Изобретение относится к способам получения биоактивного стекла, которое используется в медицине, в частности в травматологии, ортопедии, регенеративной медицине, стоматологии и челюстно-лицевой хирургии для восстановления функциональной целостности костной ткани. Биостекла применяют в качестве материалов, стимулирующих восстановление и устранение дефектов костной ткани, а также в качестве ненагружаемых или слабонагружаемых имплантатов в восстановительной хирургии.
Одним из наиболее широко известных составов биостекла является состав «Bioglass 45S5», содержащий, мас.%: 45 SiO2; 24,5 Na2O; 24,5 CaO; 6 P2O5. Он применяется в медицине, так как все компоненты этого стекла участвуют в процессе регенерации костной ткани. Натрий, кальций и фосфор являются составной частью кости, а кремний за счет гидролиза в жидкости организма образует на поверхности стекла силанольные группы, которые способствуют адсорбции гидроксиапатита. Для придания дополнительных полезных свойств (повышение прочности, рентгеноконтрастности и др.) биостекла легируют, например, оксидами вольфрама, тантала или циркония. Так функциональная добавка оксида циркония к «Bioglass 45S5» увеличивает прочность на сжатие материала, снижает его растворимость и поддерживает более стабильный рН окружающей ткани при имплантации.
Известен способ получения биостекла, модифицированного оксидом циркония, основанный на методике золь-гель синтеза [CN 108455843, опубл. 01.03.2018]. На первой стадии процесса получают золь биостекла 58S, для чего в раствор тетраэтилсиликата в этаноле, разбавленный деионизированной водой, добавляют последовательно триэтилфосфат, нитрат кальция, нитрат стронция. Процесс занимает от 2 до 6 часов. На второй стадии получают золь оксида циркония, для этого октагидрат оксихлорида циркония растворяют в деионизированной воде, либо этаноле, температуру раствора доводят до 75-80°С и перемешивают со скоростью 400-500 об/мин до прозрачности раствора. Золи диоксида циркония и биостекла 58S объединяют и перемешивают при комнатной температуре в течение 1-2 ч., далее выдерживают при 70-75°С в течение 3 дней. Полученный гель дегидратируют, сушат и прокаливают при 780-800°С до образования порошка биостекла, модифицированного диоксидом циркония.
Недостатком данного метода является наличие в составе биостекла 58S оксида стронция вместо оксида натрия, а также длительность и многостадийность процесса.
Также известен способ получения пористого стеклокристаллического материала, содержащего диоксид циркония, который может быть использован для изготовления имплантов [RU 2462272, опубл. 27.09.2012]. Указанный способ включает изготовление полусухой массы, содержащей порошок кальцийфосфатного стекла и 1-10% раствор полимера, выбранного из поливинилового спирта, желатина, метилцеллюлозы или карбоксиметилцеллюлозы, которую затем формуют в бумажных формах при давлении прессования 1,0-1,2 МПа, сушат, обжигают с выдержкой 0,5-1,5 часа при 900-1000°С. В полусухую массу также вводят стержни-порообразователи в количестве 3-30 мас.%, представляющие собой капрон, нейлон, лавсан или графит, и крахмал в количестве 1-10 мас.%. Кальцийфосфатное стекло имеет следующий состав в мол.%: 40-55 СаО, 34-10 Al2O, 1-5 B2O3, 1-10 TiO2, 1-10 ZrO2 и P2O5 остальное. Способ обеспечивает получение биоактивных стеклокристаллических материалов для имплантации с канальной и межканальной поровой структурой, открытой пористостью 20-70%, долей канальных пор 5-40%, диаметром канальных пор 100-700 мкм, размером пор в межканальных перегородках 20-100 мкм.
Недостатком известного способа является отсутствие в получаемом материале натрия и кремния, что снижает его биологическую активность.
Известен способ [Tallia F. et al. «Zirconia-containing radiopaque mesoporous bioactive glasses» // MaterialsLetters, 2014, V. 130, pp. 281-284] получения цирконийсодержащего биоактивного стекла, согласно которому его получают растворением коммерческого неионогенного блок-сополимера Pluronic P123, тетраэтилортосиликата, тетрагидрата нитрата кальция, триэтилфосфата, пропоксида циркония, ацетилацетона и 0,5 М HCl в этаноле. Эта смесь, при непрерывном перемешивании при 35°C в течение 24 часов, приводит к получению золя, который после заливки в чашки Петри подвергается стадии старения (24 часа при комнатной температуре, затем 24 часа до 120°C). Высушенный гель прокаливают при 750°C в течение 5 ч на воздухе с получением конечного продукта в виде тонких мембран, которые затем измельчают и просеивают при необходимости.
