Изобретение относится к аналитической химии элементов, а именно к методам определения висмута (III) и может быть использован для санитарно-эпидемиологического контроля питьевых вод, водных объектов, а также аналитического контроля висмута в сточных водах различных химических производств и вод хозяйственно-бытового назначения.
Метод-аналог
В основу метода инверсионной вольтамперометрии определения массовой концентрации висмута в питьевой воде (Анализатор вольтамперометрический TA-Lab) положен Межгосударственный стандарт ГОСТ 31866-2012 «Вода питьевая. Определение содержания элементов методом инверсионной вольтамперометрии». Дата введения 2014-01-01.-24 с. В качестве средства измерений фирмой ООО «НПП «Томьаналит» (г. Томск) рекомендован «Анализатор вольтамперометрический ТА-Lab», во всех представленных экспериментах применяют данный анализатор.
Прототип основан на свойстве висмута (III) электрохимически или путем адсорбции накапливаться на рабочем электроде из анализируемого раствора (фоновый электролит и подготовленная проба), а затем электрохимически окисляться с электрода при потенциале +0,05 В. Процесс накопления элементов на индикаторном электроде проводят при заданных значениях потенциала (-1,0 В) и времени электролиза. Электроокисление определяемых элементов с поверхности электрода проводят в постоянно-токовом режиме развертки заданных параметрах. В работе используют амальгамный индикаторный электрод (аналог ртутно-пленочного электрода) в паре с хлорид-серебряным электродом сравнения.
Предел обнаружения висмута с доверительной вероятностью Р=0,95 составляет 0,0001 мг/дм3 при объеме пробы 10,0 см3, диапазон измерений без разбавления пробы составляет 0,0001 - 0,2 мг/дм3.
При проведении анализа согласно ГОСТ 31866-2012 «Вода питьевая. Определение содержания элементов методом инверсионной вольтамперометрии» (раздел 7) в кварцевый стаканчик, проверенный на чистоту, мерной пипеткой вносят 10,0 см3 пробы анализируемой воды. Помещают стаканчик на электроплитку и упаривают до влажного осадка, постепенно повышая температуру от 180°С до 200°С, не допуская разбрызгивания.
Добавляют 0,1-0,3 см3 концентрированной серной кислоты и упаривают на плитке при температуре 280°С до прекращения выделения белых паров. Затем помещают стаканчик с осадком в муфельную печь при 450°С - 500°С.Прокаливают пробу в течение 10-15 мин. Охлаждают до комнатной температуры. Осадок растворяют в 10,0 см3 фонового электролита.
Недостатки прототипа - использование концентрированной серной кислоты, упаривание и прокаливание при высоких температурах.
В заявленном способе
- не используется концентрированная серная кислота;
- не требуется нагревание анализируемой пробы;
- исключаются стадии выпаривания и прокаливания, что приводит к повышению экспрессности способа и обеспечению безопасности подготовки образца к анализу;
- в несколько раз уменьшается время пробоподготовки;
- эффективность извлечения элемента обеспечивается предварительным восстановлением всех форм висмута (III) в подкисленной анализируемом растворе, 3%-ным щелочным раствором (1% NaOH) в гидрид висмута (III);
- используется экологически безопасный графитовый электрод с большим, чем у аналога диапазоном рабочих потенциалов.
Сущность изобретения:
Безопасный вольтамперометрический способ определения висмута (III), заключающийся в том, что к анализируемому раствору объемом 5-7 см3, подкисленному 2 см3 HCl (С(НС1=0,1 моль/л)) добавляли 0,2 см3 3%-ный щелочной раствор (1% NaOH) боргидрида натрия, закрывали пробкой, встряхивали и оставляли на 5 минут для восстановления всех форм висмута до гидрида висмута (III) (BiH3). Общий объем анализируемого раствора не превышал 10,0 см3. В процессе пробоподготовки избыток атомарного водорода улетучивался. Затем переносили полученную пробу в кварцевый стаканчик анализатора ТА-2 (г. Томск), заранее проверенный на чистоту, и погружали рабочий (графитовый) углерод, хлоридсеребряный электрод сравнения и вспомогательный проволочный электрод из платины. Методом адсорбции гидрид висмута накапливали на рабочем электроде из анализируемого раствора (фоновый электролит и подготовленная проба) при заданных программно величинах потенциала (-0,6 В) и времени накопления 30 сек. После электролиза разворачивали потенциал в анодном направлении от -0,6 до +0,6 В в режиме ступенчатой развертки со скоростью 40-60 мВ/сек (фиг. 1). Сигнал электрохимического окисления BiH3 до Bi0, в области потенциала -0,4 В, регистрировали в виде вольтамперограмм. Затем методом градуировочного графика проводили расчет содержания висмута в пробе. Для получения воспроизводимых результатов необходимо, чтобы площадь активной поверхности электрода была постоянна и воспроизводимо обновлялась в каждой серии опытов. Для подготовки поверхности рабочего электрода использовали механическое полирование фильтровальной бумагой до появления черного следа с последующей обработкой атомарным водородом (погружали в смесь 0,01 моль/л раствора хлороводородной кислоты и 0,1 см3 раствора боргидрида натрия) и промывали нагретой до 80-90°С дистиллированной водой в течении 2-3 минут, с целью удаления избытка атомарного водорода с поверхности графитового электрода.
Построение градуировочного графика.
