожного подвижного состава.

Увеличение содержания хрома, никеля и молибдена, а также введение ванадия увеличивает устойчивость аустенита, что приводит к увеличению прокаливаемости стали (образованию структуры закалки на большей глубине относительно поверхности детали). Более глубокое проникновение структуры закалки (мартенсита) в тело детали позволяет получить после отпуска более высокую прочность.

Как правило, при увеличении прочности снижается пластичность и вязкость. Для того, чтобы компенсировать это снижение, предусмотрено снижение содержания углерода, ужесточение требований к вредным примесям и увеличение содержания хрома, никеля и молибдена относительно наиболее близкого аналога, что способствует увеличению характеристик пластичности (относительное удлинение и сужение) и вязкости (работа удара) стали.

Термическая обработка включает в себя закалку с температуры в диапазоне 890-940 °С и последующий высокий отпуск при температуре в диапазоне 620-700°С.

В результате изготовления из предлагаемого химического состава стали и применения указанных режимов термической обработки литой корпус сцепки приобретает механические характеристики, представленные в таблице.

Таблица

Сталь класса Е Предел текучести, МПа Временное сопротивление, МПа Относительное удлинение, % Относительное сужение, % KV-40, Дж Твёрдость, HB Сталь по стандарту AAR ≥ 690 ≥ 830 ≥ 14 ≥ 30 ≥ 27 241-311 Предлагаемая сталь ≥ 700 ≥ 840 ≥ 14 ≥ 30 ≥ 27 241-311

Как видно из таблицы, предлагаемые химический состав легированной стали класса Е и режимы термической обработки позволяют обеспечить литому корпусу сцепки железнодорожного подвижного состава запас прочностных характеристик, превышающий минимальные требования спецификации М-201 стандарта AAR.

Похожие патенты RU2755711C1

название год авторы номер документа
ЛЕГИРОВАННАЯ СТАЛЬ, ПРИМЕНЯЕМАЯ ПРИ ИЗГОТОВЛЕНИИ СЦЕПНЫХ УСТРОЙСТВ ЖЕЛЕЗНОДОРОЖНОГО ПОДВИЖНОГО СОСТАВА 2020
  • Мун, Хён-Шек
  • Пак, Чон-Чжун
  • Ли, Сан-Гын
RU2819029C1
СТАЛЬ ДЛЯ ИЗГОТОВЛЕНИЯ ЛИТЫХ ДЕТАЛЕЙ ЖЕЛЕЗНОДОРОЖНОГО ПОДВИЖНОГО СОСТАВА И ЛИТОЙ КОРПУС СЦЕПКИ ИЗ СТАЛИ 2020
  • Безобразов Юрий Алексеевич
  • Бройтман Олег Аркадьевич
  • Терентьев Максим Игоревич
  • Ляшкевич Дмитрий Вячеславович
RU2762502C1
Сталь и цельнокатаное колесо, изготовленное из неё 2016
  • Филиппов Георгий Анатольевич
  • Изотов Владимир Ильич
  • Яндимиров Александр Арсентьевич
  • Павлова Наталья Владимировна
  • Васенина Елена Маратовна
  • Седышев Александр Игоревич
RU2615425C1
ЭКОНОМНОЛЕГИРОВАННАЯ ХЛАДОСТОЙКАЯ ВЫСОКОПРОЧНАЯ СТАЛЬ 2017
  • Ильин Алексей Витальевич
  • Цуканов Виктор Владимирович
  • Цыганко Людмила Константиновна
  • Зиза Алексей Игоревич
  • Казанцев Евгений Сергеевич
  • Милейковский Андрей Борисович
RU2680557C1
СТАЛЬ СРЕДНЕУГЛЕРОДИСТАЯ, НИЗКОЛЕГИРОВАННАЯ ДЛЯ ИЗГОТОВЛЕНИЯ КОРПУСОВ ПОГЛОЩАЮЩЕГО АППАРАТА, СЦЕПНОГО И АВТОСЦЕПНОГО УСТРОЙСТВ ЖЕЛЕЗНОДОРОЖНОГО ПОДВИЖНОГО СОСТАВА 2021
  • Андреев Александр Александрович
RU2796884C1
Высокопрочная коррозионно-стойкая бесшовная труба из нефтепромыслового сортамента и способ ее получения 2019
  • Александров Сергей Владимирович
  • Лаев Константин Анатольевич
  • Щербаков Игорь Викторович
  • Девятерикова Наталья Анатольевна
  • Ошурков Георгий Леонидович
  • Харлашин Александр Николаевич
RU2719212C1
СТАЛЬ ДЛЯ КОРПУСНЫХ КОНСТРУКЦИЙ АТОМНЫХ ЭНЕРГОУСТАНОВОК 2010
  • Карзов Георгий Павлович
  • Теплухина Ирина Владимировна
  • Грекова Ирина Ивановна
  • Бурочкина Ирина Михайловна
  • Савельева Ирина Геннадьевна
RU2448196C2
ЛИТАЯ ИЗНОСОСТОЙКАЯ СТАЛЬ ДЛЯ КРУПНЫХ ДЕТАЛЕЙ ГОРНО-МЕТАЛЛУРГИЧЕСКОГО ПРОИЗВОДСТВА 2004
  • Стадничук Александр Викторович
  • Стадничук Виктор Иванович
  • Меркер Эдуард Эдгарович
RU2288294C2
СТАЛЬ 1992
  • Шадхин Б.М.
  • Якубенко В.И.
  • Сидоров Л.В.
  • Грибов Л.Г.
  • Павлов И.Н.
  • Луцков В.С.
  • Двухглавов В.А.
  • Берштейн Л.И.
  • Щербаков В.Ю.
  • Пейрик Х.И.
  • Косарев Л.Н.
  • Гудков В.С.
RU2040580C1
СТАЛЬ ДЛЯ ИЗГОТОВЛЕНИЯ ЖЕЛЕЗНОДОРОЖНЫХ КОЛЁС 2016
  • Безобразов Юрий Алексеевич
  • Бройтман Олег Аркадьевич
  • Терентьев Максим Игоревич
  • Орлова Анна Михайловна
  • Кякк Кирилл Вальтерович
  • Савушкин Роман Александрович
RU2618033C1

