Опора тигля для выращивания кристаллов Российский патент 2021 года по МПК C30B35/00 C30B29/64 C30B13/00 C30B29/48 

Описание патента на изобретение RU2759623C1

Изобретение относится к устройствам для выращивания кристаллов из расплава.

В установках для выращивания кристаллов из расплава под давлением инертного газа с применением методов, предусматривающих перемещение тигля через неподвижно закрепленный нагреватель, опорой тигля обычно служит шток. Общие недостатки таких устройств - обдув тигля конвективным потоком инертного газа, оказывающий негативное влияние на тепловые условия в расплаве и растущем кристалле, а также невозможность регулировать теплоотвод от дна тигля. Особенно существенно проявляются эти недостатки при выращивании кристаллов прямоугольной формы, например, как описано в [Н.Н. Колесников, А.С. Кожевников. Способ получения кристаллических пластин селенида цинка. Патент РФ на изобретение №1808888], так как тепловые условия в области тигля прямоугольной формы существенно сложнее, чем в случае получения цилиндрических кристаллов.

Известна опора тигля [Liu Hongzhen, Mei Jingjing, Shi Linlin, Wang Dengkui, Wang Fei, Wang Yunpeng, Zhao Bin, Zhao Dongxu, Zhao Xin. Chromium-doped zinc selenide monocrystal Bridgman growth device and method. Патент CN104532353A] - прототип. В защищенном этим патентом устройстве цилиндрический тигель опирается на шток, диаметр которого меньше диаметра тигля. Недостаток такой конструкции состоит в том, что она не предотвращает обдув тигля конвективным потоком инертного газа, оказывающий негативное влияние на тепловые условия в расплаве и растущем кристалле, а также не предусматривает возможность регулировать теплоотвод от дна тигля.

Задачей настоящего изобретения является создание опоры тигля для выращивания кристаллов прямоугольной формы, позволяющей экспериментально подбирать условия для управления теплоотводом от дна тигля и уменьшения обдува тигля конвективным потоком инертного газа.

Поставленная задача решается тем, что опора тигля выполнена в виде прямоугольного в поперечном сечении корпуса, имеющего сквозные пазы в которые вставлены прямоугольные пластины, причем количество пластин и их взаимное расположение в корпусе можно изменять.

Пример исполнения такой опоры тигля показан на Фиг. 1, где опора изображена в сборе, а 1 - корпус, 2 и 3 - прямоугольные пластины, 4 - сквозные пазы, 5 - посадка для установки опоры на шток, 6 - посадка для установки тигля на опору. Дополнительно конструкция опоры иллюстрируется чертежами:

- Фиг. 2, где показан вид сверху опоры в сборе, представленной на Фиг. 1;

- Фиг. 3, где показан вид снизу опоры в сборе, представленной на Фиг. 1;

- Фиг. 4, где отдельно показан корпус опоры;

- Фиг. 5, где отдельно показаны прямоугольные пластины.

Предлагаемая опора тигля работает следующим образом.

В пазы 4 корпуса опоры 1 устанавливается требуемое для конкретного процесса количество пластин 2 и 3. Опора тигля устанавливается на шток установки для выращивания кристаллов посредством посадки 5, форма и размеры которой определяются конструкцией штока. В посадке 6 корпуса опоры тигля устанавливается тигель. Форма и размеры посадки 6 определяются конструкцией тигля. Затем проводится процесс выращивания кристалла. На фотографии Фиг. 6 показана кристаллическая лента селенида цинка, выращенная методом вертикальной зонной плавки под давлением аргона с применением предлагаемой опоры тигля.

В ходе процесса выращивания кристалла пластины 2 и 3, установленные в пазы 4 корпуса опоры тигля 1 экранируют дно тигля от обдува конвективным потоком инертного газа. Пластины также позволяют подобрать условия теплоотвода от дна тигля, требуемые в конкретном ростовом процессе.

Количество пазов 4 в корпусе опоры тигля 1, количество и порядок расположения пластин 2 и 3 в корпусе 4 определяются требованиями конкретных процессов выращивания и подбираются экспериментально. Например, кристаллическая лента ZnSe, показанная на Фиг. 6, выращена с опорой тигля, показанной на Фиг. 1, то есть имеющей в корпусе семь пар пазов, в которые было установлено 4 пластины 2 и две пластины 3, их взаимное расположение показано на Фиг. 1.

Материал опоры тигля может быть выбран в зависимости от свойств соединения, кристалл которого выращивается. Например, для ZnS, CdS, ZnSe, имеющих высокие температуры плавления, учитывая химическую агрессивность расплавов и паров, можно выбрать графит.

