Изобретение относится к устройствам для выращивания кристаллов из расплава.
В установках для выращивания кристаллов из расплава под давлением инертного газа с применением методов, предусматривающих перемещение тигля через неподвижно закрепленный нагреватель, опорой тигля обычно служит шток. Общие недостатки таких устройств - обдув тигля конвективным потоком инертного газа, оказывающий негативное влияние на тепловые условия в расплаве и растущем кристалле, а также невозможность регулировать теплоотвод от дна тигля. Особенно существенно проявляются эти недостатки при выращивании кристаллов прямоугольной формы, например, как описано в [Н.Н. Колесников, А.С. Кожевников. Способ получения кристаллических пластин селенида цинка. Патент РФ на изобретение №1808888], так как тепловые условия в области тигля прямоугольной формы существенно сложнее, чем в случае получения цилиндрических кристаллов.
Известна опора тигля [Liu Hongzhen, Mei Jingjing, Shi Linlin, Wang Dengkui, Wang Fei, Wang Yunpeng, Zhao Bin, Zhao Dongxu, Zhao Xin. Chromium-doped zinc selenide monocrystal Bridgman growth device and method. Патент CN104532353A] - прототип. В защищенном этим патентом устройстве цилиндрический тигель опирается на шток, диаметр которого меньше диаметра тигля. Недостаток такой конструкции состоит в том, что она не предотвращает обдув тигля конвективным потоком инертного газа, оказывающий негативное влияние на тепловые условия в расплаве и растущем кристалле, а также не предусматривает возможность регулировать теплоотвод от дна тигля.
Задачей настоящего изобретения является создание опоры тигля для выращивания кристаллов прямоугольной формы, позволяющей экспериментально подбирать условия для управления теплоотводом от дна тигля и уменьшения обдува тигля конвективным потоком инертного газа.
Поставленная задача решается тем, что опора тигля выполнена в виде прямоугольного в поперечном сечении корпуса, имеющего сквозные пазы в которые вставлены прямоугольные пластины, причем количество пластин и их взаимное расположение в корпусе можно изменять.
Пример исполнения такой опоры тигля показан на Фиг. 1, где опора изображена в сборе, а 1 - корпус, 2 и 3 - прямоугольные пластины, 4 - сквозные пазы, 5 - посадка для установки опоры на шток, 6 - посадка для установки тигля на опору. Дополнительно конструкция опоры иллюстрируется чертежами:
- Фиг. 2, где показан вид сверху опоры в сборе, представленной на Фиг. 1;
- Фиг. 3, где показан вид снизу опоры в сборе, представленной на Фиг. 1;
- Фиг. 4, где отдельно показан корпус опоры;
- Фиг. 5, где отдельно показаны прямоугольные пластины.
Предлагаемая опора тигля работает следующим образом.
В пазы 4 корпуса опоры 1 устанавливается требуемое для конкретного процесса количество пластин 2 и 3. Опора тигля устанавливается на шток установки для выращивания кристаллов посредством посадки 5, форма и размеры которой определяются конструкцией штока. В посадке 6 корпуса опоры тигля устанавливается тигель. Форма и размеры посадки 6 определяются конструкцией тигля. Затем проводится процесс выращивания кристалла. На фотографии Фиг. 6 показана кристаллическая лента селенида цинка, выращенная методом вертикальной зонной плавки под давлением аргона с применением предлагаемой опоры тигля.
В ходе процесса выращивания кристалла пластины 2 и 3, установленные в пазы 4 корпуса опоры тигля 1 экранируют дно тигля от обдува конвективным потоком инертного газа. Пластины также позволяют подобрать условия теплоотвода от дна тигля, требуемые в конкретном ростовом процессе.
Количество пазов 4 в корпусе опоры тигля 1, количество и порядок расположения пластин 2 и 3 в корпусе 4 определяются требованиями конкретных процессов выращивания и подбираются экспериментально. Например, кристаллическая лента ZnSe, показанная на Фиг. 6, выращена с опорой тигля, показанной на Фиг. 1, то есть имеющей в корпусе семь пар пазов, в которые было установлено 4 пластины 2 и две пластины 3, их взаимное расположение показано на Фиг. 1.
