Изобретение относится к области разработки резинотехнических изделий и может быть использовано для придания резине повышенной твердости, износостойкости, стойкости к воздействию агрессивных сред и уменьшения коэффициента трения.
Известен метод плазмохимического модифицирования (ПХМ) для создания резин с улучшенными триботехническими характеристиками (1. Суриков В.И., Николаев И.В., Полонянкин Д.А., Рогачев Е.А., Целых Е.П., Суриков В.И. Структура, состав и триботехнические свойства танталового покрытия на резине / Динамика систем, механизмов и машин. - г. Омск. 2016. № 2. С. 232-237), где описан способ нанесения на резину тугоплавкого металла - танталла с различными временными промежутками. При продолжительности напыления в 34 мин. истирание уменьшается 8,5 раз по сравнению с исходным образцом. К недостаткам танталловых покрытий можно отнести потерю эластичности модифицированной поверхности. В работе (2. Рогачев А.В. Триботехнические свойства композиционных покрытий, осаждаемых вакуумно-плазменными методами / Трение и износ, 2008. Т. 29. № 3. С. 285-292) методом ПХМ было нанесено покрытие на основе политетрафторэтилена (ПТФЭ) и полиуретана (ПУ) в различных соотношениях. Показано, что наиболее высокие триботехнические характеристики имеют резины с нанесенными на их поверхность бинарными полимер-полимерными покрытиями, представляющими собой ПУ матрицу с введенными в ее объем частицами ПТФЭ. Недостатком данного технического решения является сложность нанесения защитного слоя. В работе (3. Абдрашитов Э.Ф., Тарасенко В.А., Тихомиров Л.А., Пономарев А.Н. Трение и износ плазмохимически модифицированных эластомеров /Трение и износ. - Республика Беларусь, Гомель. 2001. Т. 22. № 2. С. 190) резинотехнические изделия (РТИ) обработаны в плазме тлеющего разряда в газовой среде перфторорганических соединений. Под действием активных компонентов плазмы на поверхности РТИ происходит осаждение антифрикционной полимерной фторуглеродной пленки со скоростью от 0,5 до 1-3 мкм/ч. В работе (4. Тихомиров Л.А. Кинетика плазменного осаждения фторуглеродных пленок политетрафторэтилене / Химия высоких энергий. - М.: 1983. Т. 17. № 4. С. 345) для повышения износостойкости сделана попытка увеличить толщину фторполимерного покрытия путем нанесения адгезионно-активной композиции, приготовленной на основе раствора каучука СКФ-26 с добавкой дисульфида молибдена в процессе трения. Однако дополнительное утолщение, как показали эксперименты, не приводит к увеличению износостойкости. Недостатком плазмохимического метода модифицирования является сложность выполнения процесса нанесения покрытия, а также необходимость использования специальных машинных устройств.
Известно поверхностное модифицирование образцов из нитрильных резин композицией на основе полиамида ПА-6 и MoS2 (5. Тихомиров Л.А., Тарасенко В.А., Костина Т.Ю., Дорофеева Л.В. Влияние дисульфида молибдена на триботехнические характеристики полиамидных покрытий на нитрильных резинах / Каучук и резина. - М.: 1914. № 3. С. 26-28.). Эксперименты по модифицированию поверхности проводились на резинах ИРП-1078-НТА (на основе смеси нитрильных каучуков СКН-18 и СКН-26). В 10%-ный раствор ПА-6 в муравьиной кислоте добавляли порошок MoS2 в количестве 30% от массы полимера. Образцы в виде резиновых дисков диаметром 36 мм и толщиной 2 мм выдерживали в указанной смеси при температуре 58-60°С в течение 20 мин при непрерывном помешивании. После просушки образцы обрабатывали струей горячего воздуха с температурой 240-250°С. В работе (5) показано, что введение дисульфида молибдена в состав полиамидного покрытия приводит к увеличению износостойкости в 4-5 раз. К недостатку изготовления покрытий по технологии (5) следует отнести сложность технологического процесса получения покрытия. Это изобретение взято за аналог.
