Способ термической обработки труб нефтяного сортамента из коррозионно-стойкой стали Российский патент 2017 года по МПК C21D9/08 C21D8/10 C22C38/18 

Описание патента на изобретение RU2635205C2

Изобретение относится к металлургии, а именно к производству обсадных и насосно-компрессорных труб из коррозионно-стойкой стали, эксплуатируемых на месторождениях для добычи нефти и газа с высокой концентрацией диоксида углерода в составе перекачиваемой среды, расположенных в холодных макроклиматических районах.

Для нефтяных и газовых месторождений с высокой концентрацией диоксида углерода (СO2) в составе перекачиваемой среды применяют трубы, изготовленные из коррозионно-стойких сталей мартенситного класса, например:

- с содержанием хрома 12-16 мас. % (патент РФ №2323982, C21D 9/08, 1/76, опубл. 10.05.2008);

- с содержанием хрома 10,5-14 мас. % (патент РФ №2279486, C21D 6/00, С22С 38/50, 38/46, опубл. 10.07.2006);

- с содержанием хрома 7-15 мас. % (патент США №6159311, С22С 38/38, 38/40, C21D 7/00, опубл. 12.12.2000);

- с содержанием хрома 11,5-13,5 мас. % (патент США №8021502, C21D 9/14, 8/10, опубл. 20.09.2011).

Недостатками труб, изготовленных из указанных марок сталей, являются их низкая хладостойкость, оцениваемая по значениям ударной вязкости при температуре испытания минус 60°С (KCV-60°C должна быть не менее 70 Дж/см2 в соответствии с требованиями СТО Газпром 2-4.1-228-2008 «Технические требования к насосно-компрессорным трубам для месторождений ОАО «Газпром» / М.: ООО «ИРЦ Газпром», 32 с.) или высокая стоимость (трубы из низкоуглеродистых сталей класса супер 13Сr дополнительно легированы никелем и молибденом).

Наиболее близким решением, выбранным в качестве прототипа, является обсадная или насосно-компрессорная труба группы прочности L80 тип 13Сr (предел текучести от 552 до 655 МПа), выполненная по ГОСТ Ρ 53366-2009 (ISO11960:2004) «Трубы стальные, применяемые в качестве обсадных или насосно-компрессорных труб для скважин в нефтяной и газовой промышленности. Общие технические условия» / М.: Стандартинформ, 2010, 195 с. Труба изготовлена из стали, содержащей (мас. %): углерод 0,15-0,22; марганец 0,25-1,00; хром 12,0-14,0; никель не более 0,50; медь не более 0,25; сера не более 0,010; фосфор не более 0,020; кремний не более 1,00. Труба подвергнута следующей термической обработке: закалке от температуры аустенитизации (допускается охлаждение на воздухе) и отпуску при температуре не ниже 593°С.

Труба обладает удовлетворительной коррозионной стойкостью в среде, содержащей диоксид углерода, однако ее недостатком является низкая хладостойкость, связанная с высоким содержанием углерода и, как следствие, повышенной объемной долей карбидных фаз в структуре стали. При увеличении прочностных свойств до группы прочности R95 (предел текучести от 655 до 758 МПа) ударная вязкость трубы при температуре испытания минус 60°С становится еще ниже, что не позволяет применять ее на нефтегазовых месторождениях, расположенных в холодных макроклиматических районах.

Техническая задача, решаемая изобретением, заключается в повышении хладостойкости труб нефтяного сортамента из коррозионно-стойкой стали групп прочности от L80 до R95 по ГОСТ Ρ 53366-2009.

Поставленная задача решается за счет того, что труба нефтяного сортамента, выполненная из коррозионно-стойкой стали мартенситного класса, подвергнутая закалке и отпуску, согласно изобретению, она выполнена из стали, содержащей следующее соотношение компонентов, мас. %:

углерод 0,12-0,17;

кремний 0,15-0,50;

марганец 0,30-0,90;

хром 12,00-14,00;

никель 1,80-2,20;

сера не более 0,010;

фосфор не более 0,020;

алюминий 0,02-0,05;

медь не более 0,25;

азот не более 0,020;

железо и неизбежные примеси - остальное, при этом перед отпуском труба подвергнута второй закалке из межкритического интервала температур от 700 до 830°С. Кроме того, труба подвергнута отпуску в интервале температур от 560 до 690°С.

