Изобретение относится к области аналитической химии ионов сурьмы и направлено на разработку вольтамперометрического способа определения ионов сурьмы в водных растворах.
Изобретение предназначено для практического химического анализа ионов сурьмы в жидких образцах(природных поверхностных и сточных вод, технологических растворов и т.д.) и применения в экологических, медицинских и других лабораториях, выполняющих химико-аналитические определения ионов сурьмы.
Наиболее близким по технической сущности (аналогом) служит гидридный метод восстановления ионных форм сурьмы щелочным раствором борогидрида натрия в хлороводородной кислоте с последующей атомизацией гидрида сурьмы до элементной сурьмы(0) и водорода по реакции
2SbH3 → 2Sb0+3Н2 ↑ (900°С). Температура атомизации гидрида сурьмы определяется прочностью связи элемента с водородом и необходимым условием атомизациистибнина выступает температура до 1000°С. Образующийся на стадии атомизации атомный пар Sb(0) поглощает излучение от монохроматического источника с длиной волны 217,6 нм. Как правило в атомно-абсорбционной спектрометрии в качестве источника монохроматического излучения с аналитической линией элемента служат лампы с полым катодом. Свет от источника направляется в аналитическую зону атомно-абсорбционного спектрометра, представляющую собой Т - образную оптическую кювету из кварца, индукционно или иным способом нагретую до температуры около 1000°С.
[Новый справочник химика и технолога. Аналитическая химия. В трех томах. Ч. II. - Спб.: «Профессионал».2004, 2007. - С. 845-847. Новый справочник химика и технолога. Аналитическая химия. В трех томах. Ч. II. - Спб.: «Профессионал».2004, 2007. - С. 845-847]
Основным фактором опасности служит высокая температура и выделяющиейся газообразный водород, который удаляется из индукционной кварцевой печи потоком инертного газа - аргона, который в серийных спектрометрах выступает в качестве рабочего тела:
- дозировка восстановителя,
- управление механизмами открывания и закрывания реактора и других исполнительных механизмов.
Если в качестве атомизатора гидрида сурьмы применяется графитовая кювета, то температура атомизации выше 1000°С.
Предлагаемый способ не основан на высоких температурах, использует комнатную температуру и электролиз с накоплением гидрида сурьмы из кислого водного раствора (фигура 1). В качестве рабочего электрода используется графитовый электрод (Экотест ВА, Москва).
Наиболее близким по технической сущности (прототипом) выбран [Способ определения сурьмы в водах в диапазоне 0,00010-0,03 мг/дм3. «МУ 08-48/021. Методика выполнения измерений массовой концентрации сурьмы в природных, питьевых и очищенных сточных водах методом инверсионной вольтамперометрии». Томск. ТПИ, 1998, 2001], отличающийся тем, что для определения сурьмы в анализируемых кислых хлоридных растворах методом инверсионной вольтамперометрии использовали ртутно-пленочный рабочий электрод и хлорид серебряный электрод сравнения, электронакопление при постоянном катодном потенциале - 0,5 В в течение 60…300 с, диапазон развертки от -0,5 до +0,1 В и регистрировали аналитический сигнал сурьмы в виде тока пика при потенциалах 0,0…0,05 В.
Преимущество предлагаемого способа состоит в использовании графитового рабочего макроэлектрода КТЖГ 414324.005 №169, изготовленный в России и входящего в комплект программируемого анализатора Экотест ВА. Рабочий электрод не содержит токсичной ртутной пленки и безопасен в работе, может храниться в сухом виде, более удобен в эксплуатации, обеспечивает удовлетворительный коэффициент чувствительности 8,1 в уравнении (фигура 2)
I [мкА]=2,7+8,1 CAs [мкг/мл]
При восстановлении ионов сурьмы до стибнина 3%-ным щелочным раствором борогидрида натрия образуется избыток водорода
2NaBH4+2НСl → 2NaCl+В2Н6+4Н++4е
В2Н6↑ → ВН3↑+2е
2ВН4-+2Н+ → В2Н6+2Н+Н2↑, который в предлагаемом способе удаляется из при электродной области во время накопления (задают потенциал электролиза Е=-900 мВ относительно насыщенного хлоридсеребряного электрода сравнения). На рисунке (фигура 3) представлена зависимость величины аналитического сигнала от объема раствора восстановителя для рабочего раствора Sb(III) сконцентрацией 1 мкг/мл. Таким образом, оптимальный объем раствора восстановителя выбран 200 мкл. Экспериментальные величины вводили в программу анализатора Экотест ВА: потенциал накопления - 900 мВ, время накопления 90 с, диапазон анодной развертки - 600 мВ до +600 мВ, скорость анодной разверти 80 мВ/с. Уменьшение скорости развертки потенциала менее 60 мВ/с приводит к значительным погрешностям при анализе малых концентраций ионов сурьмы, а увеличение скорости развертки свыше 120 мВ/с связано с нелинейным увеличением тока пика ионов сурьмы (аналитического сигнала). В качестве вспомогательного противоэлектрода использовали проволочный платиновый электрод и трехэлектродная (классическая) схема измерения предельного диффузионного тока - аналитического сигнала.
В случае химического анализа низких концентраций предлагаемый способ предусматривает увеличение времени накопления (Фигура 4) и скорости развертки от 60 до 120 мВ/с. Вольтамперограммы регистрировали с помощью ЭКОТЕСТ ВА (Москва).