Наиболее близким техническим решением является (6. Соколова М.Д., Шадринов Н.В., Дьяконов А.А. Способ нанесения защитной пленки из сверхвысокомолекулярного полиэтилена на резину // Патент РФ №2641816, бюл. №3 от 22.01.2018), где описан способ нанесения на резину защитного покрытия из сверхвысокомолекулярного полиэтилена в виде порошка. К недостатку данного технического решения можно отнести то, что СВМПЭ наносится на поверхность резины в порошкообразном виде в процессе изготовления РТИ, что само по себе является сложной технологической точки зрения задачей, а также затрудняет контролирование равномерности распределения и толщины нанесения защитного слоя. Неравномерность нанесенного защитного покрытия может отразиться на снижении и увеличении разброса показателей технических свойств покрытой резины.
Раскрытие изобретения
Задачей, на решение которой направлено заявляемое изобретение является повышение износостойкости резиновых изделий путем нанесения на поверхность резины защитного покрытия из тканевого СВМПЭ.
Технический результат, достигаемый при осуществлении изобретения, состоит в получении резиновых изделий с покрытием, имеющих высокую стойкость к истиранию.
Существенные признаки, характеризирующие изобретение.
Ограничительные: На поверхность резины наносится защитное покрытие из износостойкого полимерного материала. Предлагаемый способ предполагает применение предварительной подвулканизации резиновой смеси для выдавливания излишка резиновой смеси (облоя) до нанесения защитного покрытия из СВМПЭ. Если СВМПЭ нанести на поверхность резиновой смеси без предварительной подвулканизации, то СВМПЭ может сместиться (выдавиться) вместе с облоем, что может явиться причиной образования непокрытых зон.
Отличительные: В процессе вулканизации, на поверхность предварительно подвулканизованной резины наносится СВМПЭ в виде ткани. При этом под воздействием высокой температуры и давления, СВМПЭ переходит в высокоэластическое состояние (процесс плавления) и при остывании (процесс перехода в твердое состояние) образует с резиной прочное соединение путем физического зацепления макромолекул. Сетчатая структура ткани СВМПЭ способствует улучшению физического переплетения с резиной.
В результате нанесения ткани из СВМПЭ представленным способом, на поверхности резины образуется тонкое монолитное покрытие, выполняющее защитную функцию. Толщина может варьироваться в зависимости от плотности плетения ткани.
Осуществление изобретения
Способ нанесения защитного покрытия на поверхность резины осуществляется следующим образом: Сначала выполняется предварительная подвулканизация сырой резиновой смеси. Для этого, сырая резиновая смесь помещается в пресс-форму и вулканизуется при температуре вулканизации указанной в ТУ используемой резиновой смеси в течение 1/10 - 1/8 (в зависимости от типа каучука и реологических свойств резиновой смеси) от общего времени необходимого для вулканизации той или иной резины. При подвулканизации выдавливается облой и придается определенная форма образцу. Затем, процесс вулканизации временно приостанавливается и на образец подвулканизованной резины накладывается ткань СВМПЭ. После этого, процесс вулканизации продолжается до полной вулканизации резины. За полную вулканизацию принимается продолжительность вулканизации, указанная в ТУ используемой резиновой смеси. Благодаря тому, что температура плавления различных марок СВМПЭ (125-135°С) ниже температуры вулканизации резин (140-160°С), ткань СВМПЭ плавится и образует равномерный слой на поверхности резины.
Для демонстрации эффективности предлагаемого способа, были изготовлены образцы эластомерных матриц на основе бутадиенового каучука (СКД-Тi) и смесевой композиции бутадиенового и бутадиен-стирольного каучуков (СКД-Ti/ДССК), покрытых защитным слоем из ткани СВМПЭ. Рецептура резиновых смесей представлена в табл. 1.
Таблица 1. Рецептура резиновых смесей для нанесения покрытия из ткани СВМПЭ
Смешение резиновой смеси произведено на лабораторных вальцах См350°150/150 (Китай) в течение 30 мин. Образцы для исследований вулканизованы в гидравлическом прессе 100-400 2Э (Россия) при температуре 155°С в течение 20 минут.
Исследование физико-механических показателей проведено согласно ГОСТ 270-75 на испытательной машине UTS (Германия). Абразивостойкость резин оценивали по методу определения сопротивления истиранию в соответствии с ГОСТ 23509-79 на машине трения АР-40 (Россия). Твердость по Шору А определена согласно ГОСТ 263-75.
Таблица 2. Свойства резин с покрытием из СВМПЭ
fp, МПа - условная прочность при растяжении; f100, МПа - условное напряжение при 100% удлинении; εp, % - относительное удлинение при разрыве; ΔV, см3 - объемный износ; H, у.е. - твердость по Шору А.