Рабочий раствор висмута (III) готовили из аттестованных растворов ГСО 7477-98 висмута (III) 1,0 мг/см3 в колбе вместимостью 100 см3. Для последовательного разбавления градуированной пипеткой вместимостью 10 см3 отбирали аликвоту (до CBi=45 мкг/ см3) и переносили в мерную колбу вместимостью 100 см3, разбавляли до метки раствором HCl (С(HCl=0,1 моль/л)). Тщательно перемешивали полученный раствор. Таким образом, получали основной градуировочный раствор, который хранили в склянке с притертой пробкой. Из данного градуировочного раствора в день выполнения исследования микродозатором F10 отбирали разные аликвоты раствора висмута в градуированные пробирки с крышками вместимостью 10 см3, добавляли 0,2 см3 3%-ного щелочного раствора (1% NaOH) боргидрида натрия, закрывали пробкой, встряхивали и оставляли на 5 минут, затем регистрировали вольтамперограммы для каждого раствора (фиг. 2) и строили график зависимости предельного диффузионного тока (I, нА) от концентрации висмута (III) в растворе (С, мкг/см3) (табл.1, фиг. 2).
Для разработки методики проведен выбор скорости развертки от значения предельного диффузионного тока (фиг. 1). Полученные результаты свидетельствуют о прямопропорциональной зависимости тока от скорости развертки, что хорошо согласуется с теоретическими данными о обратимо поляризуемых электродах в условиях потенциодинамических перенапряжений. Такая зависимость свидетельствует о хорошей воспроизводимости и правильности заявленного способа «Безопасный вольтамперометрический способ определения висмута». Согласно результатов фиг. 1, максимальный аналитический сигнал (I, нА) можно получить в пределах скорости развертки от 40 до 60 мВ/с.
Выбор условий инверсионных определений предусматривает определение предела обнаружения висмута заявленным способом, значение которого равно 0,02 мкг/см3, а интервал определяемых содержаний находится в пределах 0,02-0,5 мкг/см3.
Изобретение относится к аналитической химии элементов, а именно к методам определения висмута (III) и может быть использовано для санитарно-эпидемиологического контроля питьевых вод, водных объектов, а также аналитическом контроле висмута в сточных водах различных химических производств и вод хозяйственно-бытового назначения. Сущность изобретения заключается в том, что к подкисленному анализируемому раствору добавляли щелочной раствор натрия, закрывали пробкой, встряхивали и оставляли на 5 минут для восстановления всех форм висмута до гидрида висмута BiH3. Методом адсорбции гидрид висмута накапливали на рабочем электроде из анализируемого раствора (фоновый электролит и подготовленная проба) при заданных программно величинах потенциала. После электролиза разворачивали потенциал в анодном направлении в режиме ступенчатой развертки. Сигнал электрохимического окисления регистрировали в виде вольтамперограмм и методом градуировочного графика проводили расчет содержания висмута в пробе. Изобретение обеспечивает безопасный способ, в котором предел обнаружения висмута 0,02 мкг/см3, а интервал определяемых содержаний находится в пределах 0,02-0,5 мкг/см3. 2 ил., 1 табл.
Вольтамперометрический способ определения висмута (III) в растворе, отличающийся тем, что к анализируемому раствору, подкисленному 2 см3 раствором хлороводородной кислоты 0,1 моль/л, общим объемом 5-7 см3, добавляют 0,2 см3 3%-ного щелочного раствора (1% NaOH) боргидрида натрия, закрывают пробкой, встряхивают и оставляют на 5 минут до образования гидрида висмута (III); полученную пробу переносят в кварцевый стаканчик анализатора, погружают электроды: рабочий (графитовый), хлоридсеребряный сравнения и вспомогательный проволочный из платины; методом адсорбции гидрид висмута (III) накапливают на рабочем (графитовом) электроде при программно заданных величинах потенциала (-0,6 В) и времени накопления 30 сек; затем разворачивают потенциал в анодном направлении от -0,6 до +0,6 В в режиме ступенчатой развертки со скоростью 40-60 мВ/сек, регистрируют вольтамперограмму в области потенциала -0,4 В и методом градуировочного графика проводят расчет содержания висмута (III) в пробе.
Тяговой пружинный динамометр | 1933 |
|
SU31866A1 |
Определение содержания элементов методом инверсионной вольтамперометрии" | |||
Способ защиты переносных электрических установок от опасностей, связанных с заземлением одной из фаз | 1924 |
|
SU2014A1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ВИСМУТА В ВОДНЫХ РАСТВОРАХ МЕТОДОМ ИНВЕРСИОННОЙ ВОЛЬТАМПЕРОМЕТРИИ ПО ПИКАМ СЕЛЕКТИВНОГО ЭЛЕКТРООКИСЛЕНИЯ ВИСМУТА ИЗ ИНТЕРМЕТАЛЛИЧЕСКОГО СОЕДИНЕНИЯ AuBi | 2011 |
|
RU2478944C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ СУРЬМЫ, ВИСМУТА, МЕДИ В ВОДНЫХ РАСТВОРАХ МЕТОДОМ АНОДНО-КАТОДНОЙ ВОЛЬТАМПЕРОМЕТРИИ | 2010 |
|
RU2419786C1 |
US 9880124 B1, 30.01.2018. |
Авторы
Даты
2019-07-03—Публикация
2018-08-02—Подача