Похожие патенты RU2759623C1

название год авторы номер документа
Способ легирования кристаллов селенида цинка хромом 2020
  • Борисенко Дмитрий Николаевич
  • Борисенко Елена Борисовна
  • Колесников Николай Николаевич
  • Денисенко Дмитрий Сергеевич
  • Тимонина Анна Владимировна
  • Фурсова Татьяна Николаевна
  • Хамидов Александр Михайлович
RU2751059C1
СПОСОБ ВЫРАЩИВАНИЯ МОНОКРИСТАЛЛОВ-СЦИНТИЛЛЯТОРОВ НА ОСНОВЕ ИОДИДА НАТРИЯ ИЛИ ЦЕЗИЯ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2006
  • Голышев Владимир Дмитриевич
  • Гоник Михаил Александрович
RU2338815C2
Способ получения кристаллических пластин селенида цинка 1991
  • Колесников Николай Николаевич
  • Кожевников Анатолий Сергеевич
SU1808888A1
Тигель для выращивания кристаллов на затравку 2019
  • Колесников Николай Николаевич
  • Борисенко Дмитрий Николаевич
RU2716447C1
Осевой неразгруженный компенсатор 2020
  • Колесников Николай Николаевич
  • Борисенко Дмитрий Николаевич
RU2732334C1
СПОСОБ ПОЛУЧЕНИЯ ПОЛУПРОВОДНИКОВОГО МАТЕРИАЛА N-ТИПА НА ОСНОВЕ СЕЛЕНИДА ЦИНКА 2000
  • Рыжиков Владимир Диомидович
  • Старжинский Николай Григорьевич
  • Гальчинецкий Леонид Павлович
  • Силин Виталий Иванович
RU2170291C1
СПОСОБ ПОЛУЧЕНИЯ СЦИНТИЛЛЯТОРА НА ОСНОВЕ СЕЛЕНИДА ЦИНКА, АКТИВИРОВАННОГО ТЕЛЛУРОМ 2000
  • Рыжиков Владимир Диомидович
  • Старжинский Николай Григорьевич
  • Гальчинецкий Леонид Павлович
  • Силин Виталий Иванович
RU2170292C1
СПОСОБ ПОЛУЧЕНИЯ ОПТИЧЕСКИХ МАТЕРИАЛОВ ИЗ ХАЛЬКОГЕНИДОВ ЦИНКА И КАДМИЯ 2002
  • Гарибин Е.А.
  • Демиденко А.А.
  • Дунаев А.А.
  • Егорова И.Л.
  • Миронов И.А.
RU2240386C2
УСТРОЙСТВО ДЛЯ ВЫРАЩИВАНИЯ КРИСТАЛЛОВ В ПЕЧИ С ДВУХЗОННЫМ ЭЛЕКТРИЧЕСКИМ НАГРЕВОМ 1993
  • Соболев Б.П.
  • Станишевский Э.Я.
  • Семенков Ю.В.
  • Кисельков М.П.
  • Зубова Е.Н.
  • Жмурова З.И.
  • Кривандина Е.А.
RU2038356C1
Тигель для выращивания кристаллов халькогенидов металлов вертикальной зонной плавкой 2019
  • Колесников Николай Николаевич
  • Борисенко Дмитрий Николаевич
  • Берзигиярова Надежда Сергеевна
  • Борисенко Елена Борисовна
RU2701832C1

Иллюстрации к изобретению RU 2 759 623 C1

Реферат патента 2021 года Опора тигля для выращивания кристаллов

Изобретение относится к оборудованию для выращивания кристаллов прямоугольной формы из расплава. Опора тигля выполнена в виде прямоугольного в поперечном сечении корпуса 1 с посадкой для установки тигля на опору 6 и посадкой для установки опоры на шток 5, и имеющего сквозные пазы 4, предназначенные для установки требуемого для конкретного технологического процесса количества прямоугольных пластин 3 с возможностью изменения их взаимного расположения в корпусе 1. Опора позволяет экспериментально определять комбинацию элементов, необходимую для экранирования тигля от обдува конвективным потоком инертного газа и обеспечения условий теплоотвода от дна тигля в соответствии с требованиями конкретного ростового процесса. 6 ил.

Формула изобретения RU 2 759 623 C1

Опора тигля для выращивания кристаллов, отличающаяся тем, что опора выполнена в виде прямоугольного в поперечном сечении корпуса с посадкой для установки тигля на опору и посадкой для установки опоры на шток, и имеющего сквозные пазы, предназначенные для установки требуемого для конкретного технологического процесса количества прямоугольных пластин с возможностью изменения их взаимного расположения в корпусе.

Документы, цитированные в отчете о поиске Патент 2021 года RU2759623C1

Приемник для эфирных масел, отгоняемых водяным паром 1945
  • Далматов К.Р.
SU69596A1
Тепловой узел 1979
  • Грачев Валентин Матвеевич
  • Арефьев Игорь Сергеевич
  • Колосов Олег Анатольевич
  • Литвин Александр Алексеевич
SU857308A1
РЕГУЛИРОВАНИЕ ТЕМПЕРАТУРЫ ПЛАВИЛЬНОГО ТИГЛЯ В ПЕЧИ 2014
  • Джонс Бернард Д.
  • Скелтон Дин С.
  • Макги Томас С.
  • Эбнер Роберт
RU2669599C2
CN 104532353 A, 22.04.2015.

RU 2 759 623 C1

Авторы

Колесников Николай Николаевич

Борисенко Дмитрий Николаевич

Даты

2021-11-16Публикация

2021-02-25Подача