В табл. 2 приведены результаты исследований образцов резин, покрытых тканью из СВМПЭ. По сравнению с исходными резинами, образцы резин с защитным покрытием из СВМПЭ, обладают более низкими относительным удлинением при разрыве и прочностью при растяжении, но при этом обладают более высокими показателями (до 2,3 раз) модуля при 100%-ном удлинении. Объемный износ при абразивном истирании у образцов СКД-Ti и СКД-Ti/ДССК уменьшается на 73% и 65% соответственно, что свидетельствует о существенном увеличении износостойкости. Твердость образцов повышается примерно на 30-32%.
название | год | авторы | номер документа |
---|---|---|---|
Способ нанесения защитной пленки из сверхвысокомолекулярного полиэтилена на резину | 2016 |
|
RU2641816C2 |
Поверхностно-модифицированный композиционный материал | 2015 |
|
RU2615416C2 |
РЕЗИНОПОЛИМЕРНЫЙ МАТЕРИАЛ ДЛЯ ВНУТРЕННЕЙ ФУТЕРОВКИ ГИДРОЦИКЛОНОВ | 2016 |
|
RU2645503C1 |
Двухслойный композиционный материал на основе сверхвысокомолекулярного полиэтилена и эластомера | 2021 |
|
RU2780107C1 |
Способ получения трехслойного композиционного материала на основе сверхвысокомолекулярного полиэтилена, резины и металла | 2021 |
|
RU2797809C2 |
КОМПОЗИЦИОННЫЙ МАСЛОБЕНЗОСТОЙКИЙ ИЗНОСО-МОРОЗОСТОЙКИЙ МАТЕРИАЛ | 2008 |
|
RU2437903C2 |
КОМПОЗИЦИОННЫЙ РЕЗИНОПОЛИМЕРНЫЙ ИЗНОСОСТОЙКИЙ МАТЕРИАЛ ДЛЯ ГИДРАВЛИЧЕСКИХ УСТРОЙСТВ | 2009 |
|
RU2425850C2 |
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИЙ СВЕРХВЫСОКОМОЛЕКУЛЯРНОГО ПОЛИЭТИЛЕНА С ПОЛИСИЛОКСАНОМ | 1997 |
|
RU2119429C1 |
СОСТАВ РЕЗИНОВОЙ СМЕСИ НА ОСНОВЕ КОМБИНАЦИИ КАУЧУКОВ ОБЩЕГО НАЗНАЧЕНИЯ (ВАРИАНТЫ) | 2023 |
|
RU2809502C1 |
ВУЛКАНИЗУЕМАЯ РЕЗИНОВАЯ СМЕСЬ ДЛЯ ПОЛУЧЕНИЯ ТВЕРДЫХ РЕЗИН | 1999 |
|
RU2172750C2 |
Изобретение может быть использовано для изготовления резинотехнических изделий. Способ нанесения защитного покрытия включает нанесение ткани из сверхвысокомолекулярного полиэтилена на поверхность резины. Ткань наносят в процессе вулканизации на предварительно подвулканизованную резину с последующим продолжением процесса вулканизации до полной вулканизации. Технический результат заключается в повышении твердости, износостойкости и стойкости к воздействию агрессивных сред резинотехнических изделий, а также к уменьшению коэффициента трения на их поверхности. 2 табл.
Способ нанесения защитного покрытия из сверхвысокомолекулярного полиэтилена на поверхность резины, отличающийся тем, что сверхвысокомолекулярный полиэтилен наносится на поверхность резины в виде тканевого покрытия во время вулканизации резины, при этом нанесение сверхвысокомолекулярного полиэтилена на поверхность резины производится путем накладывания ткани из сверхвысокомолекулярного полиэтилена на предварительно подвулканизованную резину с последующим продолжением процесса вулканизации до ее полной вулканизации.
Способ нанесения защитной пленки из сверхвысокомолекулярного полиэтилена на резину | 2016 |
|
RU2641816C2 |
US 20100203273 A1, 12.08.2010 | |||
СN 107163472 A, 15.09.2017 | |||
US 20120168285 A1, 05.07.2012 | |||
CN 104497325 A, 08.04.2015. |
Авторы
Даты
2021-12-21—Публикация
2021-04-06—Подача