Предлагаемые соотношения химических элементов в стали и режим термической обработки определяются следующими факторами.

Содержание углерода в предлагаемых пределах обеспечивает требуемый уровень прочностных свойств труб после проведения термической обработки, заключающейся в двукратной закалке и отпуске. При снижении содержания углерода менее заявленной концентрации 0,12 мас. % происходит снижение прочностных свойств ниже допустимого уровня, а при содержании углерода выше 0,17 мас. % снижаются коррозионная стойкость и ударная вязкость вследствие увеличения объемной доли карбидной фазы в микроструктуре стали.

Кремний и алюминий в указанных пределах обеспечивают требуемую степень раскисления стали. При меньшем их содержании не обеспечивается полное раскисление стали и повышается концентрация кислорода в стали, что приводит к увеличению количества неметаллических включений оксидного типа. При содержании кремния и алюминия в количестве больше верхнего предела каждого элемента образуются неметаллические включения силикатного типа, а также крупные нитриды и карбонитриды алюминия, отрицательно влияющие на ударную вязкость и коррозионную стойкость стали.

Марганец повышает прочность стали, поэтому его содержание в стали должно составлять не менее 0,30 мас. %. Однако при содержании марганца более 0,90 мас. % снижается ударная вязкость, поскольку марганец способствует развитию отпускной хрупкости.

Содержание хрома в указанных пределах обеспечивает высокую коррозионную стойкость труб в средах, содержащих диоксид углерода, поскольку он способствует самопассивации поверхности за счет образования прочной окисной защитной пленки, обогащенной хромом. Положительный эффект от предлагаемого содержания хрома проявляется при ограничении содержания углерода, поскольку за счет этого удается обеспечить присутствие большей части хрома в твердом растворе, а не в карбидных фазах. Содержание хрома ниже 12,00 мас. % приводит к снижению стойкости к углекислотной коррозии. С другой стороны, хром является ферритообразующим элементом, и содержание его более 14,00 мас. % вызывает образование в микроструктуре δ-феррита, понижающего технологическую пластичность при горячем деформировании и ударную вязкость при отрицательных температурах.

Содержание никеля в указанных пределах обеспечивает высокую ударную вязкость при отрицательных температурах за счет его положительного влияния на характеристики кристаллической решетки стали, повышая подвижность дислокаций. При содержании никеля менее 1,80 мас. % элемент не оказывает существенного положительного влияния на ударную вязкость стали. Кроме того, никель является аустенитообразующим элементом, и поэтому его содержание выше 2,20 мас. % приводит к увеличению доли остаточного аустенита в структуре закаленной стали и тем самым снижению предела текучести.

Сера является элементом, который значительно ухудшает обрабатываемость в стали при горячей пластической деформации, поэтому содержание серы ограничено 0,010 мас. %.

Фосфор является элементом, снижающим хладостойкость стали, поэтому его содержание ограничено 0,020 мас. %.

Содержание меди ограничено 0,25 мас. %, так как большее содержание меди приводит к ухудшению технологических свойств стали, а именно - к проявлению красноломкости при горячей пластической деформации.

Азот образует нитриды, снижающие ударную вязкость, поэтому его содержание в стали ограничено 0,020 мас. %.

Режим термической обработки трубы включает двукратную закалку и отпуск. Первую закалку из однофазной аустенитной области при температуре нагрева от 920 до 1020°С проводят для получения исходной мартенситной структуры с содержанием мартенсита не менее 95%. В связи с высокой устойчивостью переохлажденного аустенита (прокаливаемостью) предлагаемая сталь закаливается как при ускоренном охлаждении в воде или масле, так и при охлаждении на спокойном воздухе.

Вторую закалку проводят из межкритического интервала при температуре нагрева от 700 (точка Ac1) до 830°С (точка Ас3), в результате чего формируется структура, состоящая из смеси сорбита отпуска с глобулярными карбидамии вновь образовавшегося мартенсита, при этом сорбит отпуска является высокопластичной и вязкой составляющей. При второй закалке также допустимо охлаждение как в воде или масле, так и на спокойном воздухе.