Пример.
В качестве модельных систем выбраны кислые водные растворы. В качестве фоновых - растворы хлороводородной кислоты (ХЧ) с добавками сурьмы(III). Приготовление серий рабочих растворов Sb(III) выполняли методом последовательного разбавления ГСО сурьмы(III) с содержанием 1000 мкгSb/см3 (Эко-аналитика, Москва). При этом рабочие растворы готовили в мерных колбах, доводя до метки раствором децимолярной хлороводородной кислоты. В качестве восстановителя всех форм сурьмы использовали 3%-ный щелочной раствор борогидрида натрия.
Например 100 г раствора восстановителя готовили следующим образом: в 96 г би-дистиллированной воды помещали в сосуд из полиэтилена, растворяли 1 г гидроксида натрия, затем добавляли 3 г борогидрида натрия. Серию модельных растворов готовили в пробирках объемом 15 мл с пробками. Серию модельных растворов равных объемов 10 мл и контрольный раствор объемом 10 мл помещали в пробирки и дозатором вносили по 200 мкл раствора восстановителя (Фигура 3), закрывали пробками и перемешивали. Все окисленные формы сурьмы в пробирках с добавками ГСО восстанавливали до гидрида сурьмы (стибнина)по реакции:
4 SbO-2 (ГСО)+3 NaBH4+4Н+ → 4 SbH3↑+3NaBO2+2Н2O
Через 15-20 минут регистрировали вольтамперограммы (фигуры 1 - 4) в переменно-токовом режиме с амплитудно-частотной модуляцией, рекомендуемой для твердых электродов фирмой - изготовителем анализатора Экотест ВА(Москва).
Далее ацидокомплекс стибнина восстанавливали на рабочем электроде из графита, накаливая при - 900 мВ в течение 60…180 секунд, затем в анодном направлении разворачивали потенциал со скоростью 60…120 мВ/с и регистрировали аналитический сигнал окисления элементной сурьмы до ее оксида в области +(50…200) мВ, пропорциональный концентрации Sb(III) в растворе.
Типичные вольтамперограммы контрольного (1, фигура 1) и растворов с добавками Sb(III) (2, 3,4, фигура 1) представлены на фигуре 1.
В случае концентраций ионов сурьмы менее 0,01 мкг/мл способ предусматривает увеличение времени накопления стибнина на рабочем графитовом электроде до 180 секунд (фигура 4) и увеличение скорости развертки анодного потенциала до 120 мВ/с.
Изобретение относится к области аналитической химии ионов сурьмы и направлено на разработку вольтамперометрического способа определения ионов сурьмы в водных растворах. Технический результат заключается в повышении безопасности за счёт использования электрода без ртутной плёнки. В заявленном способе для определения ионов сурьмы задают отрицательный потенциал накопления стибнина -900 мВ в течение 60-180 с и развертку потенциала в анодном направлении от -600 мВ до +600 мВ со скоростью 60-120 мВ/с и регистрируют в режиме переменно-токовой вольтамперометрии с помощью вольтамперометрического анализатора аналитический сигнал в виде пика с максимум предельного диффузионного тока окисления элементной сурьмы до ее оксида при потенциалах +50…+200 мВ относительно хлоридсеребряного электрода сравнения и вспомогательного платинового электрода. 4 ил.
Вольтамперометрический способ определения ионов сурьмы с помощью графитового электрода, отличающийся тем, что в качестве рабочего электрода используют графит; задают отрицательный потенциал накопления стибнина -900 мВ в течение 60 - 180 с и развертку потенциала в анодном направлении от -600 мВ до +600 мВ со скоростью 60 - 120 мВ/с и регистрируют в режиме переменно-токовой вольтамперометрии с помощью вольтамперометрического анализатора аналитический сигнал в виде пика с максимум предельного диффузионного тока окисления элементной сурьмы до ее оксида при потенциалах +50…+200 мВ относительно хлоридсеребряного электрода сравнения и вспомогательного платинового электрода.
ЭКСТРАКЦИОННО-ВОЛЬТАМПЕРОМЕТРИЧЕСКИЙ СПОСОБ ОПРЕДЕЛЕНИЯ ЦИНКА, КАДМИЯ, СВИНЦА И МЕДИ В ПРИРОДНЫХ ВОДАХ | 2008 |
|
RU2383014C1 |
Способ определения иодид-ионов катодной вольтамперометрией | 2016 |
|
RU2645003C2 |
СПОСОБ ОПРЕДЕЛЕНИЯ СУРЬМЫ, ВИСМУТА, МЕДИ В ВОДНЫХ РАСТВОРАХ МЕТОДОМ АНОДНО-КАТОДНОЙ ВОЛЬТАМПЕРОМЕТРИИ | 2010 |
|
RU2419786C1 |
Способ инверсионного вольт-амперометрического определения сурьмы на модифицированном электроде | 1989 |
|
SU1693520A1 |
СПОСОБ ИНВЕРСИОННОГО ВОЛЬТАМПЕРОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ СЕЛЕНА | 2001 |
|
RU2223482C2 |
US 4804443 A, 14.02.1989. |
Авторы
Даты
2021-11-25—Публикация
2021-01-11—Подача