Недостатком способа является многостадийность и длительность процесса, а также отсутствие натрия в составе стекла.
Наиболее близким к заявляемому изобретению по получаемому продукту является способ получения биоактивного стекла 45S5, легированного цирконием, заключающийся в плавлении смеси оксидов при температуре 1600°С [Kang T-Y. et al. «Improvement of the mechanical and biological properties of bioactive glasses by the addition of zirconium oxide (ZrO2) as a synthetic bone graft substitute» // J. Biomed Mater.Res., 2021, V. 109, pp. 1196-1208]. Согласно описанному способу порошки диоксида циркония, диоксида кремния, карбоната натрия, карбоната кальция и пентоксида фосфора объединяли в количествах, необходимых для получения биостекла с добавкой циркония от 1 до 12%. Полученную смесь плавили в платиновом тигле с использованием электрической печи при температуре 1600°С в течение 4 часов. Затем расплавленное стекло быстро охлаждали в ледяной воде для предотвращения кристаллизации и разделения фаз. При необходимости конечный продукт измельчали в ступке.
Недостатком известного способа является длительность процесса и высокая температура плавления.
Задачей изобретения является создание рентабельного, при этом простого в осуществлении, способа получения биостекла, в состав которого входит натрий, кальций, фосфор, кремний и оксид циркония.
Технический результат данного изобретения заключается в упрощении способа получения биостекла, модифицированного оксидом циркония, за счет сокращения времени процесса и снижения энергозатрат посредством понижения температуры пиролиза.
Технический результат достигается предлагаемым способом получения биостекла, легированного оксидом циркония с использованием в качестве исходных веществ органических производных кремния, фосфора и циркония, отличающийся тем, что в качестве исходных веществ используют олеаты натрия, кальция и циркония, трибутилфосфат и тетраэтилортосиликат, смесь которых подвергают пиролизу для получения конечного продукта.
Процесс осуществляют следующим образом.
В раствор олеата натрия с тетраэтоксисиланом в смеси толуол, скипидар добавляют раствор олеата кальция с трибутилфосфатом в смеси толуол, скипидар, затем раствор олеата цирконила в толуоле. После смешивания всех компонентов в рассчитанных количествах выполняют отгонку растворителей при температуре 150-200°С. Полученный прекурсор подвергают пиролизу в муфельной печи при температуре 1300°С в течение 30 минут. Олеат цирконила добавляют в количествах, соответствующих 1-20 мас.% ZrO2 в биостекле. Для подтверждения образования биостекла продукт исследовали рентгенофазовым анализом на дифрактометре Bruker AXS, D8 ADVANCE, полученные образцы абсолютно прозрачны и рентгеноаморфны, что соответствует образованию стекла, увеличение добавки ZrO2 свыше 20 мас.% приводит к кристаллообразованию. Биологическая активность получаемого стекла подтверждается исследованиями поверхности образцов после их погружения в SBF-раствор на 19 суток, все образцы имеют покрытия из гидроксиапатита в виде плотной растрескавшейся корки.
Возможность осуществления изобретения иллюстрируется следующими примерами.
Пример 1. Олеат натрия (4,961 г) смешивали с тетраэтоксисиланом (3,216 г) и растворяли в смеси органических растворов (50:50) скипидаре и толуоле (50 мл). Олеат кальция (5,430 г) смешивали с трибутилфосфатом (0,464 г) и растворяли в смеси органических растворов (50:50) скипидаре и толуоле (50 мл). Олеат цирконила (0,590 г) растворяли в толуоле (10 мл), что соответствует 5 мас.% ZrO2 в биостекле. После смешивания всех компонентов выполняют отгонку растворителей при температуре 150-200°С. Полученный прекурсор подвергают пиролизу в муфельной печи при температуре 1300°С. Средняя скорость нагрева 7°/мин, выдержка - 30 мин.
Пример 2. Олеат натрия (4,232 г) смешивали с тетраэтоксисиланом (3,048 г) и растворяли в смеси органических растворов (50:50) скипидаре и толуоле (50 мл). Олеат кальция (4,632 г) смешивали с трибутилфосфатом (0,440 г) и растворяли в смеси органических растворов (50:50) скипидаре и толуоле (50 мл). Олеат цирконила (1,180 г) растворяли в толуоле (15 мл), что соответствует 10 мас.% ZrO2 в биостекле. После смешивания всех компонентов выполняют отгонку растворителей при температуре 150-200°С. Полученный прекурсор подвергают пиролизу в муфельной печи при температуре 1300°С. Средняя скорость нагрева 7°/мин, выдержка - 30 мин.