Отличительной особенностью мартенсита, образовавшегося после закалки из межкритического интервала температур, по сравнению с образовавшимся мартенситом после закалки из однофазной аустенитной области, является малый размер мартенситных реек, объединенных в пакеты, что связано с образованием в межкритическом интервале дисперсных зерен аустенита. Достигнутое в результате двукратной закалки измельчение структуры и наличие сорбита отпуска сохраняется после проведения последующего окончательного отпуска в интервале температур от 560 до 690°С и положительно влияет на хладостойкость стали. При проведении отпуска при температуре менее 560°С развивается обратимая отпускная хрупкость, способствующая снижению хладостойкости. Этот вид отпускной хрупкости наблюдается в сталях мартенситного класса и проявляется при отпуске в интервале температур от 450 до 550°С. Отпуск при температуре выше 690°С приводит к аустенитному превращению и появлению в структуре стали при последующем охлаждении участков неотпущенного мартенсита с повышенной хрупкостью.

В результате предлагаемой термической обработки происходит образование высокодисперсной структуры сорбита отпуска, которая обеспечивает необходимую ударную вязкость - не менее 70 Дж/см2 при температуре испытания минус 60°С.

В заводских условиях были изготовлены насосно-компрессорные трубы размерами 88,9×6,45 мм и 114,3×6,88 мм из предложенной марки стали с содержанием основных легирующих элементов на нижнем, среднем и верхнем уровнях (плавки №1-5, таблица 1) и из стали-прототипа (плавки №6 и 7, там же). Термическую обработку труб проводили с применением как предлагаемой двукратной закалки и последующего отпуска, так и с однократной закалкой и отпуском. Закалочное охлаждение во всех случаях проводили на воздухе.

Для подтверждения высокой эксплуатационной надежности труб, изготовленных из стали предлагаемого химического состава с термической обработкой, были проведены испытания механических свойств (таблица 2) и коррозионной стойкости (таблица 3).

Как видно из таблицы 2, термическая обработка труб из стали предлагаемого химического состава (плавки №1-5, таблица 1) и по предлагаемым режимам (испытания №1-7, там же) обеспечивает требуемый комплекс механических свойств: значения предела текучести находятся в интервале от 552 до 758 МПа, что соответствует группам прочности от L80 до R95 по ГОСТ Ρ 53366-2009, ударная вязкость при температуре испытания минус 60°С - больше 70 Дж/см2, предел прочности при этом также соответствует требованиям ГОСТ Ρ 53366-2009. Трубы, изготовленные по прототипу (испытания №8-12, таблица 2), не соответствуют заданным требованиям по хладостойкости (KCV-60°C не менее 70 Дж/см2). Результаты коррозионных испытаний, приведенные в таблице 3, показывают, что трубы, изготовленные по предлагаемому изобретению, как и труба-прототип, обладают требуемой по СТО коррозионной стойкостью (скорость равномерной коррозии не более 0,10 мм/год).

Таким образом, трубы нефтяного сортамента, изготовленные из стали с предлагаемым соотношением компонентов и режимом термической обработки, обладают повышенной эксплуатационной надежностью:

- механические свойства соответствуют группам прочности от L80 до R95 по ГОСТ Ρ 53366-2009 (предел текучести от 552 до 758 МПа);

- хладостойкость, оцениваемая по ударной вязкости при температуре испытания минус 60°С, составляет не менее 70 Дж/см2;

- обладают удовлетворительной коррозионной стойкостью.