Реферат патента 2021 года ЛИТОЙ КОРПУС СЦЕПКИ ЖЕЛЕЗНОДОРОЖНОГО ПОДВИЖНОГО СОСТАВА

Изобретение относится к области металлургии и может быть использовано для изготовления деталей железнодорожного подвижного состава, в частности литых корпусов сцепок, из легированной стали класса Е, отвечающей требованиям спецификации М-201 стандарта AAR. Литой корпус сцепки включает в себя голову для размещения механизма сцепления и хвостовик для присоединения головы к железнодорожному вагону. Корпус изготовлен из стали, содержащей следующие компоненты, мас.%: углерод от 0,25 до 0,30, кремний от 0,15 до 0,40, марганец от 1,00 до 1,25, сера не более 0,025, фосфор не более 0,025, хром от 0,40 до 0,60, никель от 0,40 до 0,70, медь не более 0,30, молибден от 0,20 до 0,30, ванадий не более 0,04, алюминий от 0,02 до 0,06, остальное – железо. После термической обработки, включающей в себя закалку с температуры в диапазоне 890-940°С с последующим высоким отпуском при температуре в диапазоне 620-700°С, корпус имеет ударную вязкость при температуре минус 40°С не менее 27 Дж, предел текучести не менее 700 МПа, временное сопротивление не менее 840 МПа, относительное удлинение не менее 14%, относительное сужение не менее 30% и твёрдость от 241 до 311 HB. 1 з.п. ф-лы, 1 табл.

Формула изобретения RU 2 755 711 C1

1. Литой корпус сцепки железнодорожного подвижного состава, изготовленный из стали и включающий в себя голову для размещения механизма сцепления и хвостовик для присоединения головы к железнодорожному вагону, отличающийся тем, что он изготовлен из стали, содержащей следующие компоненты, мас.%: углерод от 0,25 до 0,30, кремний от 0,15 до 0,40, марганец от 1,00 до 1,25, сера не более 0,025, фосфор не более 0,025, хром от 0,40 до 0,60, никель от 0,40 до 0,70, медь не более 0,30, молибден от 0,20 до 0,30, ванадий не более 0,04, алюминий от 0,02 до 0,06, при этом после термической обработки, включающей в себя закалку с температуры в диапазоне 890-940°С с последующим высоким отпуском при температуре в диапазоне 620-700°С, он имеет ударную вязкость при температуре минус 40°С не менее 27 Дж, предел текучести не менее 700 МПа, временное сопротивление не менее 840 МПа, относительное удлинение не менее 14%, относительное сужение не менее 30% и твёрдость от 241 до 311 HB.

2. Литой корпус сцепки по п.1, отличающийся тем, что он изготовлен из стали, химический состав которой по результатам анализа ковшевой пробы удовлетворяет условию:

C + (Mn + Si)/6 + (Cr + Mo + V)/5 + (Ni + Cu)/15 ≤ 0,88,

где C, Mn, Si, Cr, Mo, V, Ni, Cu означает содержание углерода, марганца, кремния, хрома, молибдена, ванадия, никеля и меди в процентах по массе.

Документы, цитированные в отчете о поиске Патент 2021 года RU2755711C1

СТАЛЬ 1992
  • Шадхин Б.М.
  • Якубенко В.И.
  • Сидоров Л.В.
  • Грибов Л.Г.
  • Павлов И.Н.
  • Луцков В.С.
  • Двухглавов В.А.
  • Берштейн Л.И.
  • Щербаков В.Ю.
  • Пейрик Х.И.
  • Косарев Л.Н.
  • Гудков В.С.
RU2040580C1
CN 106086674 A, 09.11.2016
CN 106011668 A, 12.10.2016
US 10415108 B2, 17.09.2019
US 10400296 B2, 03.09.2019
Приспособление для устройства снежноколейных дорог 1930
  • Лобыничев И.М.
SU22703A1
Общие технические условия
М.: Стандартинформ, 2013, сталь 20Г1ФЛ.

RU 2 755 711 C1

Авторы

Терентьев Максим Игоревич

Бройтман Олег Аркадьевич

Безобразов Юрий Алексеевич

Ляшкевич Дмитрий Вячеславович

Даты

2021-09-20Публикация

2020-08-27Подача