Пример 3. Олеат натрия (4,176 г) смешивали с тетраэтоксисиланом (2,707 г) и растворяли в смеси органических растворов (50:50) скипидаре и толуоле (50 мл). Олеат кальция (4,570 г) смешивали с трибутилфосфатом (0,391 г) и растворяли в смеси органических растворов (50:50) скипидаре и толуоле (50 мл). Олеат цирконила (2,359 г) растворяли в толуоле (20 мл), что соответствует 20 мас.% ZrO2 в биостекле. После смешивания всех компонентов выполняют отгонку растворителей при температуре 150-200°С. Полученный прекурсор подвергают пиролизу в муфельной печи при температуре 1300°С. Средняя скорость нагрева 7°/мин, выдержка - 30 мин.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ БИОАКТИВНОЙ КЕРАМИКИ НА ОСНОВЕ ДИОКСИДА ЦИРКОНИЯ | 2021 |
|
RU2771017C1 |
СПОСОБ ПОЛУЧЕНИЯ КАЛЬЦИЙ-ФОСФАТНЫХ СТЕКЛОКЕРАМИЧЕСКИХ МАТЕРИАЛОВ | 2013 |
|
RU2508132C1 |
СПОСОБ ПОЛУЧЕНИЯ БОРСОДЕРЖАЩЕГО БИОАКТИВНОГО СТЕКЛА | 2019 |
|
RU2690854C1 |
РЕНТГЕНОКОНТРАСТНОЕ БИОАКТИВНОЕ СТЕКЛО И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2018 |
|
RU2714035C2 |
СПОСОБ ЛЕЧЕНИЯ АДЕНОКАРЦИНОМЫ ЭРЛИХА | 2022 |
|
RU2794457C1 |
Способ получения фосфатосиликата циркония и натрия состава NaZrSiPO со структурой NASICON | 2022 |
|
RU2780211C1 |
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА ФОСФАТА КАЛЬЦИЯ-ЦИРКОНИЯ | 2023 |
|
RU2825386C1 |
Способ получения фосфатосиликата циркония и натрия со структурой NASICON | 2022 |
|
RU2786266C1 |
СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНЫХ ПОРОШКОВ ГИДРОКСИАПАТИТА | 2011 |
|
RU2457174C1 |
РЕНТГЕНОКОНТРАСТНОЕ СТЕКЛО ДЛЯ НАПОЛНИТЕЛЕЙ КОМПОЗИЦИОННЫХ СТОМАТОЛОГИЧЕСКИХ МАТЕРИАЛОВ | 2023 |
|
RU2816453C1 |
Изобретение относится к способам получения биоактивного стекла, которое используется в медицине, в частности в травматологии, ортопедии, регенеративной медицине, стоматологии и челюстно-лицевой хирургии для восстановления функциональной целостности костной ткани.
Предложен способ получения биостекла, легированого диоксидом циркония с использованием органических производных кремния, фосфора и циркония. В качестве исходных веществ используют олеаты натрия, кальция и циркония, трибутилфосфат и тетраэтилортосиликат, смесь которых сначала выдерживают при температуре 150-200°С для отгонки растворителей, а затем подвергают пиролизу при 1300°С в течение 0,5 часа для получения конечного продукта.
Технический результат - упрощение способа получения биостекла, легированого оксидом циркония, за счет сокращения времени процесса и снижения энергозатрат в результате понижения температуры пиролиза. 1 з.п. ф-лы, 3 пр.
1. Способ получения биостекла, легированого диоксидом циркония, с использованием в качестве исходных веществ органических производных кремния, фосфора и циркония, отличающийся тем, что в качестве исходных веществ используют олеаты натрия, кальция и циркония, трибутилфосфат и тетраэтилортосиликат, смесь которых сначала выдерживают при температуре 150-200°С для отгонки растворителей, а затем подвергают пиролизу при 1300°С в течение 0,5 часа для получения конечного продукта.
2. Способ по п. 1, отличающийся тем, что количество добавки ZrO2 в биостекле соответствует 1-20 мас.%.
KANG T-Y | |||
et al | |||
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Res., 2020, v.109, no.7, p.1196-1208 | |||
TALLIA F | |||
et al | |||
Zirconia-containing radiopaque mesoporous bioactive glasses, Materials Letters, 2014, vol.130, |
Авторы
Даты
2022-01-31—Публикация
2021-06-01—Подача