Похожие патенты RU2635205C2

название год авторы номер документа
Бесшовная труба нефтяного сортамента из высокопрочной коррозионно-стойкой стали мартенситного класса и способ ее получения 2021
  • Александров Сергей Владимирович
  • Лаев Константин Анатольевич
  • Нурмухаметова Марианна Рашидовна
  • Щербаков Игорь Викторович
  • Девятерикова Наталья Анатольевна
  • Ошурков Георгий Леонидович
  • Маковецкий Александр Николаевич
RU2807645C2
Труба нефтяного сортамента из коррозионно-стойкой стали мартенситного класса 2018
  • Пышминцев Игорь Юрьевич
  • Битюков Сергей Михайлович
  • Космацкий Ярослав Игоревич
  • Трутнев Николай Владимирович
  • Неклюдов Илья Васильевич
  • Красиков Андрей Владимирович
  • Фролочкин Владислав Валерьевич
  • Засельский Евгений Михайлович
  • Тихонцева Надежда Тахировна
  • Жукова Светлана Юльевна
  • Софрыгина Ольга Андреевна
  • Мануйлова Ирина Ивановна
RU2703767C1
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ БЕСШОВНЫХ КОРРОЗИОННОСТОЙКИХ ТРУБ НЕФТЯНОГО СОРТАМЕНТА ИЗ СТАЛИ МАРТЕНСИТНОГО КЛАССА 2021
  • Трутнев Николай Владимирович
  • Тумашев Сергей Владимирович
  • Лоханов Дмитрий Валерьевич
  • Буняшин Михаил Васильевич
  • Мякотина Ирина Васильевна
  • Чубуков Михаил Юрьевич
  • Коновалов Сергей Сергеевич
  • Битюков Сергей Михайлович
RU2788887C2
Способ получения низкоуглеродистой мартенситной стали 2020
  • Лаптев Сергей Константинович
  • Шацов Александр Аронович
  • Гребеньков Сергей Константинович
  • Жаренников Алексей Владимирович
RU2760140C1
Способ изготовления труб нефтяного сортамента (варианты) 2017
  • Гагаринов Вячеслав Алексеевич
  • Тихонцева Надежда Тахировна
  • Засельский Евгений Михайлович
  • Воротников Евгений Викторович
  • Жукова Светлана Юльевна
  • Софрыгина Ольга Андреевна
  • Мануйлова Ирина Ивановна
  • Соловьева Елена Ивановна
  • Монастырский Денис Александрович
  • Пышминцев Игорь Юрьевич
RU2686405C1
СПОСОБ ПРОИЗВОДСТВА ТРУБЫ С НИЗКИМ ОТНОШЕНИЕМ ПРЕДЕЛА ТЕКУЧЕСТИ К ПРЕДЕЛУ ПРОЧНОСТИ 2018
  • Ткачук Максим Александрович
  • Кудашов Дмитрий Викторович
  • Пейганович Иван Викторович
  • Сорокин Александр Евгеньевич
  • Мунтин Александр Вадимович
  • Солдатов Евгений Александрович
  • Сомов Сергей Александрович
  • Ермаков Дмитрий Иванович
RU2682984C1
ТРУБА БЕСШОВНАЯ НЕФТЯНОГО СОРТАМЕНТА ВЫСОКОПРОЧНАЯ В СЕРОВОДОРОДОСТОЙКОМ ИСПОЛНЕНИИ 2016
  • Гагаринов Вячеслав Алексеевич
  • Тихонцева Надежда Тахировна
  • Засельский Евгений Михайлович
  • Жукова Светлана Юльевна
  • Мануйлова Ирина Ивановна
  • Софрыгина Ольга Андреевна
  • Пышминцев Игорь Юрьевич
  • Веселов Игорь Николаевич
RU2629126C1
СПОСОБ ПРОИЗВОДСТВА ЛИСТОВ ИЗ КРИОГЕННОЙ КОНСТРУКЦИОННОЙ СТАЛИ 2019
  • Полецков Павел Петрович
  • Гущина Марина Сергеевна
  • Алексеев Даниил Юрьевич
  • Никитенко Ольга Александровна
  • Денисов Сергей Владимирович
  • Брайчев Евгений Викторович
  • Стеканов Павел Александрович
RU2703008C1
Бесшовная высокопрочная труба из стали мартенситного класса для обсадных колонн и способ ее производства 2021
  • Пумпянский Дмитрий Александрович
  • Пышминцев Игорь Юрьевич
  • Чикалов Сергей Геннадьевич
  • Трутнев Николай Владимирович
  • Тумашев Сергей Владимирович
  • Красиков Андрей Владимирович
  • Неклюдов Илья Васильевич
  • Буняшин Михаил Васильевич
  • Усков Дмитрий Петрович
  • Мякотина Ирина Васильевна
  • Чубуков Михаил Юрьевич
  • Коновалов Сергей Сергеевич
  • Битюков Сергей Михайлович
RU2787205C2
ТРУБА НЕФТЯНОГО СОРТАМЕНТА ХЛАДОСТОЙКАЯ 2013
  • Грехов Александр Игоревич
  • Овчинников Дмитрий Владимирович
  • Тихонцева Надежда Тахировна
  • Жукова Светлана Юльевна
  • Пышминцев Игорь Юрьевич
  • Мануйлова Ирина Ивановна
  • Ковалькова Елена Олеговна
  • Софрыгина Ольга Андреевна
  • Битюков Сергей Михайлович
RU2552794C2