Материал опоры тигля может быть выбран в зависимости от свойств соединения, кристалл которого выращивается. Например, для ZnS, CdS, ZnSe, имеющих высокие температуры плавления, учитывая химическую агрессивность расплавов и паров, можно выбрать графит.
название | год | авторы | номер документа |
---|---|---|---|
Способ легирования кристаллов селенида цинка хромом | 2020 |
|
RU2751059C1 |
СПОСОБ ВЫРАЩИВАНИЯ МОНОКРИСТАЛЛОВ-СЦИНТИЛЛЯТОРОВ НА ОСНОВЕ ИОДИДА НАТРИЯ ИЛИ ЦЕЗИЯ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2006 |
|
RU2338815C2 |
Способ получения кристаллических пластин селенида цинка | 1991 |
|
SU1808888A1 |
Тигель для выращивания кристаллов на затравку | 2019 |
|
RU2716447C1 |
Осевой неразгруженный компенсатор | 2020 |
|
RU2732334C1 |
СПОСОБ ПОЛУЧЕНИЯ ПОЛУПРОВОДНИКОВОГО МАТЕРИАЛА N-ТИПА НА ОСНОВЕ СЕЛЕНИДА ЦИНКА | 2000 |
|
RU2170291C1 |
СПОСОБ ПОЛУЧЕНИЯ СЦИНТИЛЛЯТОРА НА ОСНОВЕ СЕЛЕНИДА ЦИНКА, АКТИВИРОВАННОГО ТЕЛЛУРОМ | 2000 |
|
RU2170292C1 |
СПОСОБ ПОЛУЧЕНИЯ ОПТИЧЕСКИХ МАТЕРИАЛОВ ИЗ ХАЛЬКОГЕНИДОВ ЦИНКА И КАДМИЯ | 2002 |
|
RU2240386C2 |
УСТРОЙСТВО ДЛЯ ВЫРАЩИВАНИЯ КРИСТАЛЛОВ В ПЕЧИ С ДВУХЗОННЫМ ЭЛЕКТРИЧЕСКИМ НАГРЕВОМ | 1993 |
|
RU2038356C1 |
Тигель для выращивания кристаллов халькогенидов металлов вертикальной зонной плавкой | 2019 |
|
RU2701832C1 |
Изобретение относится к оборудованию для выращивания кристаллов прямоугольной формы из расплава. Опора тигля выполнена в виде прямоугольного в поперечном сечении корпуса 1 с посадкой для установки тигля на опору 6 и посадкой для установки опоры на шток 5, и имеющего сквозные пазы 4, предназначенные для установки требуемого для конкретного технологического процесса количества прямоугольных пластин 3 с возможностью изменения их взаимного расположения в корпусе 1. Опора позволяет экспериментально определять комбинацию элементов, необходимую для экранирования тигля от обдува конвективным потоком инертного газа и обеспечения условий теплоотвода от дна тигля в соответствии с требованиями конкретного ростового процесса. 6 ил.
Опора тигля для выращивания кристаллов, отличающаяся тем, что опора выполнена в виде прямоугольного в поперечном сечении корпуса с посадкой для установки тигля на опору и посадкой для установки опоры на шток, и имеющего сквозные пазы, предназначенные для установки требуемого для конкретного технологического процесса количества прямоугольных пластин с возможностью изменения их взаимного расположения в корпусе.
Приемник для эфирных масел, отгоняемых водяным паром | 1945 |
|
SU69596A1 |
Тепловой узел | 1979 |
|
SU857308A1 |
РЕГУЛИРОВАНИЕ ТЕМПЕРАТУРЫ ПЛАВИЛЬНОГО ТИГЛЯ В ПЕЧИ | 2014 |
|
RU2669599C2 |
CN 104532353 A, 22.04.2015. |
Авторы
Даты
2021-11-16—Публикация
2021-02-25—Подача