Реферат патента 2017 года Способ термической обработки труб нефтяного сортамента из коррозионно-стойкой стали

Изобретение относится к области металлургии, а именно к производству обсадных и насосно-компрессорных труб из коррозионно-стойкой стали, эксплуатируемых на месторождениях для добычи нефти и газа с высокой концентрацией диоксида углерода в составе перекачиваемой среды, расположенных в холодных макроклиматических районах. Для обеспечения высокой ударной вязкости при температуре минус 60°С и удовлетворительной коррозионной стойкости труб групп прочности от L80 до R95 по ГОСТ Ρ 53366-2009 её изготавливают из коррозионно-стойкой стали мартенситного класса, содержащей, мас.%: углерод 0,12-0,17, кремний 0,15-0,50, марганец 0,30-0,90, хром 12,00-14,00, никель 1,80-2,20, медь не более 0,25, алюминий 0,02-0,05, сера не более 0,010, фосфор не более 0,020, азот не более 0,020, железо - остальное. Труба подвергнута закалке от 920 до 1020°С, второй закалке из межкритического интервала температур от 700 до 830°С и отпуску в интервале температур от 560 до 690°С. 3 табл.

Формула изобретения RU 2 635 205 C2

Способ термической обработки труб нефтяного сортамента из коррозионно-стойкой стали, включающий двукратную закалку и отпуск, отличающийся тем, что труба выполнена из стали, содержащей, мас.%:

углерод 0,12-0,17 кремний 0,15-0,50 марганец 0,30-0,90 хром 12,00-14,00 никель 1,80-2,20 сера не более 0,010 фосфор не более 0,020 алюминий 0,02-0,05 медь не более 0,25 азот не более 0,020 железо и неизбежные примеси остальное,

при этом первую закалку осуществляют с температуры аустенитизации от 920 до 1020°С с обеспечением мартенситной структуры с содержанием мартенсита не менее 95%, вторую закалку из межкритического интервала температур от 700 до 830°С, а отпуск - в интервале температур от 560 до 690°С.

Документы, цитированные в отчете о поиске Патент 2017 года RU2635205C2

СПОСОБ ПРОИЗВОДСТВА МАРТЕНСИТНОЙ НЕРЖАВЕЮЩЕЙ СТАЛИ 2006
  • Мори Нобуюки
RU2358020C1
ВЫСОКОПРОЧНАЯ ТРУБА ДЛЯ НЕФТЯНЫХ СКВАЖИН 2008
  • Денисова Татьяна Владимировна
  • Жукова Светлана Юльевна
  • Иоффе Андрей Владиславович
  • Ревякин Виктор Анатольевич
  • Тетюева Тамара Викторовна
  • Трифонова Елена Александровна
RU2368836C1
ТРУБА НЕФТЯНОГО СОРТАМЕНТА ПОВЫШЕННОЙ ПРОЧНОСТИ 2007
  • Бодров Юрий Владимирович
  • Брижан Анатолий Илларионович
  • Горожанин Павел Юрьевич
  • Грехов Александр Игоревич
  • Жукова Светлана Юльевна
  • Зырянов Владислав Викторович
  • Кривошеева Антонина Андреевна
  • Лефлер Михаил Ноехович
  • Мануйлова Ирина Ивановна
  • Марченко Леонид Григорьевич
  • Пумпянский Дмитрий Александрович
  • Пышминцев Игорь Юрьевич
  • Степашин Андрей Михайлович
  • Суворов Александр Вадимович
  • Шлейнинг Людмила Ивановна
  • Якушев Евгений Валерьевич
RU2352647C1
Способ получения органических соединений путем каталитического восстановления окислов углерода 1927
  • Р. Витцель
  • В. Шпеер
  • Г. Матенбург
SU13145A1
JP 2010070789 A, 02.04.2010.

RU 2 635 205 C2

Авторы

Пышминцев Игорь Юрьевич

Битюков Сергей Михайлович

Лаев Константин Анатольевич

Гагаринов Вячеслав Алексеевич

Тихонцева Надежда Тахировна

Засельский Евгений Михайлович

Жукова Светлана Юльевна

Мануйлова Ирина Ивановна

Софрыгина Ольга Андреевна

Ярулин Евгений Сергеевич

Ковалькова Елена Олеговна

Даты

2017-11-09Публикация

2016-01-11Подача